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Abstract— Vehicles can utilize their sensors or receive mes-
sages from other vehicles to acquire information about the
surrounding environments. However, the information may be
inaccurate, faulty, or maliciously compromised due to sensor
failures, communication faults, or security attacks. The goal
of this work is to detect if a lane-changing decision and the
sensed or received information are anomalous. We develop
three anomaly detection approaches based on deep learning:
a classifier approach, a predictor approach, and a hybrid
approach combining the classifier and the predictor. All of
them do not need anomalous data nor lateral features so that
they can generally consider lane-changing decisions before the
vehicles start moving along the lateral axis. They achieve at
least 82% and up to 93% F1 scores against anomaly on data
from Simulation of Urban MObility (SUMO) [1] and HighD [2].
We also examine system properties and verify that the detected
anomaly includes more dangerous scenarios.

I. INTRODUCTION

Lane changing is a common maneuver on roads, but it
is challenging for drivers. Many Advanced Driver Assis-
tance Systems (ADAS) are developed to assist lane-changing
maneuvers nowadays. Vehicles can utilize their sensors or
receive messages from other vehicles to acquire information
about the surrounding environments. However, the infor-
mation which leads the vehicles to make decisions and
perform maneuvers may be inaccurate, faulty, or maliciously
compromised due to sensor failures, communication faults,
or security attacks. As vehicles are safety-critical systems,
it is crucial to detect the inaccurate, faulty, or compromised
information and identify the corresponding vehicles which
behave anomalously to improve the overall system safety
and robustness.

Related work includes lane-changing detection and
anomaly detection. For the lane-changing detection problem,
existing work can be categorized into three categories: rule-
based approaches [3], [4], [5], [6], probabilistic models
largely with hidden Markov models [7], [8], [9], and deep
learning approaches based on recurrent neural networks [10],
[11], [12], [13], [14], [15] and other neural networks [16],
[17], [18]. For the anomaly detection problem, learning the
distribution of normal data is the key concept [19], [20].
Section II will provide a detailed review.

The perspective of the related work is vehicle-to-vehicle:
through detecting or predicting other vehicles’ maneuvers
or intentions, the ego vehicle can make its decision. This
work takes a different and more general perspective on the
anomaly detection problem. The goal of this work is to
detect if a lane-changing decision and the sensed or received
information are anomalous (or inconsistent). If they are

anomalous, it implies that either the lane-changing decision
is unreasonable or there is anomalous information, no matter
the information is sensed from sensors or received from
communication, and no matter the anomaly detection is
performed on a vehicle or an outsider, e.g., roadside unit
or infrastructure. As a result, the detection approaches can
be applied to vehicles or different outsiders, and they can
take the corresponding reactions accordingly, e.g., runtime
decision or offline maintenance.

In this work, our main contributions include
• We develop three anomaly detection approaches based

on deep learning: a classifier approach, a predictor ap-
proach, and a hybrid approach combining the classifier
and the predictor. All of them do not need anomalous
data nor lateral features so that they can generally
consider lane-changing decisions before the vehicles
start moving along the lateral axis.

• We evaluate our approaches with Simulation of Urban
MObility (SUMO) [1] and HighD [2]. The proposed
approaches achieve at least 82% and up to 93% F1

scores against anomaly which is stealthy to the laws
of physics. Especially, the hybrid approach has the best
detection performance.

• We also examine system properties and verify that the
detected anomaly includes more dangerous scenarios,
and the mis-detected anomaly includes less dangerous
scenarios. This is crucial as a fundamental goal of
system design is to prevent collisions, and a detection
approach should focus more on those dangerous scenar-
ios.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes our problem
formulation. Section IV presents the proposed approaches.
Section V demonstrates and discusses the experimental re-
sults. Section VI concludes this paper.

II. RELATED WORK

The lane-changing detection problem has been widely
studied in the past decades. The approaches can be distin-
guished by three categories: rule-based approaches, proba-
bilistic models, and deep learning approaches. We introduce
them as well as the corresponding anomaly detection in this
section.

