
Integrating External Deduction Tools with

ACL2 ?,??

Matt Kaufmann ∗

Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712-0233, USA.

J Strother Moore

Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712-0233, USA.

Sandip Ray ∗

Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712-0233, USA.

Erik Reeber ∗

Department of Computer Sciences, University of Texas at Austin, Austin, TX
78712-0233, USA.

Abstract

We present an interface connecting the ACL2 theorem prover with external de-
duction tools. The ACL2 logic contains several mechanisms for proof structuring,
which are important to the construction of industrial-scale proofs. The complexity
induced by these mechanisms makes the design of the interface challenging. We dis-
cuss some of the challenges, and develop a precise specification of the requirements
on the external tools for a sound connection with ACL2. We also develop constructs
within ACL2 to enable the developers of external tools to satisfy our specifications.
The interface is available with the ACL2 theorem prover starting from Version 3.2,
and we describe several applications of the interface.
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1 Introduction

Recent years have seen rapid advancement in the capacity of automatic rea-
soning tools, in particular for decidable theories such as Boolean logic and
Presburger arithmetic. For instance, modern BDD packages and satisfiability
solvers can automatically solve problems with tens of thousands of variables
and have been successfully used to reason about commercial hardware sys-
tem implementations [2,3]. This advancement has sparked significant interest
in the general-purpose mechanized theorem proving community, to improve
the efficiency of theorem provers by developing connections with automatic
reasoning tools. In this paper, we present a general interface for connecting
the ACL2 theorem prover [4,5] with tools that are external to ACL2’s built-in
reasoning routines.

ACL2 consists of a functional programming interface based on Common Lisp [6],
along with a first-order interactive theorem prover. The ACL2 theorem prover
supports several deduction mechanisms such as congruence-based conditional
rewriting, well-founded induction, several integrated decision procedures, and
generalization. ACL2 has been particularly successful in the verification of mi-
croprocessors and hardware designs, such as the floating point multiplication,
division, and square root algorithms of AMD processors [7–10], microcode for
the Motorola CAP DSP [11], and separation properties of the Rockwell Collins
AAMP7TM processor [12]. However, the applicability of ACL2 (as that of any
theorem prover) is often limited by the amount of user expertise necessary to
drive the theorem prover. Indeed, each of the above projects represents many
man-years of effort. Yet, many of the necessary lemmas, for instance those
establishing hardware invariants, can be expressed in a decidable theory and
dispatched by a decision procedure.

On the other hand, it is non-trivial to establish a sound connection between
ACL2 and other tools. ACL2 contains several logical constructs intended to
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facilitate effective proof structuring [13]. These constructs are crucial to the
applicability of ACL2 in large-scale verification projects; however, they com-
plicate the logical foundations of the theorem prover. To facilitate connection
between another tool and ACL2, it is therefore imperative (i) to determine the
conditions under which a conjecture certified by a combination of the theorem
prover and the tool is indeed a theorem, and (ii) to provide mechanisms that
enable a tool implementor to meet these conditions.

The interface described in this paper enables the connection of ACL2 with
other reasoning tools. In particular, it permits an ACL2 user to invoke an
external tool to reduce a goal formula C to a list of formulas LC during a proof
attempt. Correctness of the tool involves showing that the provability of each
formula in LC (in the logic of ACL2) implies the provability of C. We present
a sufficient condition (expressible in ACL2) that guarantees such provability
claims, and discuss the logical requirements on the implementor of external
tools for sound connection with ACL2. The interface design illustrates some
of the subtleties and corner cases that need to be considered in augmenting
an industrial-strength formal tool with a non-trivial feature.

We distinguish between two classes of external tools, namely (i) tools verified
by the ACL2 theorem prover, and (ii) unverified but trusted tools. A verified
tool must be formalized in the logic of ACL2 and the sufficient condition
alluded to above must be formally established by the theorem prover. An
unverified tool can be defined using the ACL2 programming interface, and can
invoke arbitrary executable programs via a system call interface. An unverified
tool is introduced with a trust tag acknowledging that the validity of the
formulas proven using the tool depends on the correctness of the tool.

