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Abstract— We develop a virtual prototyping infrastructure
for modeling and simulation of automotive systems. We focus
on exercising and exploring use cases involving system-level
coordination of vehicular electronics, sensors, and software.
In current practice, such use cases can only be explored late
in the design when all the relevant hardware components
are available. Any design change, e.g., for optimization or
security or even functional errors found during the exploration,
incurs prohibitive cost at that stage. Our solution is a flexible,
configurable prototyping platform that enables the user to
seamlessly add new system-level use cases. Unlike other related
prototyping environments, the focus of our platform is on
communication and coordination among different components,
not the computation of individual Electronic Control Units.
We report on the use of the platform for implementing several
realistic usage scenarios on automotive platforms and exploring
the effects of their interaction. In particular, we show how to
use the platform to develop real-time in-vehicle communication
optimizers for different optimization targets.

I. INTRODUCTION

Vehicular systems have seen a rapid transformation in re-
cent years, with the infusion of autonomous features targeted
to augment and in many cases, replace human operation.
Autonomous features hold the promise of dramatically in-
creasing safety by reducing human errors, while concurrently
enabling efficient utilization of the transportation infrastruc-
ture and minimizing environmental impacts. However, one
upshot of this trend is an explosion in electronic and soft-
ware complexity. A modern automotive system can contain
hundreds of electronic control units (ECUs) each connected
to a number of sensors and actuators, multiple in-vehicle
networks, and several hundred megabytes of software code.
Unsurprisingly, these systems can have subtle, hard-to-detect
errors. Many of these errors involve concurrent coordination
of multiple components: an “innocent” optimization in one
component (e.g., how a specific ECU handles a message
coming from the CAN bus) can have an unpredictable effect
on coordination, timing, performance, or even functional
impact that can compromise reliability, safety, and efficiency;
furthermore, bugs that escape to deployment can be exploited
in the field by adversaries to cause accidents, introduce
inefficiency in transportation, or even a breakdown of the
transportation infrastructure.

In current industrial practice, exploration of full-system
functionalities is performed by OEM through field test-
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ing. This entails connecting all the electronic components,
sensors, and actuators (possibly excluding the mechanical
chassis), installing the appropriate software, and physically
exercising the different vehicular use cases (e.g., pressing
the brake, turning the steering wheel, etc.). While such field
testing enables systematic exploration of system-level use
cases, a key problem with this approach is that it can only
be performed late in the design, when all the hardware
components, sensors, and actuators have been manufactured
and assembled. At this stage, any substantial re-design is
generally avoided since it can result in significant churn
in the design and production timeline. Consequently, any
non-essential optimization has to be eschewed. Even design
errors found this late can be expensive to address. There
is obviously a critical need for a platform that will enable
exploration and validation of system-level functionalities
early in the design.

In this paper, we develop a platform to address this crucial
challenge. Our solution is a prototype environment, VIVE,
that is targeted to enable simulation and exploration of
automotive system-level use cases, help comprehend their
interactions, and facilitate system-level optimization and se-
curity, present the system architecture for VIVE, and discuss
the extensibility and configurability features necessary to
make the system viable. We have used VIVE to implement
a number of representative vehicular use cases. We also
demonstrate the utility of the framework in designing a real-
time communication packet optimizer for the CAN bus.

The remainder of the paper is organized as follows.
Section II provides the relevant background and summarizes
related research in this area. Section III presents the VIVE
platform architecture and its use in vehicular use case
implementations. In Section IV we discuss the use cases
implemented. To illustrate the use of the platform, we go into
detail of one use case for VIVE, viz., the Antilock Breaking
System (ABS). In Section V we discuss the application of
the platform in system-level optimization. We conclude in
Section VI.

II. RELATED WORK

A. Virtual Prototyping

Virtual Prototyping entails developing a software (i.e.,
virtual) model of a design before a physical embodiment
is built. As systems get increasingly complex, prototyping is
getting increasingly common to facilitate early exploration
and optimization. A popular prototyping approach makes use
of digital twins [1]. The idea is to create a digital representa-
tion of a physical device or object that mimics the underlying



Fig. 1. Virtualization of Use Cases. (Left) A typical physical prototype to support three use cases: Antilock Braking System, Traction Control System,
and Right Turn. (Right) Corresponding Virtualization.

physics and use that data to develop a mathematical model
that simulates the real-world in digital space. Digital twins
have been used for a number of applications, including space
capsules, factories, and smart cities [2]. However, the focus
has been primarily on modeling physical and mechanical
behavior.