A. Rule-Based Approaches

Rule-based approaches detect a lane-changing maneuver
by setting predefined rules, e.g., laws of physics. They are



usually simple, intuitive, and lightweight. A lane-changing
maneuver can be detected when a vehicle’s lateral speed
or acceleration is higher than a threshold [3]. A vehicle’s
distance from the left or right lane boundary [4] and its
steering angle [5] can also be used to detect a lane-
changing maneuver. Khelfa and Tordeux introduced a rule-
based model, where the speed and position differences of the
four surrounding vehicles on the current and target lanes are
the inputs of the model [6].

B. Probabilistic Models

A probabilistic model is a statistical technique using past
data to predict the probability of the occurrence of a future
event. The detection performance depends on chosen features
and hidden states of the probabilistic model [21]. Park et al.
proposed a hidden Markov model to detect a lane-changing
maneuver [7]. Li et al. further integrated a hidden Markov
model with a Gaussian mixture model to form a hybrid model
and detect a lane-changing maneuver [8]. Sharma et al.
combined a continuous hidden Markov model and a discrete
hidden Markov model to detect lane-changing maneuvers [9].
The continuous hidden Markov model generates hidden state
sequences from trajectory inputs, and the discrete hidden
Markov model classifies a sequence into different driving
maneuvers. As for fuzzy logic based hidden Markov model,
an approach discriminates driving maneuvers into very safe,
safe, and dangerous driving scenarios [22]. A Bayes model
was also proposed to predict whether a driver will take over
the leading car [23]. Ma et al. proposed a logistic regression
model with different levels of input features to detect the
lane-changing intention [24].

C. Deep Learning Approaches

With a huge amount of driving data, deep learning models
have become popular to solve the problem. Learning from
data leads to a more comprehensive detection capability.
We can not only predict whether a lane-changing maneuver
will happen but also predict the corresponding position and
timing. The problems can be categorized into three cate-
gories: the classification problem, the trajectory and position
prediction problem, and the hybrid problem [25].

Many existing deep learning approaches applied Recurrent
Neural Networks (RNNs) [10], [11], [12], [13], [14], [15].
lane-changing maneuvers are usually based on a few seconds
of environmental information, so it is straightforward to use
RNN-based models which are well-suited for time series
data. Zyner et al. used a multi-layer Long Short-Term Mem-
ory (LSTM)-based RNN to predict a driver’s intention before
a road intersection [10]. Park et al. proposed a LSTM-based
autoencoder to predict a vehicle’s trajectory [11]. Xin et al.
adopted dual LSTM-based RNNs, where one LSTM is for
recognizing a driver’s intention, and the other one is for
predicting a vehicle’s trajectory [12]. Yan et al. proposed
a variant of RNN like a network of gated recurrent units to
predict when a driver will shift the lane and when the driver
will complete the lane changing [13]. Xing et al. predicted a
lane-changing intention by an ensemble bi-directional RNN
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Fig. 1. The lane-changing scenario, where E is the ego vehicle, SL is the
leading vehicle on the source lane, TL is the leading vehicle on the target
lane, and TF is the following vehicle of on the target lane. Anomalous
information about TF may indicate TF as TF′. If E changes its lane, the
changing decision should be detected as an unreasonable decision, and thus
there is anomalous information.

model with LSTM units [14]. Wirthmüller et al. used a single
layer LSTM-based RNN to predict the time until a vehicle
changes the lane [15] .

There are other deep learning approaches applying other
neural networks. The spatial information about vehicle re-
lations can be well captured by convolutional neural net-
works [26]. Hu et al. predicted the intention and the motion
of a vehicle under various driving scenarios by a multi-layer
fully-connected deep neural network [16]. Xie et al. detected
a lane-changing process by a deep belief network [17].
De Candido et al. used three 1-D convolution-based deep
autoencoders on driving maneuvers to detect a driver’s
maneuver [18].

