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Abstract— Connected Autonomous Vehicle (CAV) applica-
tions have shown the promise of transformative impact on road
safety, transportation experience, and sustainability. However,
they open large and complex attack surfaces: an adversary can
corrupt sensory and communication inputs with catastrophic
results. A key challenge in development of security solutions
for CAV applications is the lack of effective infrastructure for
evaluating such solutions. In this paper, we address the problem
by designing an automated, flexible evaluation infrastructure
for CAV security solutions. Our tool, CAVELIER, provides an
extensible evaluation architecture for CAV security solutions
against compromised communication and sensor channels. The
tool can be customized for a variety of CAV applications and to
target diverse usage models. We illustrate the framework with
a number of case studies for security resiliency evaluation in
Cooperative Adaptive Cruise Control (CACC).

I. INTRODUCTION

The automotive industry has been witnessing rapid trans-
formation in recent years, with explosive proliferation of
advanced sensors systems and emergence of vehicular com-
munications (V2X). These technologies hold the promise of
enabling a variety of connected autonomous vehicle (CAV)
applications that facilitate coordination among vehicles to
achieve better road safety, fuel efficiency, and utilization
of transportation infrastructure. However, one unfortunate
consequence of the increasing dependence of vehicular func-
tion on sensory and communication inputs is the emergence
of a large and complex attack surface: CAV applications
are susceptible to adversarial attacks that spoof, jam, or
manipulate these input channels. A crucial feature of attacks
on these components is that it is not necessary for an
attacker to hack into the hardware or software of the victim
component: it is possible to create catastrophic impact simply
by providing wrong or misleading sensory or communication
inputs. Furthermore, the exploitable attack surface is only go-
ing to grow in future with the rapidly increasing complexity
and sophistication of CAV applications.

There has been significant recent research on address-
ing this problem through a variety of resiliency solutions
for CAV applications [3], [5], [6], [13]. These solutions
have used a diversity of technologies, including machine
learning, kinematics, control theory, game theory, etc. Ob-
viously, designing an effective resiliency solution for CAV
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applications is non-trivial. However, another critical, non-
trivial aspect is evaluating such a solution. Note that since
CAV applications are safety-critical, the evaluation must be
comprehensive and provide high assurance that a purportedly
resilient CAV application performs safely under both benign
and malicious environments. This is challenging, given the
size and complexity of attack surfaces. Unfortunately, — and
in spite of the critical need, — we have not found an effective
infrastructure for comprehensive evaluation of resiliency of
CAV applications. In absence of such infrastructure, every
CAV security research has had to resort to developing its own
security evaluation infrastructure from scratch. In addition
to being tedious, complex, and time-consuming, this makes
it extremely difficult to ensure that the evaluation indeed
is comprehensive and meets the stringent requirements of
safety-critical applications.

In this paper, we address this problem by developing
a framework, CAVELIER (CAV Resiliency Evaluator) for
comprehensive evaluation of CAV resiliency under compro-
mised sensors and communication. CAVELIER can be easily
customized for different CAV applications, adversary settings
(i.e., the abilities of the attacker, untrusted input channels),
evaluation metrics, etc. Given this information, it can com-
pute and orchestrate a set of attacks that comprehensively
explore the attack space defined by the adversary. The output
of CAVELIER is an evaluation report, including a rich-set
of visualization results reflecting the effectiveness of the
resiliency system under various attack scenarios.

The remainder of the paper is organized as follows. In
Section II we provide a brief background on CAV resiliency
systems and discuss related work. In Section III, we dis-
cuss CAV resiliency evaluation challenges. We introduce
CAVELIER from a usage perspective in Section IV and the
underlying backend architecture in Section V. In Section
VI, we demonstrate representative CAVELIER application
scenarios. We conclude in Section VII.