The connection with unverified tools enables us to invoke external SAT solvers,
BDD packages, and so on, for simplifying ACL2 subgoals. Why might one use
verified tools? The formal language of ACL2 is a programming language, based
on an applicative subset of Common Lisp. The close relation between ACL2
and Lisp makes it possible to write efficient programs in the ACL2 logic [6].
Indeed, most of the source code implementing the theorem prover is written
in this language. It can therefore be handy for the ACL2 user to control proofs
by (i) implementing customized reasoning code, (ii) verifying such code with
ACL2, and (iii) invoking the code for proving theorems in a specific domain.
In fact, ACL2 currently provides a way for users to augment its built-in term
simplifier with their own customized reasoning code, via the so-called “meta
rules” [14]. However, such rules essentially augment ACL2’s term simplifier
without providing a way to manipulate directly the entirety of a subgoal gen-
erated during a proof. Furthermore, meta rules can only simplify a term to one
that is provably equivalent; that is, they do not allow generalization. The con-
nection with verified tools supports direct invocation of customized, provably
correct, reasoning code for reducing a conjecture to a collection of (possibly
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more general) subgoals.

The rest of the paper is organized as follows. In Section 2 we provide a brief
review of ACL2; this section is intended to provide an overview of the facets
of ACL2 that are relevant to the subsequent discussions, and can be skipped
by readers familiar with the theorem prover without loss of continuity. In
Sections 3 through 5 we present the interface for connecting external tools
to ACL2, the logical requirements for the developer of such connections, and
the necessary augmentations required to support the interface. In Section 6,
we provide a few remarks on our implementation. We discuss related work in
Section 7, and conclude in Section 8.

The interface described in this paper is available with ACL2 Version 3.2, and
ACL2’s hypertext documentation includes a topic, clause-processor, which
provides further details for many of its features. In addition, the ACL2 distri-
bution contains a directory books/clause-processors/, with proof scripts
demonstrating many applications of the interface.

2 ACL2

The name “ACL2” stands for “A Computational Logic for Applicative Com-
mon Lisp”. It is used to denote (i) a programming language based on an
applicative subset of Common Lisp, (ii) a first-order logic of recursive func-
tions, and (iii) a theorem prover for the logic. ACL2 is a complex theorem
proving system, consisting of more than 8MB of source code (including com-
ments and documentation), and has been used in both industry and academia
to prove the correctness of complex computing systems. Readers interested in
a thorough understanding of ACL2 are referred to the ACL2 Home Page [5],
which contains extensive hypertext documentation and references to several
books and papers about the theorem prover.

2.1 The logic

The kernel of the ACL2 logic consists of a formal syntax, some axioms, and
some rules of inference. The kernel syntax describes terms composed of vari-
ables, constants, and function symbols applied to a fixed number of argument
terms. The kernel logic introduces the notion of “formulas” as composed of
equalities between terms and the usual propositional connectives. Kaufmann
and Moore [15] provide a precise characterization of the kernel logic. The logic
supported by the theorem prover is an extension of the kernel logic.
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The syntax of ACL2 is the prefix-normal syntax of Lisp: the application of a
binary function f on arguments a and b is represented by (f a b) rather than
the more traditional f(a, b). However, in this paper we typically use the latter
form, referring to the formal syntax only when it is relevant for the discussion.
We also use more conventional notations for commonly used functions, thus
writing (x× y) instead of (* x y) and (if x then y else z) instead of (if x y

z), dropping parentheses when it is unambiguous to do so.

ACL2 has axioms specifying properties of certain Common Lisp primitives. We
show below the axioms about the primitives equal and if. Note that the kernel
syntax is quantifier-free and each formula is implicitly universally quantified
over all free variables in the formula.

Axioms.

x = y ⇒ equal(x, y) = T

x 6= y ⇒ equal(x, y) = NIL

x = NIL ⇒ (if x then y else z) = z

x 6= NIL ⇒ (if x then y else z) = y

The axiomatization of equal and if makes it possible to embed propositional
calculus and equality into the term language. Indeed, an ACL2 user never
writes formulas but only terms. Terms are interpreted as formulas by using
the following convention. When we write a term τ where a formula is expected,
it represents the formula τ 6= NIL. Thus, in ACL2, the following term is an
axiom relating the Lisp functions cons, car, and equal.

Axiom.

equal(car(cons(x, y)), x)

The axiom stands for the formula equal(car(cons(x, y)), x) 6= NIL, which is
provably equal to car(cons(x, y)) = x. In this paper, we will feel free to inter-
change terms and formulas by the above convention. We will also apply the
same logical connectives to a term or formula; thus when we write ¬τ for a
term τ , we mean the term (or formula) not(τ), where not is axiomatized as:

Axiom.

not(x) = if x then NIL else T

The duality between terms and formulas enables us to interpret an ACL2
theorem as follows. If the term τ (interpreted as a formula) is a theorem then
for all substitutions σ of free variables in τ to objects in the ACL2 universe,
the (ground) term τ/σ evaluates to a non-NIL value; NIL can thus be viewed
as logical false. This informal “evaluation interpretation” of theorems provides
motivation for deriving sufficient conditions for correctness of external tools
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integrated with ACL2; see Theorem 1 in Section 3.