D. Anomaly Detection

Deep learning approaches are broadly used for anomaly
detection [19], [20]. Ramyar et al. used a one class sup-
port vector machine to detect anomaly for lane-changing
maneuvers [27]. Fan et al. used a recurrent convolution
autoencoder and a one class support vector machine to
detect anomaly [28]. Guo et al. also used an autoencoder to
report anomaly if the reconstruction error is above a certain
threshold [29]. We can observe that most anomaly detection
approaches used some methods to learn the distribution from
normal training data and report anomaly if test data have very
different distributions from the trained distributions.

III. PROBLEM FORMULATION

A. System Model and Anomaly Model

We consider a scenario that an ego vehicle changes its
lane, where the ego vehicle senses or receives information
and acts accordingly. In this work, we focus on whether
there is anomalous information, no matter the information is
sensed from sensors or received from communication. This
means that anomaly can represent an anomalous maneuver, a
wrongly-sensed normal maneuver, or wrongly-received infor-
mation about a normal maneuver. As a result, the scenario is
quite general, not limited to a non-connected (sensors only),
partially-connected (sensors and communication), or fully-
connected environment (maybe communication only). The
scenario is illustrated in Figure 1.

To formally define anomaly, we first define the sensed or
received information at time step t as a feature vector with



dimension n:

r(t) =
[
r
(t)
1 , r

(t)
2 , . . . , r(t)n

]
, (1)

where a feature can be the location, speed, or acceleration of
the ego vehicle, the leading vehicle on the source lane, the
leading vehicle on the target lane, or the following vehicle
on the target lane. Note that the four vehicles play the most
important roles for the lane-changing maneuver of the ego
vehicles.

If a lane-changing maneuver happened at time step t, we
combine the feature vectors before t with a window size w
and form a time series of feature vectors, called a trajectory
vector:

R =
[
r(0), r(1), . . . , r(w−1)

]
. (2)

Here, we assume that the acceleration features in R are:

A =
[
a(0),a(1), . . . ,a(w−1)

]
. (3)

The anomaly adds an offset vector o to A, where each
element in o is zero or a constant o (the severity of
anomaly), and at least one element in o is o, meaning that
the acceleration features of at least one vehicle are changed.
As a result. we can get:

A′ =
[
a(0) + o,a(1) + o, . . . ,a(w−1) + o

]
=

[
a′

(0)
,a′

(1)
, . . . ,a′

(w−1)
]
. (4)

Given A′, we can use the laws of physics to calculate the
corresponding speed and location features starting from a′

(0)

to a′
(w−1):

v′(t+1)
= v(t) + a′

(t) ·∆t, (5)

l′
(t+1)

= l(t) + v′(t) ·∆t+
1

2
· a′(t) ·∆t2, (6)

where ∆t = 1 (a time step). Then, by assembling the
features, we get the updated anomalous trajectory vector:

R′ =
[
r′

(0)
, r′

(1)
, . . . , r′

(w−1)
]
. (7)

By the setting, the anomaly is stealthy against the laws of
physics as the locations, speeds, accelerations will satisfy
(not be detected by) the laws of physics.

For example, if the anomaly adds a negative o to the
acceleration of the leading vehicle on the target lane and
computes the corresponding R′, implying that the vehicle is
slower. In this case, if the ego vehicle still changes its lane,
the changing decision should be detected as an unreasonable
decision, and thus there is anomalous information.

We will also examine system properties with the anomaly
to verify if the anomaly is worth being detected, i.e., if the
anomaly has no or very little effects on system properties,
then it is not worth being detected.

B. Detection Goal

Given a lane-changing trajectory vector R, an anomaly
detection approach can be represented as a function:

F (R) =

{
0, there is no anomaly in R;
1, there is anomaly in R. (8)

In other words, if F (R) = 0, the anomaly detection approach
considers that a lane-changing decision with R is reasonable;
if F (R) = 1, the anomaly detection approach considers that
a lane-changing decision with R is unreasonable, based on
anomalous information.