The idea of prototyping has also become popular in the
“cyber” world, particularly in the area of digital hardware and
System-on-Chip (SoC) designs. Such platforms are referred
to as virtual platforms. The idea is to develop a software
model of the underlying hardware platform. The idea is
to provide a platform early in the design (before silicon
or even mature register-transfer level (RTL) models are
available) which can be used for design exploration and
software development. Obviously, many hardware corner-
cases are abstracted in the virtual model. Nevertheless, the
approach has been found valuable for early software and
firmware development, hardware-software co-design, and co-
validation [3], [4]. A number of frameworks have been
developed to enable virtual prototyping, including several
commercial offerings [5].

Our work derives inspiration from the progress above
in digital twins as well as virtual platforms and targets
them towards developing a focused prototyping solution
for automotive systems. Analogous to digital twins, we
target the overall system functionality, not on a specific
electronic component. However, unlike digital twins, —
and analogous to virtual platforms, — the focus is not on
physical or mechanical behavior but on the cyber components
of the system. In fact we focus primarily on two aspects
of the cyber behavior: (1) software functionality and (2)
coordination and communication of the components through
CAN messages. Furthermore, we develop a generic and
extensible platform that can be integrated with a variety of
use cases. To our knowledge, there is no other previous work
that enables automotive virtual prototyping at this level.

B. Virtualization of automotive components
There has been some recent work to virtualize automo-

tive components. Strobl et al. [6] provide a comprehensive
discussion on the benefits of automotive virtualization as a

foundation for consolidating a multitude of ECUs into a few
Domain Controller Units (DCUs) Lee et al. [7] developed a
Virtualized Automotive Display System which can manage
multiple execution domains like the automotive control soft-
ware and the in-vehicle infotainment (IVI) software. Safar et
al. [8] added a VP to the V-model of automotive software
development as part of an enhanced methodology that allows
verification and validation on SoC, ECU, and system level.
It also provides fault injection capability and co-debugging
mechanism of AUTOSAR software. While these approaches
cover virtualization of some components, the framework un-
like ours only considers specific subsystems. Our approach
is complementary to these activities, focusing instead on
system-level aspects while abstracting individual ECUs and
subsystems. While other automotive simulators like CARLA
and SUMO focuses on certain features of autonomous vehi-
cle controls and traffic simulations respectively, VIVE stands
differently by providing the extensibility of new use-cases,
explore the inter component and system interactions and,
exercise optimization and security targets.

III. VIVE ARCHITECTURE AND IMPLEMENTATION

A. High-level Architecture

An automotive system comprises ECUs, possibly with
sensors and actuators attached, together with in-vehicle net-
works (e.g., CAN). Any automotive use case (e.g., right turn,
brake, etc.) is initiated by some actuarial action and involves
a sequence of messages transmitted across the network by
different ECUs. Fig. 1 illustrates the virtualization involved
in representative use cases. Given this insight, VIVE enables
modeling different use cases by providing the following
infrastructure.

• Network Simulator: VIVE provides a simulation en-
vironment for the in-vehicle networks involved in the
use case. The network simulator faithfully models the
protocols implemented (e.g., CAN, LIN, etc.).

• ECU: Each ECU is, of course, a complex computational
element. Unlike traditional virtual platforms, VIVE
does not require a complete software model of the
ECU. Instead, it provides a generic interface through



TABLE I
SOME USE CASES IMPLEMENTED AND CORRESPONDING VEHICULAR COMPONENTS

Name ECU Sensor Actuator
Anti-lock Braking ABS, ADAS, Gateway Wheel Speed Sensor, Hydraulic Modulator

System (ABS) Brake Pedal Position
Right Turn Electric Power Steering (EPS), Angle Sensor, Torque Sensor Assist Motor,

ABS, Gateway Load Motor
Return-to-Center EPS, ABS, Gateway Angle Sensor, Torque Sensor Assist Motor
Traction Control Engine Control Module (ECM), TCS Switch, Wheel Speed Sensor,
System (TCS) TCS, ADAS, Gateway Acceleration Pedal Position
Cruise Control Body Control Module (BCM), Gateway, Cruise Switch, Acceleration Pedal Position, Throttle

Engine Control Module (ECM) Acc/Dec Switch, Wheel Speed Sensor
Indirect Tire Pressure ABS, Gateway Wheel Speed Sensor

Monitoring System (iTPMS)
Direct Tire Pressure Tire Pressure Monitoring System (TPMS), Tire Pressure Sensor

Monitoring System (dTPMS) Gateway

which one can connect either (1) an actual ECU, or
(2) a simple hardware platform (e.g., Raspberry Pi) to
simulate the functionality of the ECU as relevant to
the use cases, or (3) a software implementation of the
algorithm (see below).