The kernel logic includes axioms that characterize the primitive Lisp functions
over numbers, characters, strings, constant symbols such as T and NIL, and
ordered pairs. These objects together make up the ACL2 standard universe;
but the axioms do not preclude “non-standard” universes which may contain
other objects. Lists are represented as ordered pairs, so that the list (1 2 3)

is represented by the term cons(1, cons(2, cons(3, NIL))). For brevity, we will
write list(x, y, z) as an abbreviation for cons(x, cons(y, cons(z, NIL))). Another
convenient data structure built out of ordered pairs is the association list (or
alist) which is essentially a list of pairs, e.g., list(cons("a", 1), cons("b", 2)). We
often use alists for describing finite mappings; the above alist can be thought as
a mapping that associates the strings "a" and "b" with 1 and 2, respectively.

In addition to propositional calculus and equality, the rules of inference of
ACL2 include instantiation and well-founded induction up to ε0 (see below). 1

For instance, the formula car(cons(2, x)) = 2 is provable by instantiation from
the above axiom relating car, cons, and equal. The ACL2 theorem prover ini-
tializes with a boot-strapping first order theory called the Ground Zero theory
(GZ for short), which contains the axioms of the kernel logic.

Note that the ACL2 logic allows well-founded induction up to ε0 in spite
of being a first order logic. The logical foundation for induction in ACL2 is
provided as follows. GZ contains an embedding of ordinals up to ε0, represented
in Cantor Normal form [18], and GZ axiomatizes a binary relation ≺ to be
an irreflexive total order on (the representation of) ordinals. The theory GZ
is inductively complete: for any formula ϕ expressible in GZ, every first-order
induction axiom of the following form belongs to GZ, where ϕ/σ denotes the
formula obtained by applying the substitution σ to ϕ.

(∀y ≺ ε0)[((∀x ≺ y)ϕ/{y := x}) ⇒ ϕ(y)] ⇒ (∀y ≺ ε0)ϕ(y)

Finally, ACL2 only allows construction of theories that are extensions of GZ
via the extension principles explained below, which allow axiomatization of
new function symbols. When a new function symbol is introduced via the
extension principles, the resulting theory T ′ is the extension of the original
theory T with (i) the axiom explicitly introduced by the extension principle,
and (ii) all the induction axioms in the language of the new theory.

1 Here ε0 is the least ordinal that is closed under exponentiation. For a comprehen-
sive overview of ordinals, we refer the reader to Church and Kleene’s treatment [16],
which is recounted in Chapter 11 of Roger’s book on computability [17].
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2.1.1 Extension Principles

ACL2 provides extension principles allowing the user to introduce new func-
tion symbols. Below, we discuss two extension principles which are particularly
relevant to us, namely (i) the definitional principle for introducing totally de-
fined functions, and the (ii) encapsulation principle for introducing constrained
functions. Other extension principles include a defchoose principle for intro-
ducing Skolem (choice) functions, and a defaxiom principle that enables the
specification of a formula as an axiom. The latter is discouraged since the
introduction of arbitrary axioms is potentially unsound. For this paper, unless
explicitly mentioned otherwise, we ignore introduction of arbitrary axioms.

Definitional Principle

The definitional principle allows the user to extend a theory by axiomatizing
new total (recursive) functions. For example, one can use this principle to
introduce the unary function symbol fact axiomatized as follows, which returns
the factorial of its argument.

Definitional Axiom.
fact(n) = if natp(n) ∧ (n > 0) then n× fact(n− 1) else 1

Here, natp(n) is axiomatized in GZ to return T if n is a natural number, and
NIL otherwise. To ensure that the extended theory is consistent, ACL2 first
proves that the recursion terminates. This is done by exhibiting a measure
that maps the list of function arguments to the set of ordinals below ε0, and
showing that the measure decreases at every recursive call. For fact above,
one possible measure is nfix(n) (axiomatized in GZ) which returns n if n is a
natural number, otherwise 0.