We use the F1 score to evaluate the detection performance.
It is computed as follows:

TP = |{R′ | F (R′) = 1}|, (9)
FN = |{R′ | F (R′) = 0}|, (10)
FP = |{R | F (R) = 1}|, (11)
TN = |{R | F (R) = 0}|, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

Fβ Score = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

. (15)

In other words, TN (true negative) is the number of normal
trajectory vectors which are correctly classified as normal
trajectory vectors; FP (false positive) is the number of normal
trajectory vectors which are wrongly detected as anoma-
lous trajectory vectors; TP (true positive) is the number of
anomalous trajectory vectors which are correctly detected
as anomalous trajectory vectors; FN (false negative) is the
number of anomalous trajectory vectors which are wrongly
classified as normal trajectory vectors. We set β = 1, in
which precision is considered the same important as recall.

It should be mentioned here that a feature vector or a
trajectory vector does not need lateral features such as the
distance to the line between the source and target lanes. If
there is no lateral feature, an anomalous trajectory vector de-
scribes an unreasonable lane-changing decision, considering
the longitudinal relations between vehicles. This is different
from the related work as we can consider the potential lane-
changing decisions before the vehicles start moving along
the lateral axis. Nevertheless, if there are lateral features, the
formulation and the proposed approaches are still applicable.

IV. PROPOSED APPROACHES

In this section, we develop four approaches to perform
anomaly detection for lane-changing decisions. They are a
rule-based approach (mainly for comparison), a classifier
approach, a predictor approach, and a hybrid approach. The
last three approaches are all learning-based, and they are not
limited to any specific attack since we do not use anomalous
data during training.



A. Rule-Based Approach

A rule-based approach is based on some laws of physics
or some observations of system properties. It is usually dif-
ficult to cover all possible scenarios, as some lane-changing
maneuvers are complicated such as tactical lane changing
or cooperative lane changing [30]. Here, we propose a rule-
based approach mainly for comparison. We observe that a
reasonable lane-changing maneuver usually has the following
features:

• It has no sudden brake after changing lane.
• It does not force the following vehicle on the target lane

to have a sudden brake.
For safety reasons, the speed differences between the ego
vehicle and its leading and following vehicles on the target
lane is better to be close to 0. Otherwise, changing the
speed during the lane-changing maneuver may confuse other
vehicles and reduce safety or efficiency. Therefore, we design
a rule-based detection approach which checks the speed
differences. If the speed difference between the ego vehicle
and its leading or following vehicles on the target lane is
larger than a threshold, it is identified as anomaly.

B. Classifier Approach

The workflow of the classifier approach is illustrated
in Figure 2. Here, we treat the anomaly detection as a
binary classification problem. During training, we use normal
data (no anomalous data) and label lane keeping (no lane
changing) as 0 and lane changing as 1. This means that, if
there is a lane-changing maneuver at time step t, we have
lane-changing data (with the label 1):

Rc =
[
r(t−w), r(t−w+1), . . . , r(t−1)

]
. (16)

With a stride s, we have lane-keeping data (with the label 0):

Rk =
[
r(t−s−w), r(t−s−w+1), . . . , r(t−s−1)

]
. (17)

Note that the index of time can be shifted to match Equa-
tion (2) in Section III.

In the classification, the two classes are both meaningful.
The lane-keeping class not only represents lane-keeping ma-
neuvers but also indicates that the surrounding environments
are not suitable for lane changing. This is because a vehicle
does not suddenly change its lane as it first observes the sur-
rounding environment before making a decision. It chooses
to change its lane at a specific time step very likely because
the previous time step is not suitable for lane changing.
During testing, if we correctly classify lane changing or lane
keeping, the corresponding data are regarded as normal data
(no anomaly); otherwise, they are regarded as anomaly.