• Sensors/Actuators: Analogous to the ECUs, VIVE
provides an interface which can be used to connect a
physical sensor/actuator or simply a software process
generating synthetic sensory or actuarial data.

Our design choices above stem from the goal of the plat-
form to enable exploration and optimization of the system-
level coordination involved in different use cases and their
interactions. In particular, the vehicular communications
consequently become the centerpiece of the system while
the details of ECUs and sensors (beyond the functionality
required to comprehend the use case) can be abstracted.

B. ECU, Sensor, and Actuator Models

The goal of VIVE is to enable the user to get a realistic
idea of the impact of different use cases that interact with
one another. Table I shows the list of vehicular components
for some of the implemented use cases. A use case is
generally initiated by an actuarial activity, e.g., the ABS will
be initiated by a user pressing the brake pedal. However,
other components (e.g., sensors and many ECU computa-
tions) relevant to the use case perform continuous, ongoing
activity, e.g., the wheel speed sensor, although relevant to
ABS, continues ongoing activity independent of the actuarial
actions initiating the use case. VIVE supports this duality as
follows. Sensors (or processes simulating the sensor actions)
are sampled continuously. Correspondingly, all computation
blocks keep running continuously. For example, the wheel
speed sensor implemented provides simulated wheel speed
data continuously giving inputs to the ECU and the brake
pedal position sensor gets the actual input from the user
pressing a simulated brake pedal.

Note that in some cases the actuator takes input from the
ECU to perform certain mechanisms. The actuator simulation
process in VIVE consequently supports the communication
of inputs from the simulated (or actual) ECU and provides
output data with the final result of the mechanism. For

Fig. 2. TCP client-server socket flow

example, the simulated assist motor takes input from the
simulated Electric Power Steering (EPS) ECU and provides
the necessary output with a result of the ECU computation
for the next mechanism. This output indicates how much
assist torque is being applied to the steering wheel for the
right turn. Finally, the (simulated) ECU is connected and
interfaced with the simulated in-vehicle network (see below)
to interact with other ECUs. Unlike sensors and actuators,
the ECU process can both receive and send messages.
Furthermore, ECUs can take part in multiple use-cases with
necessary computation as needed, e.g., note from Table I,
ABS ECU is involved in four use cases.

We end the discussion on the vehicular components with
a note on the versatility of the VIVE platform. Recall that
VIVE enables ECUs to be simulated with either indigenous
processes or by connecting an actual hardware ECU or
through a configurable microcontroller such as Raspberry
Pi. The third component (Raspberry Pi) is an interesting
aspect of the platform. It enables the user to simulate the
functionality of an ECU and execute (and validate) real
software, without requiring the availability of a full-blown
ECU hardware as necessary for field testing.

C. Communication

As mentioned earlier, exercising communications among
systems is the central goal of VIVE. There are two types
of communication shown: (1) Direct Electrical signal, and
(2) Communications through in-vehicle networks. VIVE



Fig. 3. Anti-lock braking system (a) automotive hardware architecture (b) platform’s functionality flow diagram and (b) platform’s primary system design

currently supports CAN communication. The CAN simulator
uses the arbitration id from the CAN frame to determine
which ECU should receive data from it. Each arbitration id
is tied with a port number that denotes a specific ECU. The
simulator receives all the CAN messages via socket then
sends that CAN message to the corresponding ECU. The
simulator can also handle multiple messages from multiple
ECUs of various use-cases at the same time.

Remark 1: (Implementation Note) VIVE implementation
of communication uses Transmission Control Protocol (TCP)
sockets to realize interaction among all the processes. This
socket programming is based on the client-server model
shown in Fig. 2. The client typically initiates the commu-
nication while the server waits passively to respond to the
client’s request [9]. For the implementation of the CAN bus,
a CAN simulator is modeled which uses a CAN library
to build the CAN frame. This frame is constructed as a
byte array message to send and receive via the socket. The
message contains arbitration id, extended id, data length, and
the actual data. The rest of the communication with sensors
and actuators, i.e., electrical signals is simulated as a simple
byte-array message without any CAN frame.