Encapsulation Principle and Functional Instantiation

The encapsulation principle allows the user to extend a theory by introducing
functions with constraints rather than with full definitions. The constraints
need not specify the return values of the functions for all inputs. For instance,
consider introducing three functions, namely (i) a binary function ac, (ii) a
constant function ac-id, and (iii) a unary function ac-p, axiomatized to satisfy
the following five constraints. 2

Encapsulation Axioms.
ac(ac(x, y), z) = ac(x, ac(y, z))

2 The example is adapted from the topic functional-instantiation-example in the
ACL2 documentation.
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Definitional Axiom.
ac-list(l) = if ¬consp(l) then NIL

else if ¬consp(cdr(l)) then car(l)
else ac(car(l), ac-list(cdr(l)))

Fig. 1. Definition of ac-list.

ac(x, y) = ac(y, x)
ac-p(ac(x, y)) = T

ac-p(ac-id()) = T

ac-p(x) ⇒ ac(ac-id(), x) = x

The axioms stipulate that ac is an associative-commutative function that al-
ways returns an object in the domain recognized by the predicate ac-p, and
ac-id is an identity function over that domain. The effect of an encapsulation
is to extend a theory with the new function symbols constrained to satisfy
only the encapsulation axioms. To ensure consistency, ACL2 requires the user
to exhibit corresponding functions (called the witnesses to the encapsulation)
that satisfy the alleged axioms. For instance, to introduce the encapsulation
axioms above, one can use the following witnesses: (i) for ac, the constant
function that always returns 42, (ii) for ac-id, the constant 42, and (iii) for
ac-p, the function that returns T on input 42 and NIL on all other inputs.

For functions introduced using encapsulation, the only axioms known are the
encapsulation axioms (i.e., the constraints). Thus any theorem that can be
proven about such functions is valid for any other set of functions that also
satisfy the constraints. This observation is encoded in ACL2 via a derived
rule of inference called functional instantiation [19]. Below, we illustrate the
use of functional instantiation using the encapsulated functions ac, ac-id, and
ac-p above. Consider the function ac-list shown in Fig. 1, which returns the
result of applying ac to a list of objects. It is straightforward to prove the
theorem named ac-reverse-relation below, which states that the repeated
application of ac along the list l has the same effect as the repeated application
of ac along the list obtained by reversing l. Here the list reversing function,
reverse, is axiomatized in GZ.

Theorem ac-reverse-relation:
ac-list(reverse(l)) = ac-list(l)

Finally, note that the binary addition function “+” is associative and commu-
tative and always returns a number, 0 is the left identity over numbers, and GZ
has a predicate acl2-numberp that returns T if and only if its argument is a num-
ber. Thus, if we define the function sum-list that repeatedly adds all elements
of a list l, then functional instantiation of the theorem ac-reverse-relation

enables us to prove the following theorem under the functional substitution of
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“+” for ac, 0 for ac-id, numberp for ac-p, and sum-list for ac-list.

Theorem sum-reverse-relation:
sum-list(reverse(l)) = sum-list(l)

As the example illustrates, encapsulation and functional instantiation enable
the ACL2 user to prove properties of concrete definitions by reasoning about
more abstract, generic functions. It is worth noting that the logic of ACL2 is
limited compared to those of other general-purpose theorem provers such as
HOL or PVS; while the latter provers support higher order logic (typically
some form of typed λ-calculus), the logic of ACL2 is first order. Functional in-
stantiation provides limited higher order reasoning capabilities in ACL2, albeit
as a derived rule of inference. Indeed, many recent approaches implemented
in ACL2 for automating program verification tasks have used proof strategies
that involve functional instantiation of generic theories [20–22].

2.2 The Theorem Prover

ACL2 is an automated, interactive proof assistant. It is automated in the sense
that no user input is expected once it has embarked on the search for the proof
of a conjecture. It is interactive in the sense that the search is significantly
affected by the previously proven lemmas in its database at the beginning of
a proof attempt; the user essentially programs the theorem prover by stating
lemmas for it to prove, to use automatically in subsequent proofs. ACL2 also
supports a goal-directed interactive loop (called the “proof-checker”), similar
in nature to LCF-style provers like HOL [23] and Isabelle [24]; but it is much
less frequently used and not relevant to the discussions in this paper.

Interaction with the ACL2 theorem prover principally proceeds as follows. The
user creates a theory (extending GZ) using the extension principles to model
some artifact of interest. Then she poses a conjecture about the functions
in the theory and instructs the theorem prover to prove the conjecture. For
instance, if the artifact is the factorial function above, one conjecture might be
the following formula, which says that fact always returns a natural number.

Theorem fact-is-natp:
natp(fact(x)) = T

ACL2 attempts to prove a conjecture by applying a sequence of transforma-
tions to it, replacing each goal (initially, the conjecture) with a list of subgoals.
Internally, ACL2 stores each goal as a clause represented as an object in the
ACL2 universe. A goal of the form τ1∧τ2∧ . . .∧τn ⇒ τ is represented as a list
of terms, (¬τ1 ... ¬τn τ), which is viewed as the disjunction of its elements
(literals). ACL2 has a hint mechanism which the user can use to provide prag-
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matic advice on proof search at any goal or subgoal; in this example, the user
can advise ACL2 to begin the search by inducting on x.