We propose two model structures to develop our classifier
approach. The first one is a fully connected Deep Neural
Network (DNN) model, and the second one is a Long Short-
Term Memory (LSTM) model. In the DNN model, we flatten
the time series of trajectory vectors R as the input. In the
LSTM model, we directly take the time series data R as the
input. Both models are binary classifiers and output 0 or 1
representing their classification results.
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Fig. 2. The workflow of the classifier approach. The binary classifier
classifies lane-changing and lane-keeping maneuvers.

C. Predictor Approach

We use normal lane-changing data and predict the trajec-
tory after a vehicle changes its lane. Given an input trajectory
vector as Equation (16), we use a predictor to predict the
trajectory:

Rp =
[
r(t+1), r(t+2), . . . , r(t+w)

]
. (18)

after the lane-changing maneuver at time step t, where w
is the window size. If the prediction error (distance from
the sensed or received trajectory vector) is larger than a
threshold, the corresponding data are regarded as anomaly.
We also use a LSTM model as our predictor since the
trajectories are more time dependant, and thus it is expected
to perform better than a simple DNN model.

D. Hybrid Approach

One benefit of the classifier approach is that it provides
good interpretation of the problem, compared with the
predictor approach, but it also has some limitations due
to some special cases in training data. For example, if a
vehicle reacts slowly, its lane-keeping data may still imply
a suitable moment for lane changing. On the other hand, if
a vehicle acts dangerously, its lane-changing data may still
mean a non-suitable moment for lane changing. These cases
confuse the classifier and lead to the reduction of detection
performance. Due to the safety nature of automotive systems,
undetected anomaly maneuvers (false negatives) are more
critical. Therefore, we propose a hybrid approach utilizing
this assumption to further improve the detection perfor-
mance. The hybrid approach is a two-phase approach which
combines the classifier approach and the predictor approach.
In the first phase, we use the classifier approach, and there are
two possible outcomes: negative or positive. If it is a negative
outcome, we use the predictor approach in the second phase;
otherwise (a positive outcome), the outcome is kept to remain
the same and considered as anomaly. In other words, the
hybrid approach keep positive outcomes and probably turn
some negative outcomes into positive outcomes.



V. EXPERIMENT RESULTS

A. Experimental Setup

We evaluate our approaches with Simulation of Urban
MObility (SUMO) [1] and HighD [2] as our datasets.
SUMO is a simulation platform where we can simulate
connected environments and collect simulation traces as a
dataset. HighD is a dataset collected on German highways
by drones, consisting of vehicle trajectories controlled by
human drivers.

We use some normal lane-changing data as the training
data. We use the method described in Section III to create
anomalous data and combine other normal data and anoma-
lous data to form the testing data. For SUMO, we build
one 1,000-meter straight road with three lanes to simulate
highway scenarios. To observe lane-changing maneuvers
more efficiently, some vehicles are set as on-ramp vehicles
which try to change to inner lanes, and some vehicles are
set as off-ramp vehicles which try to change to outer lanes.
The training data and testing data are collected with 800,000
simulation steps and 10,000 simulation steps, respectively.
There are 86,655 lane-changing maneuvers for training and
1,214 lane-changing maneuvers for testing. For HighD, the
data are collected from six locations, and we take 10% of
the lane-changing maneuvers as the normal testing data.

We compare the rule-based approach (RBS), the classifier
approach (DCLF or LCLF), the predictor approach (PDT),
and the hybrid approach (DHBD or LHBD), where “D” or
“L” with CLF and HBD means that we use the DNN or
LSTM model, respectively, for the classifier approach. There
detailed settings are as follows:

• For the classifier model trained with SUMO, the input
window size is 20, and the simulation step is 0.1 second,
which means that the model uses 2-second information
to make a lane-changing decision.

• For the predictor model trained with SUMO, the input
window size is 20, the output window size is 7, and
the simulation step is 0.1 second, which means that the
model uses 2-second information to decide the later 0.7-
second trajectory.