II. BACKGROUND AND RELATED WORK

A. Resiliency of Cooperative CAV Applications

Emergent autonomous vehicles are equipped with a variety
of sensory and communication inputs to facilitate perception
of their driving environments. The automotive sensor suite
comprising radar, lidar, ultrasonic transceivers, cameras, etc.
provides accurate situational awareness for the vehicles. V2X
technologies such as DSRC enable communication among
vehicles. CAVs exploit V2X to collaborate with other CAVs
and transportation infrastructure to achieve improved safety



Fig. 1: Resiliency-augmented CAVs

and efficiency. Some popular CAV applications include Co-
operative Adaptive Cruise Control (CACC) [2], multi-vehicle
platooning [9], on-ramp merging [14], collision avoidance
[15], cooperative lane changing [7], etc. Fig. 1 shows an
abstracted view of a CAV application. Each participating
CAV includes a controller that is responsible for computing
real-time driving decisions during the course of the appli-
cation engagement. The CAV “state” is captured with the
help of variables such as velocity, position, acceleration,
etc. and the controller action determines the state transi-
tions. A resilient CAV application augments the controller
with additional resiliency components. Typically, this entails
real-time anomaly detection and mitigation systems. The
detection system is responsible for vetting the untrusted
perception inputs fed to the controller and the mitigation
system overrides the naive controller output with an alternate
decision if anomaly is detected.

B. Related Work

Research on platforms for exploration and analysis of CAV
applications has primarily focused on various automotive
simulators. SUMO [8], CARLA [4], VENTOS [1], and
Veins [12] are some of the popular open-source desktop
simulators. CARLA enables development, training, and vali-
dation of autonomous driving systems by supporting flexible
specification of sensor suites, environmental conditions, and
driving environments. SUMO is “microscopic” simulator:
each vehicle is modelled explicitly to have its own route and
move individually through the network. Various predefined
car-following models can be used for each vehicle to adapt
the speed based on the vehicles moving in front of them.
VENTOS is built on top of SUMO and enables analysis of
vehicular traffic flows, collaborative driving, and interactions
between vehicles and infrastructure. Veins is also built on
SUMO and provides a comprehensive suite of inter-vehicle

communication models that can serve as a modular frame-
work for simulating applications. It supports extensions such
as PLEXE [11] for platoon management analysis. In addition
to desktop simulators, there is a plethora of physical driving
simulators. One such physical simulator is RDS1000® [10].
It enables detailed simulation and analysis of vehicular
trajectory data in diverse driving environments. It provides
a realistic physical interface for a human driver to control
the vehicle in simulation and can also be operated in au-
tonomous mode. Physical simulators have been traditionally
used to study human interaction with the vehicle and driving
environment. The fundamental limitation of most existing
simulators in resiliency evaluation is the lack of well-defined
feature set to support simulation of security attack scenarios.
Veins supports some attack analysis, but it may not scale
well to support comprehensive evaluation under a broad
attack spectrum: the user would have to manually define each
individual attack scenario under a desired adversary model.

III. RESILIENCY EVALUATION CHALLENGES AND
CAVELIER APPROACH

Our design of CAVELIER is heavily motivated by the
challenges in CAV resiliency evaluation and inadequacy
of current approaches. We briefly recount the challenges
below. Note that the evaluation is carried out today by
human security experts conceiving different ways of exer-
cising various adversarial scenarios. Experts define various
attack parameters such as specification of untrusted channels,
duration, and mode of attack (e.g., a mutation attack on
V2X with a constant or sinusoidal bias, jamming attack
on a sensory input, etc.), together with settings defining
driving and environmental parameters for the targeted CAV
application. This manual approach can lead to errors and
incomplete understanding of the robustness of the resiliency
solution under consideration.

1) Navigating large attack space: The number of possible
attack instances on a CAV application can quickly become
unmanageable. Consider a simple adversary corrupting a sin-
gle V2X communication channel of a CAV. Possible attacks
include (1) information mutation, (2) fabrication of fake
information, or (3) prevention of information delivery (e.g.,
through a jamming attack). The corruption can take place at
different attack frequencies, the interference noise and the
extent of mutation can take different forms and magnitudes.
Evaluation must account for this large and complex space,
which is difficult to achieve in manually designed resiliency
approaches.