Once a theorem is proven, it is stored in a database and used in subsequent
derivations. This database groups theorems into various rule classes, which
affects how the theorem prover will automatically apply them. The default
rule class is rewrite, which causes the theorem prover to replace instances of
the left-hand-side of an equality with its corresponding right-hand-side; if the
conjecture fact-is-natp above is a rewrite rule, then if ACL2 subsequently
encounters a term of the form natp(fact(τ)) then the term is rewritten to T.

Users interact with the ACL2 prover primarily by issuing a sequence of event
commands for introducing new functions and proving theorems with appro-
priate rule classes. For example, fact-is-natp is the name of the above the-
orem event. During proof development the user typically records events in a
file, called a book. Once the desired theorems have been proven, ACL2 can
be instructed to certify a book to facilitate the use of the associated events
in other projects: a book is certified once and then included during a subse-
quent ACL2 session without rerunning the proofs. ACL2 allows the user to
mark some events in a book as local events. Typically, the user marks as local
auxiliary function definitions and intermediate lemmas which are not deemed
generally useful. When a book is included in a subsequent proof, the theorem
prover’s database is extended only with the non-local events in the book.

The ability to mark events as local is one of the key factors facilitating the ap-
plicability of ACL2 to large-scale verification tasks. In particular, it allows the
user to develop and manage proofs in a disciplined manner without cluttering
the database of the theorem prover or overwhelming its proof procedures and
heuristics with a large number of unwanted definitions and lemmas. Also, once
a proof has been completed, hiding auxiliary definitions and lemmas simpli-
fies the resulting proof structure, which aids in proof presentation and proof
maintenance. Kaufmann [25] provides an illustrative example of such use of
local events in a proof of the Fundamental Theorem of Calculus.

However, the presence of local events complicates the logical foundations of
ACL2, and the combination of local events with other features of the theo-
rem prover can have surprising repercussions. In Sections 3 through 5 we will
explain some of the subtleties involved in the interaction of local events with
our interface for integrating external deduction tools, and the measures taken
to account for such interactions. To understand why local events complicate
the logical foundations, note that the feature is logically much more powerful
than merely restricting the applicability of certain events to a specific scope.
For instance, the local events in a book might include commands for introduc-
ing new functions (and hence new axioms) but when the book is included in
a subsequent session, the logical theory is not extended by local events. Yet,
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during the certification of the book, ACL2 might have used such local axioms
to prove a non-local lemma. In order to justify the use of the non-local lem-
mas in a book while not extending the logical theory with the local axioms,
one must clarify under what conditions it is legitimate to mark an event to
be local. This question has been answered by Kaufmann and Moore [13] as
follows: if a formula φ is proven as a theorem in an ACL2 session, then φ
is in fact first-order derivable from the axioms of GZ together with only the
axiomatic events in the session (that is, event commands that extend a the-
ory with new axioms) that (hereditarily) involve function symbols in φ or in
formulas introduced via the defaxiom principle. In particular, every extension
principle other than the defaxiom principle produces an extension to the cur-
rent theory which is conservative. Thus, any event that does not correspond to
a defaxiom and does not involve the function symbols in the non-local events
can be marked local. ACL2 implements this by making two passes on a book
during certification. In the first pass it proves each theorem (and admits each
axiomatic event) sequentially, and ensures that no defaxiom event is marked
local. In the second pass it performs a local incompatibility check, skipping
proofs and checking that each axiomatic event involved in any non-local event
is also non-local.

2.3 The ACL2 Programming Environment

ACL2 is closely tied with Common Lisp. It employs Lisp syntax, and the
axioms in GZ for the Lisp primitives are crafted so that the return values
predicted by the axioms agree with those specified in the Common Lisp Man-
ual [26] for arguments in the intended domains of application. Furthermore,
events corresponding to the definitional principle are Lisp definitions. For in-
stance, the formal event introducing fact above also serves as a Common Lisp
definition:

(defun fact (n)

(if (and (natp n) (> n 0))

(* n (fact (- n 1)))

1))

The connection with Lisp enables users to execute formal definitions efficiently;
ACL2 permits the execution of all functions axiomatized in GZ, and any func-
tion whose definition does not involve any constrained functions. The theorem
prover makes use of this connection for simplifying ground terms. For instance,
during a proof ACL2 will automatically simplify fact(3) to 6 by evaluation.

ACL2 also provides a logic-free programming environment to facilitate efficient
code development. One can implement any applicative Lisp function and mark
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it to be in program mode. No proof obligation is generated for such functions
and no logical guarantee (including termination) is provided, but ACL2 can
evaluate such functions via the Lisp evaluator. In addition, ACL2 supports a
“system call” interface to the underlying operating system, which enables the
user to invoke arbitrary executable code and operating system commands.