• For the classifier model trained with HighD, the input
window size is 75 frames, the number of input frames
is 25 per second, which means that the model uses 3-
second information to make a lane-changing decision.

• The predictor model trained with HighD uses 3-second
information to decide the later 0.7-second trajectory.
Benterki et al. mentioned that important features change
after 3 seconds on average [31], which is consistent
within our experiments.

• For SUMO, the stride is 10 simulation steps (1 second)
in Equation (17). For HighD, the stride is 50 frames (2
seconds) in Equation (17). Note that, since HighD is a
real-world dataset with human drivers, the decision is
assumed to be slower.

The neural network structures are implemented using the
PyTorch library. All the experiment runs on a desktop with
Intel Core i7-9700 CPU and NVIDIA-2080Ti GPU.

TABLE I
EXPERIMENTAL RESULTS (F1 SCORES) WITH SUMO.

Anomaly RBS DCLF LCLF PDT DHBD LHBD
Leading 0.75 0.77 0.80 0.84 0.86 0.88

Following 0.78 0.82 0.80 0.84 0.85 0.84
Both 0.86 0.92 0.92 0.92 0.93 0.93

TABLE II
EXPERIMENTAL RESULTS (F1 SCORES) WITH HIGHD.

Anomaly RBS DCLF LCLF PDT DHBD LHBD
Leading 0.77 0.76 0.77 0.78 0.83 0.83

Following 0.73 0.75 0.81 0.90 0.89 0.91
Both 0.83 0.82 0.86 0.90 0.92 0.93

B. Experimental Results with SUMO

We create anomaly on the leading vehicle on the target
lane, the following vehicle on the target lane, and both. The
experimental results are listed in Table I. The rule-based
approach actually achieves good detection performance, but
the rules need to be redefined for different driving scenarios.
The classifier approach is slightly better than the rule-based
approach. In SUMO, the boundary between lane changing
and lane keeping is clear since it is a controlled simulation
system. However, the decision-making features are not lim-
ited to our features. For example, sometimes a vehicle makes
a decision which is the best for the overall environment,
not itself [30]. Due to this reason, the lane-keeping data
do not necessarily mean a non-suitable moment for lane
changing. The predictor approach has even better detection
performance than the rule-based approach and the classifier
approach. This is probably because it tries to identify which
is the actual leading vehicle to make the prediction error
small. The predictor approach implicitly does similar things
as the classifier approach, but it considers more with tra-
jectories and leads to a better detection performance. The
hybrid approach further improves the detection performance.
The hybrid approach is similar to an ensemble method
which gives a more robust detection performance. Another
observation is that the DNN model and the LSTM model
have similar detection performance, and the LSTM model is
slightly better as it can better process time series data.

C. Experimental Results with HighD

We first take a look at the detection performance of
some previous work. Two existing references [6] and [24]
also tested on HighD and used similar feature spaces as
ours which does not include lateral features. Each of them
achieves 80% classification accuracy

(
TP+TN

TP+TN+FP+FN

)
for

lane-changing maneuvers. We believe that it is difficult to
achieve 99% accuracy with HighD as the reference [18]
if there is no lateral feature. However, as mentioned in
Section III, we are targeting anomalous or unreasonable lane-
changing decisions, considering the longitudinal relations
between vehicles, before the vehicles start moving along the
lateral axis.

Similarly, we create anomaly on the leading vehicle on the
target lane, the following vehicle on the target lane, and both.



The experimental results are listed in Table II. Similar to
the experimental results with SUMO, the predictor approach
and the hybrid approach outperform the rule-based approach
and the classifier approach, showing that the results are not
limited to simulation data. Compared with the experimental
results with SUMO, when the anomaly is on the leading
vehicle of the target lane, the detection performance of most
approaches decrease a little, but the trend is not clear when
the anomaly is on the following vehicle of the target lane.