2) Evaluation under unknown attacks: Attack mecha-
nisms are expected to get increasingly sophisticated with
passage of time as CAVs become mainstream. On the other
hand, it is not possible to simply develop new resiliency
solutions to account for each newly discovered attack, par-
ticularly after deployment. A viable resiliency solution must
account for a wide spectrum of attacks, whether known at
the time of deployment or discovered later in field. This
presents a vexing challenge to evaluation: how to ensure that



Fig. 2: Taxonomy of Attack Characteristics for Adversaries
Against Vehicular Perception

a resiliency solution is indeed robust against as yet unknown
attacks (in addition to the known ones).

3) Inflexibility of simulation platforms: As discussed in
Section II-B, existing automotive simulators are not targeted
towards resiliency evaluation. In particular, they do not
provide the required configurability to easily create different
attack scenarios and switch between them during analysis.

CAVELIER addresses these challenges as follows. To
achieve comprehensive attack space coverage, it adopts a
unique approach to characterize attacks with a curated set of
features that account for the “effects” of an attack rather
than the attack mechanism. The key observation is that
irrespective of the attack mechanism, the effects can be
captured through a small number of characteristics. For
instance, if the adversary is confined to V2X messages, the
attack mechanisms may be diverse and complicated (e.g.,
signal jamming, spoofing, electronic interference, manipula-
tion of delivery software, etc.), but in terms of effect the
possibilities are (1) mutation of an existing message, (2)
fabrication of a new message, and (3) prevention of the
delivery of a message [3]. Note that this observation is
independent of the underlying CAV application and only
based on the definition of the untrusted input channel. Fig. 2
shows a comprehensive taxonomy of attacks defined based
on this observation. It enables CAVELIER to use the threat
model of the application for automatically and systematically
generating a comprehensive set of representative attacks
covering the adversarial space. Furthermore, CAVELIER
provides significant flexibility and configurability to the user
in specifying application parameters and adversary settings
as well as the granularity of the evaluation as described in
the subsequent sections.

IV. CAVELIER FROM USER VIEW

From a usage perspective, CAVELIER is a platform that
enables comprehensive evaluation of cooperative CAV appli-
cations under a given perception adversary. The user specifies
the CAV application and the adversary model through a
standard template provided by the tool. Fig. 3 shows the
usage model and the list of user specifications provided

Fig. 3: CAVELIER Usage Model and User Specifications

through the standard template. Additionally, the user can
specify a desired resiliency metric (e.g., safety or efficiency
metric in terms of time-headway between vehicles, etc).
CAVELIER generates attack environments specifying how
to corrupt the perception information shared within the CAV
fleet. It analyzes the resiliency of all the participating CAVs
by modelling the application behavior and computing the
resiliency metric under each attack environment. Ultimately,
it generates a detailed evaluation report together with a set
of visualizations.

CAVELIER provides two unique features for effective
resiliency evaluation.

1) Support for arbitrary applications: CAVELIER lets the
user specify CAV applications with: (i) arbitrary number
of participating CAVs, (ii) both homogeneous (all CAVs
having the same controller) and heterogeneous (each CAV
may having a different controller) settings, (iii) different
information flow topologies (or the communication scheme),
and (iv) different types of applications (car-following, route
management, lane changing, etc). The backend of the tool is
agnostic to the internal working of the controller.

2) Support for arbitrary perception adversaries:
CAVELIER supports adversaries of varying scope, i.e., the
user can provide a coarse-grained description of an adversary
with a broad scope, or a highly specific adversary model that
only accounts for a single attack instance (or anywhere in
between). In case of a coarsely defined adversary, the user
can choose to leave various attack characteristics unspecified.
The tool generates all environments within the scope by
taking into account the entire range of possible alternatives
for the unspecified attack characteristics. On the other hand,
the user can also select a very specific list of attack char-
acteristics to be included under the adversary and the tool
generates environments within those constraints.

CAVELIER frontend includes an interface template for
various application and adversary parameters which can be
populated by the user. The template comprises both essential
and non-essential (optional) parameters. Essential parameters
for describing the application include: (i) the number of
participating CAVs, (ii) the controller behavior and state
transition methods for each CAV, and (iii) the information
flow topology (the communication scheme that describes



Fig. 4: CAVELIER Backend Architecture

how the communication takes place within the fleet). Essen-
tial specifications for adversary include the list of untrusted
channels. All the non-essential parameters left unspecified
by the user are typically assumed by default as directive to
consider evaluation under all possible parameter values, e.g.,
if mode of corruption is left unspecified the tool must account
all the supported modes (mutation, fabrication, and delivery
prevention). On the other hand, a user interested in specific
attack type can focus on that through use of the non-essential
parameters. The tool also caters to users desiring fine-grained
control over attack generation: such users can specify low-
level configurations of “mutation type” and “frequency type”
choices, e.g., width of pulse attacks, duration of continuous
attacks, sinusoidal mutation time period, etc.