2.4 Evaluators

ACL2 provides a convenient notation for defining an evaluator for a fixed set
of functions. Evaluators are integral to ACL2’s “meta reasoning” capabilities.
We provide an overview of evaluators here, since they are useful in character-
izing the correctness of external tools. For more details about evaluators and
their use in meta reasoning, we refer the reader to the documentation top-
ics defevaluator and meta in the ACL2 documentation, along with previous
papers [14,27] on the subject.

To understand the role of evaluators, consider the following simple challenge.
Given a term that represents an equality between two sums, how do we arrange
to cancel common addends from both sides of the equality? For instance, we
want the term (x+3y+z = a+y+b) to be simplified to (x+2y+z = a+b). Note
that ACL2 does not provide unification for associative-commutative functions.
If one knows ahead of time the maximum number of addends that could
potentially appear in a sum then one can write a (potentially large) number
of rewrite rules to handle all permutations in which the common addends
could appear. But this does not work in general, and is laborious, both for the
user in developing the rules, and for ACL2 in sorting through a large database
of rules any one of which is unlikely to be useful in most situations.

One solution to the challenge is to write a customized reasoning function
(called a metafunction) for manipulation of terms. Terms are represented nat-
urally as objects in the ACL2 universe; the term foo(x) is represented as the
object (foo x) which is a list of two elements. Metafunctions manipulate this
internal representation of a term, producing (the internal representation of) a
provably equivalent term. It is an easy exercise to write a metafunction that
cancels common addends from a term representing equality between two sums.

The notion of an evaluator makes explicit the connection between a term
and its internal representation. Assume that f1, . . . , fn are functions axioma-
tized in some ACL2 theory T . A function ev, also axiomatized in T , is called
an evaluator for f1, . . . , fn, if the axioms associated with ev specify a suit-
able evaluation semantics for the internal representation of terms composed
of f1, . . . , fn; such axioms are referred to as evaluator axioms. A precise char-
acterization of all the evaluator axioms is described in the ACL2 Manual [5]
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under the documentation topic defevaluator; below we show one of the axioms
for illustration, which defines the evaluation semantics for an m-ary function
symbol f . Here, ′f is assumed to be the internal representation of f and ′τi is
the internal representation of τi, for 1 ≤ i ≤ m.

An Evaluator Axiom.

ev(list(′f, ′τ1, . . . , ′τm), a) = f(ev(′τ1, a), . . . , ev(′τm, a))

In the formula above, it is convenient to think of a as an alist that maps the
(internal representation of the) variables in τ1, . . . , τm to ACL2 objects. Then
the axiom specifies that the evaluation of the list (′f ′τ1 ... ′τm) (which
corresponds to the internal representation of f(τ1, . . . , τm)) under some map-
ping of free variables is the same as the function f applied to the evaluation
of each τi under the same mapping.

Evaluators allow us to state (and prove) correctness of metafunctions as for-
mulas in the ACL2 logic. Let cancel-addends be the metafunction that cancels
the common addends in an equality, and let ev be an evaluator. Then the fol-
lowing theorem is sufficient to justify the use of cancel-addends during proofs.

Theorem cancel-addends-correct

ev(cancel-addends(τ), a) = ev(τ, a)

The notion of evaluators is related to reflection, which is essentially the com-
putation of ground terms in the metatheory. Harrison [28] provides a com-
prehensive survey of reflection in theorem proving. Reflection mechanisms are
available in most theorem provers, for instance HOL, Isabelle, and PVS. The
difference between these mechanisms and the evaluator constructs of ACL2
arises from the fact that the logic of ACL2 is first order. Note that in first
order logic one cannot define a single closed-form function axiomatized to be
an evaluator for an arbitrary set of functions. Thus, in ACL2, one must define
separate evaluators for different (fixed) sets of functions. However, ACL2 pro-
vides a macro, called defevaluator, that takes a collection of function names
f1, . . . , fk, and a new function symbol ev, and introduces (via encapsulation)
the constraints axiomatizing ev to be an evaluator for f1, . . . , fk.

3 Verified External Tools

In this section, we start with a description of our interface to connect verified
external tools with ACL2. The ideas and infrastructure we develop here will
be extended in the next two sections to support unverified tools.