The classifier approach does not have significant improve-
ment over the rule-based approach. This is because HighD is
a real-world dataset with human drivers, and human drivers
are not as rational as the controllers in SUMO. Similar to
the results with SUMO, the predictor approach has better
detection performance than the rule-based approach and the
classifier approach. Although the classifier approach does not
have the same performance as the predictor approach, it has
an advantage that it can output detection results earlier than
the predictor approach. In addition, they can be combined
as the hybrid approach which further improves the detection
performance. On the other hand, it can also be observed that
the LSTM model has better detection performance, compared
with the DNN model.

D. System Properties

We also examine some system properties with the anomaly
to verify if the anomaly is worth being detected, i.e., if the
anomaly has no or very little effects on system properties,
then it is not worth being detected. Liu et al. evaluated
lane-changing maneuvers based on four metrics [32]: the
success rate of lane changing, the minimum distance gap,
the total fuel cost which is the integral of the square of
acceleration, and the accumulated discomfort which is the
integral of the square of jerk. In this work, we focus on lane-
changing trajectory vectors, so there is no need to discuss
the success rate of lane changing. Also, the fuel cost and
the discomfort highly depend on the acceleration as well as
the speed difference. Therefore, we evaluate the following
system properties:

• The mean gaps to the leading vehicle and the follow-
ing vehicle on the target lane after the lane-changing
maneuver.

• The mean speed differences from the leading vehicle
and the following vehicle on the target lane after the
lane-changing maneuver.

• The Time To Collision (TTC) which is the time until
a collision between two vehicles if the courses and the
speed difference are maintained [33]. A smaller TTC
implies a more dangerous scenario.

Table III lists the system properties with SUMO, anomaly
on the following vehicle on the target lane, and the hybrid
approach with the LSTM model. There are some observa-
tions as follows, and similar observations can also be found
with different attacked vehicle as well as with HighD. First,
as the anomaly is on the following vehicle on the target
lane, the system properties related to the leading vehicle on
the target lane do not have significant differences. Second,

TABLE III
SYSTEM PROPERTIES WITH SUMO, ANOMALY ON THE FOLLOWING

VEHICLE ON THE TARGET LANE, AND THE LHBD APPROACH.
System Property TP FN FP TN

Gap: Leading (m) 101.35 94.84 108.00 97.56
Gap: Following (m) 49.61 117.49 145.63 127.86

Diff. Speed: Leading (m/s) 3.19 3.78 3.16 3.28
Diff. Speed: Following (m/s) −4.35 −2.61 −0.17 −0.61

Ratio of [TTC < 2s] 15% 0% 0% 0%

the TP (true positive) scenarios have the smallest mean
gap to the following vehicle, while the FN (false negative)
scenarios have much larger mean gap, compared with the
TP (true positive) scenarios. This means that the detected
anomaly indeed includes more dangerous scenarios, and
the mis-detected anomaly includes less dangerous scenarios.
Third, the mean speed difference has a similar trend. The
detected anomaly includes more dangerous scenarios, where
the following vehicle on the target lane needs to perform hard
breaks to prevent collisions, while the mis-detected anomaly
includes less dangerous scenarios. Last, the detected anomaly
includes 15% scenarios where the TTC is less than 2 second.
Again, this demonstrates that the detected anomaly includes
more dangerous scenarios, where the following vehicle on
the target lane needs to perform hard breaks to prevent
collisions.

VI. CONCLUSIONS

In this work, we developed three anomaly detection ap-
proaches based on deep learning: a classifier approach, a
predictor approach, and a hybrid approach. All of them do
not need anomalous data nor lateral features so that they
can generally consider lane-changing decisions before the
vehicles start moving along the lateral axis. They achieved
at least 82% and up to 93% F1 scores against anomaly, which
is stealthy to the laws of physics, on data from SUMO [1]
and HighD [2]. We also examined system properties and
verified that the detected anomaly includes more dangerous
scenarios. Future directions include more complicated lane-
changing scenarios, detection based on other learning mod-
els, and reaction after detecting anomaly.
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