V. CAVELIER BACKEND ARCHITECTURE

CAVELIER architecture is designed with the goal of flexi-
bility, modularity, and a high degree of configurability as well
as feature extension. The tool design includes four modules
as shown in Fig. 4: (i) Specification Consistency Checker,
(ii) Attack Environment Generator, (iii) CAV Trajectory
Generator, and (iv) Resiliency Analyzer.

A. Specification Consistency Checker

Specification Consistency Checker takes the standard in-
terface template populated with user-defined specifications
of application, adversary, and evaluation criteria, and per-
forms a series of analyses to determine compatibility of
the specification constraints. A key check is whether the
adversary is realizable under the application constraints and
communication constraints, e.g., an attack involving a corrupt
vehicle C corrupting a parameter p would not result in a
viable adversary if p is never communicated to any vehicle.

B. Attack Environment Generator

Attack Environment Generator is responsible for interpret-
ing the user-specified adversary model and generating the
representative attack environments. The attack environment
defines the characteristics of a specific attack describing
how the reported information should be corrupted. Attack
environments are generated by traversing the branches of
Fig. 2 in a hierarchical manner and creating all possible

combinations of attack characteristics constrained by the
user-specified adversary model. Attack environments are
grouped into different sub-categories based on the “number
of corrupt paramters”. As per this value, combinations of
untrusted parameters are selected to be corrupted under
each attack. For each corrupt parameter, the mode of attack
indicates if the reported parameter should be (i) mutated
from ground truth (by adding any one of the 4 different
types of offsets/biases as listed in Fig. 2), (ii) replaced
with a fabricated value (a random value independent of the
ground truth), or (iii) prevented from being delivered to
other CAVs. Under mutation attacks, for any offset type, the
value of corruption is selected from a range of offset values
corresponding to the untrusted parameter. The tool allows the
user to specify a range of offset values and also the count to
select as many equally distributed individual values from the
continuous range. As the impact of attack is highly dependent
on the mutation offset, this flexibility enables the user to
select a subset of attacks that are impactful. Attack frequency
types indicate how frequently the corruption should take
place.

C. CAV Trajectory Generator

CAV Trajectory Generator is responsible for modelling the
user specified CAV application and invoking it under each
attack environment. It generates the “CAV trajectories” or
the state progressions over time, based on the user-defined
controller equations for each CAV for the duration of the
test. At each time instance, CAV controllers are invoked
to compute decisions based on the reported states of other
CAVs in the fleet. The reported states reflect the ground truth
(or the “actual”) states of CAVs under benign conditions.
Under attack environments, the reported states deviate from
actual and are corrupted as per the attack characteristics (e.g.,
Reported “Vel” of CAV 0 is mutated by adding a constant
offset of 0.5ms−1 to the ground truth). The communication
scheme or the information flow topology of the user-defined
application determines which vehicles in the fleet receive
the corrupted perception information under each attack. The
computed decisions are applied to the CAVs to update
their state. The resultant states are appended to the CAV
trajectories. After generating CAV trajectories under all the
attack environments, it invokes Resiliency Analyzer.

D. Resiliency Analyzer

Resiliency Analyzer probes the CAV trajectories under
each attack environment and computes the user-defined
resiliency metric. It checks if the resiliency metric falls
within the ideal range indicating the resiliency objective(s)
being met. It generates an evaluation report collating all the
information about the attack environments and the corre-
sponding resiliency status. It embeds a visual representation
of statistics of the resiliency metric distribution over different
sub-categories of attacks under the adversary. In addition
to the evaluation report, it also generates a fine-grained
set of auxiliary figures showing the attack orchestration,
resultant state progressions or trajectories of CAVs under



Fig. 5: Example Test Scenarios Evaluated by CAVELIER

each attack, in comparison to the benign scenario. While
the report shows cumulative resiliency analysis over sub-
categories of attacks, these figures give the user a deeper
perspective into the resiliency of the controller if desired.
The tool lets the user specify whether the fine-grained attack-
specific visualizations should be generated during evaluation.