We will refer to external deduction tools as clause processors. Recall that
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ACL2 internally represents terms as clauses, so that a subgoal of the form
τ0 ∧ τ1 ∧ . . . ∧ τn ⇒ τ is represented as a disjunction by the list (¬τ0 ¬τ1

... ¬τn τ). Our interface enables the user to transform the current clause
with custom code. More generally, a clause processor is a function that takes
a clause C (together with possibly other arguments) and returns a list LC of
clauses. 3 The intention is that if each clause in LC is a theorem of the current
ACL2 theory then so is C. In the remainder of the paper, when we talk about
clause processors, we will mean such clause manipulation functions.

Our interface for verified external tools consists of the following components.

A new rule class for installing clause processors. Suppose the user has
defined a function tool0 that she desires to use as a clause processor. She
can then prove a specific theorem about tool0 (described below) and attach
this rule class to the theorem. The effect is to install tool0 in the ACL2
database as a clause processor for use in subsequent proof attempts.

A new hint for using clause processors. Once tool0 has been installed as
a clause processor it can be invoked via this hint to transform a conjecture
during a subsequent proof attempt. If the user instructs ACL2 to use tool0
to help prove some goal G, then ACL2 transforms G into the collection of
subgoals generated by executing tool0 on (the clause representation of) G.

We now motivate the theorem alluded to above for installing tool0 as a clause
processor. Recall that theorems in ACL2 can be thought of in terms of eval-
uation: a formula Φ is a theorem if, for every substitution σ mapping each
free variable of Φ to some object, the instance Φ/σ does not evaluate to NIL.
Let C be a clause whose disjunction is the term τ , and let tool0, with C as
its argument, produce the list (C1 ... Cn) that represents the conjunction
of corresponding terms τ1, . . . , τn. (That is, each τi is the disjunction of clause
Ci.) Informally, we want to ensure that if τ/σ evaluates to NIL for some sub-
stitution σ then there is some σ′ and i such that τi/σ

′ also evaluates to NIL.

The condition is made precise by extending the notion of evaluators (cf. Sec-
tion 2.4) from terms to clauses. To do so, assume that the ACL2 Ground
Zero theory GZ contains two functions disjoin and conjoin* axiomatized as
shown in Fig. 2. Informally, the axioms specify how to interpret objects rep-
resenting clauses and clause lists; for instance, disjoin specifies that the inter-
pretation of a clause (τ0 τ1 τ2) is the same as that of (if τ0 T (if τ1 T

(if τ2 T NIL))), which represents the disjunction of τ0, τ1, and τ2. Let ev
be an evaluator for a set of function symbols that includes the function if;
thus ev(list(if, τ0, τ1, τ2), a) stipulates how the term “if τ0 then τ1 else τ2”

3 The definition of a clause processor is somewhat more complex. In particular, it
can optionally take as argument the current state of ACL2, and return, in addition
to a clause list, an error message and a new state. We ignore such details in this
paper.
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disjoin(C) = if ¬consp(C) then ∗NIL∗
else list(if, car(C), ∗T∗, disjoin(cdr(C)))

conjoin*(LC)= if ¬consp(LC) then ∗T∗
else list(if, disjoin(car(LC)), conjoin*(cdr(LC)), ∗NIL∗)

Fig. 2. Axioms in GZ for supporting clause processors. *T* and *NIL* are assumed
to be the internal representation of T and NIL respectively. The predicate consp is
defined in GZ such that consp(x) returns T if x is an ordered pair, and NIL otherwise.

pseudo-term-listp(C) ∧
alistp(a) ∧
ev(conjoin*(tool0(C, args)), tool0-env(C, a, args))

=⇒ ev(disjoin(C), a)

Fig. 3. Correctness Theorem for clause processors. Function ev is an evaluator for a
set of functions that includes if; args represents the remaining arguments of tool0
(in addition to clause C); pseudo-term-listp is a predicate axiomatized in GZ that
returns T if its argument is an object in the ACL2 universe representing a list of
terms (therefore a clause); and alistp(a) returns T if a is an association list, otherwise
NIL.

is evaluated. For any theory T , a clause processor function tool0(C, args) will
be said to be legal in T if there exists a function tool0-env in T such that the
formula shown in Fig. 3 is a theorem. 4 The function tool0-env returns an as-
sociation list like σ′ in our informal example above: it potentially modifies the
original association list to respect any generalization performed by tool0. We
note that a weaker theorem logically suffices, replacing tool0-env(c, a, args)
with an existentially quantified variable.

The obligation shown in Fig. 3 (once proven) can be associated with the new
rule class for recognizing clause processors. This instructs ACL2 to use the
function tool0 as a verified external tool. Theorem 1 below guarantees that the
obligation is sufficient. An analogous argument justifies ACL2’s current meta
reasoning facilities, which appears as a comment titled “Essay on Correctness
of Meta Reasoning” in the ACL2 source code.