D. Extensibility and User Interface

A key feature of VIVE is support for extensibility, i.e.,
seamless introduction of new use cases (including those that
possibly interact with the existing ones). To extend VIVE
with a new use case, the user needs to provide the following
information:

1) ECUs involved, and the computation being performed
by each ECU to realize the use case.

2) Sensors and actuators involved. If a new sensor is
necessary for the use case then the sensor process
needs to be added to the system.

3) Message sequences communicated by the different
ECUs (and the modes of communication, e.g., via
CAN, direct electrical signals, etc.).

The platform manages interaction among use cases, schedul-
ing, and resource sharing. For instance, in Fig. 1, the wheel
speed sensor takes part in both ABS and TCS use cases. The
platform provides a graphical user interface (GUI) to perform
actuarial actions such as pressing the brake. Finally, during
simulation, VIVE permits the user to specify any subset of
the supported use cases and study their interactions.

TABLE II
OUTPUT BYTE ARRAY MESSAGES

Component Message
Brake Pedal Position [0] or [1]
Wheel Speed Sensor simulated values from [0] to [60]

ADAS simulated values from [0] to [60] (CAN)
ABS (final output) [0] or [1000] (CAN)
ABS (for gateway) [0] or [1] (CAN)

IV. USE CASES

A. Use Case Summary

Table III presents the summary of use cases implemented
with VIVE. Note that each use case involves multiple ECUs,
sensors, and actuators. Furthermore, sensors and ECUs are
shared among the use cases (e.g., ABS ECU and wheel speed
sensors). The range and diversity of use cases supported
demonstrates the flexibility of VIVE and its viability as a
prototyping platform.1

B. An Illustrative Use Case: ABS Implementation on VIVE

To enable a better understanding of the VIVE, we now
take a closer look at the implementation of ABS as an
illustrative example. Fig. 3 provides an overview of this
use case and VIVE implementation. The functionality is
fairly standard [10]–[12]. The simulated components include
indigenous processes for the ECUs, and sensors, e.g., ABS
ECU, ADAS ECU, gateway, hydraulic modulator, brake
pedal position sensor, and wheel speed sensor. The VIVE
implementation uses sockets for sending data among these
processes as discussed in Section III-C. The actuarial action
from the user initiating the use case is the pressing of
the brake, which is enabled through the VIVE GUI. On
the action, the brake pedal position sensor sends the brake
position signal to the ABS ECU. The slip rate is calculated
from the simulated speed values of the wheel speed sensor
and ADAS. Table II shows all the byte array messages sent
by the components.

If the slip rate is above 0.3, then the ABS sends a byte
array message to the hydraulic modulator to apply or release
brake pressure. Since the parameters for brake pressure vary

1The functionality of the use cases has been currently implemented till
the gateway to focus on the driving and driving assistance operations; the
operations of the instrument cluster (e.g., notifications in heads-up display)
are not implemented. However, from the platform perspective the instrument
cluster functionality can be implemented in the same way as the driving
assistance operations.



TABLE III
IMPLEMENTED USE-CASES

Use-case Functionality
Anti-lock Braking System (ABS) Activates ABS while braking when the wheels are locked. The ABS ECU takes multiple inputs

to compute ABS activation. The vehicle speed data is sent as CAN frame from ADAS to ABS
and in response, ABS sends the ABS status as CAN message to gateway.

Right Turn User makes a right turn simulated by angle sensor and torque sensor of the steering wheel. The
EPS ECU computes the assist and load torque required. The vehicle speed is sent as CAN from
ABS to EPS and in response, EPS sends the turn status as CAN message to gateway.

Return-to-Center (RTC) After applying right turn, the steering wheel returns to the center simulated by the angle sensor
and torque sensor. The EPS ECU computes the RTC assist torque required. The vehicle speed
is sent as CAN frame from ABS to EPS and in response, EPS sends the RTC status as CAN
frame to gateway.

Traction Control System (TCS) Activates TCS while accelerating. The TCS ECU takes multiple sensor inputs to compute TCS
activation. The vehicle speed is sent as CAN frame from ADAS to TCS and in response, TCS
sends the torque reduction status as CAN message to ECM and gateway.

Cruise Control User activates the cruise control to increase, decrease or maintain the vehicle speed. The ECM
ECU takes sensor inputs and computes the speed direction. User input data is sent as CAN from
BCM to ECM and in response, ECM sends the cruise status as CAN message to gateway.