VI. CAVELIER IMPLEMENTATION AND CASE STUDY

We implemented CAVELIER in Python. Each component
of the backend is implemented independently in a modular
fashion. A central program coordinates the flow of opera-
tion. A standard user-specification template is created as a
collection of 3 classes encapsulating variables and methods
that guide the user to specify the application, adversary, and
the resiliency evaluation criteria.

Although CAVELIER is independent of the underlying
CAV implementation, it is illuminating to observe its use
on a simple, illustrative case study. For this purpose, we
use the resilient controller developed in prior work [3] for
CACC. We choose this because of our high familiarity with
this application, that helps us illustrate various facets of the
resiliency evaluation performed by CAVELIER. In CACC, a
follower CAV adapts its acceleration in accordance with the
relative velocity, gap, and acceleration of the vehicle in front.
The resilient controller, RACCON, extends a specific CACC
implementation [2] with Machine Learning components to
protect against adversaries that corrupt the preceding accel-
eration data. In Fig. 5, we consider three evaluation scenarios
for RACCON, and the attacks generated by CAVELIER.
In Scenario 1, the adversary is loosely defined with the
user specifying only the essential parameters. Scenarios 2
and 3 progressively constrain the adversary, e.g., Scenario 3
permits a single, specific attack instance. Fig. 6 shows the
Consistency Checker log file (for passing and failing checks).

Note that if the check fails, the log points to missing
parameters and specification inconsistencies as shown in
Fig. 6(a).

Evaluation Report: Fig. 7 shows the evaluation report au-
tomatically generated by CAVELIER under Scenario 2. The
report shows: (i) summary of attacks orchestrated under dif-
ferent categories, (ii) resiliency analysis summary indicating
the observed trend in resiliency metric with respect to the
user-specified evaluation criteria, and (iii) (paths directing to)
the auxiliary visualizations folders. The report is generated
after the trajectories under all the attack environments are
orchestrated. The resiliency system in this case met the cu-
mulative resiliency criteria under all the attack sub-categories
(i.e., mean time headway (THW) is well within the range
specified by the user) and has been assigned a “Pass” status
by CAVELIER.

The case study reflects the flexibility of CAVELIER with
respect to the adversarial capabilities. Furthermore, note that
for a loosely defined adversary specification (as required to
ensure comprehensive evaluation of the entire attack space),
the number of attack instances can be exorbitant, e.g., for
Scenario 1, over 1 million attack scenarios are generated
by the tool even for this simple application as shown in
Fig. 3. This points to the inadequacy of current manual
approaches to perform this evaluation and the critical need
for an automated infrastructure like CAVELIER.

VII. CONCLUSION AND FUTURE WORK

We have presented a tool, CAVELIER, for evaluation of
resiliency in CAV applications against adversaries target-
ing perception inputs such as sensors and communications.
CAVELIER can be easily customized to cater to differ-
ent applications, configure application parameters, explore
different adversaries, etc. Consequently, it ameliorates the
complexities of validation for the CAV security designer,
letting them focus on the creative task of designing effective
solutions. It also provides a standard infrastructure for cer-
tification authorities to evaluate CAV resiliency. We showed
case studies to illustrate various facets of CAVELIER.

In future work, we will perform more case studies on
CAVELIER, and improve its computational efficiency. Note
that in a practical CAV application with a “loose” parameter
setting, CAVELIER can generate millions or even billions
of attack scenarios. Executing them on a realistic CAV
application and developing summary values for metrics can
be computationally prohibitive. We will explore design and
implementation optimizations to make such analysis viable.
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Fig. 6: Log files showing Consistency Checker in Action (a) Error Messages under Failed Consistency Check (b) Specification
Summary under Successful Consistency Check

Fig. 7: Automated Resiliency Evaluation Report Generated by CAVELIER for Scenario 2
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