Indirect Tire Pressure Monitoring System (iTPMS) ABS ECU calculates tire pressure from the wheel speed sensor to check pressure status. Tire
pressure warning data is sent as CAN message from ABS to gateway.

Direct Tire Pressure Monitoring System (dTPMS) TPMS ECU directly calculates tire pressure from the tire pressure sensor to check pressure status.
Tire pressure warning data is sent as CAN message from TPMS to gateway

Fig. 4. Raspberry Pi integration for ABS

between 1000 psi and 1600 psi in a vehicle [13], the byte
array message sent to the hydraulic modulator is simulated as
[0] for no pressure and [1000] for pressure application.
Since this is a continuously running process, the slip rate
keeps changing based on different speed data resulting in
two different final outputs (ABS activated or not activated).
Additionally, the ABS ECU sends the CAN frame back to
the CAN simulator with an arbitration id 1, which denotes
the gateway ECU.

Finally, note that the ABS use case can also be imple-
mented with Raspberry Pi models for the respective ECUs
to enable exploration of functionality with real software. Fig.
4 shows the Raspberry Pi Integration for ABS use case. Here
all the processes for the sensors, actuators, and CAN bus are
implemented as separately while ADAS, ABS, and gateway
ECUs are realized through RPIs. For this integration, all four
machines will have their host IP address to connect thus
building an embedded system with more computation ability.
Since the RPI is capable of integrating with actual physical
sensors, VIVE also permits the integration of physical sen-
sors instead of indigenous processes.

V. OPTIMIZATION USING VIVE

One key application of the VIVE platform is early
system-level optimization. To showcase this ability, we use
VIVE to implement two (independent) real-time CAN packet
scheduling optimizers: (1) to minimize CAN bandwidth, i.e.,
number of CAN packets concurrently on the fly); and (2) to
minimize latency, i.e., the average time taken for a CAN
packet from initiation at source ECU to its delivery at the
destination ECU. The goal here is not to develop a high-
quality optimization algorithm but only to demonstrate how
VIVE enables one to design such a real-time optimizer. Note
that in current practice since the system-level scenarios like
the ones discussed in this paper are only exercised late during
field testing, optimizing packet scheduling has to be done
offline without accounting for the interactions of different
use cases: with VIVE, the user can observe the effects of
this interaction and sharpen the optimizer.

For our real-time optimizers, we use Simulated Annealing
[14]. Algorithm 1 provides a high-level overview of the
implementation. Simulated Annealing provides an approx-
imation to the optimal by formalizing the notion of slow
cooling in metallurgy as a slow decrease in the probability of
accepting worse solutions as the solution space is explored.
In our real-time implementation, once the final temperature
is reached and the approximate sequence is calculated, the
CAN bus transmits the packets mentioned in the first cycle
of the sequence, and the rest of the packets are delayed to
the next cycle of the bus.

Fig. 5 shows the results of scheduling with simulated an-
nealing optimizers for four interacting use cases. Obviously,
the optimization values depend on the use cases considered
and the absolute values may differ for other implementations
and other use case combinations. However, the graphs show
the value of the platform in practice for real-time optimiza-
tions. Note that for the use cases considered, scheduling CAN
packets to optimize for latency shows a significant impact



Algorithm 1 Algorithm for optimization with congestion
1: while N cycles of CAN bus do
2: Receive packets
3: Create Default Sequence as per the latency constraints
4: while Temp and Iter == Final Temp and Iter do
5: Randomly select a sequence while reducing T
6: Calculate Peak and Average congestion
7: Compare current congestion with least congestion
8: if Accept == True then
9: Replace least congestion with least congestion

10: else if Compare with random number then
11: Save with other probability
12: else
13: Discard the packet
14: Send packets in current cycle and hold other packets

on the outcome but optimization for congestion seems to
have little effect.2 Such insights, if obtained early in design
exploration, obviously enable systematic and efficient CAN
scheduling.

VI. CONCLUSION

We have developed a prototyping platform VIVE for
systematically exercising vehicular system-level use cases.
VIVE is a flexible, configurable platform infrastructure that
enables specification of use cases with components at various
levels of abstraction, e.g., as indigenous processes, real hard-
ware, or microcontrollers. Furthermore, the platform enables
smooth extension with new use cases. We implemented
a variety of use cases with VIVE and also demonstrated
the value of VIVE in developing a real-time scheduling
optimizer.

In future work, we plan to extend VIVE with new use
cases and implement other optimization algorithms. We will
also explore the use of VIVE in the early exploration of
functional safety and security properties.
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