Theorem 1 Let T be an ACL2 theory for which tool0 is a legal clause pro-
cessor, and let tool0 return a list LC of clauses given an input clause C. If
each clause in LC is provable in T , then C is also provable in T .

4 For the curious reader, the the ACL2 function pseudo-term-listp in Fig. 3 is so
named since it actually only checks if its argument has the syntactic structure of a
list of terms, e.g., it does not check that the functions in the “terms” are defined and
called with the correct number of arguments. The reasons for using this predicate
are technical and not germane to this paper.
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Proof: The theorem is a simple consequence of Lemma 1 below, taking τi to
be vi and given the obligation shown in Fig. 3 along with the definitions of
conjoin* and disjoin. 2

Lemma 1 Let τ be a term with free variables v0, . . . , vn, ev an evaluator for
the function symbols in τ , and e a list of cons pairs of the form (〈′v0,

′τ0〉
. . . 〈′vn,

′τn〉), where ′vi and ′τi are internal representation of vi and τi re-
spectively. Let σ be a substitution mapping each vi to τi, and let ′τ be the
internal representation of the term τ . Then the following formula is provable:
ev(′τ, e) = τ/σ.

Proof: The lemma follows by induction on the structure of term τ . 2

In spite of the simplicity of the proof, the statement of Theorem 1 is perhaps
more subtle than it appears. Note that the theorem restricts the use of a clause
processor to a theory in which the clause processor is legal. This restriction
might appear too strong by the following flawed reasoning. We know that
each extension principle in ACL2 produces a conservative extension. Also, the
function symbols occurring in formulas simplified by the application of a clause
processor might not necessarily occur in the definition of the clause processor
itself. For instance, consider a clause processor called generalize that replaces
each occurrence of the object ′(f x) (which is the internal representation of the
term f(x)) in a clause with a new free variable. Note that although generalize
manipulates the internal representation of f, the function f itself never appears
in the formal definition of generalize. Thus by conservativity, a theorem proven
by the application of generalize is valid in a theory in which generalize is not
defined (e.g., generalize does not add any new axiom about f), and hence
one should be able to mark the definition of generalize (and any definition or
theorem involving the definition of generalize) local in spite of being used in a
hint as a clause processor. But this is precluded by Theorem 1.

To see the flaw in the reasoning above, consider defining a clause processor
simplify-foo that replaces terms of the form foo(τ) by τ . Suppose a book,
book1, contains the following event:

Local Definitional Axiom.
foo(x) = x

We can add simplify-foo as a legal clause processor in book1. Using an eval-
uator ev-foo for the function symbols foo and if, it is trivial to prove the
obligation in Fig. 3 and thus install simplify-foo as a clause processor. Note
that the definition of foo is local, and also that the definition of simplify-foo
only manipulates the internal representation ′(foo τ) of foo(τ); thus the defi-
nition of simplify-foo does not contain any occurrence of the function symbol
foo. However, suppose we permit the installation of simplify-foo (non-locally)
as a clause processor but mark the corresponding evaluator axioms for ev-foo
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to be local. Then we can create a book, book2, with the following events.

Local Definitional Axiom.
foo(x) = cons(x, x)

Include book1.

We now are in a theory in which the application of tool0 is inconsistent with
the current definition of foo, resulting in unsoundness.

The example illustrates some of the subtleties arising in ACL2 because of its
support for local events. The problem here is that the evaluator ev-foo which
justifies the use of simplify-foo as a verified clause manipulation function is an
evaluator for the locally defined function foo; for instance, one of the evaluator
axioms for ev-foo is the following:

Evaluator Axiom for ev-foo
ev-foo(list(foo, x), a) = ev-foo(foo(x), a)

This axiom and the local definition of foo are necessary in proving the obli-
gation in Fig. 3. The legality requirement ensures that the current theory
contains the above axiom, which in turn requires that the functions “inter-
preted” by the evaluator are non-local. We remark that the example above,
though simple, illustrates a soundness bug related to meta rules that existed
in ACL2 for many years. 5 This bug resulted from the failure to track the fact
that the theory in which the rules are applied is not properly supported by
evaluators.

3.1 Applications of Verified External Tools

Verified clause processors enable an ACL2 user to bypass ACL2’s heuristics
and use customized, verified code on large-scale proofs in a specific domain. We
now discuss some applications of these capabilities. The examples shown below
illustrate the flexibility provided by the interface, and serve as a guide for the
reader interested in customizing ACL2 for efficiently reasoning about a specific
domain. Scripts supporting the examples below are distributed with ACL2 in
the directory books/clause-processors/. Our description is consistent with
these scripts, but we take some liberties when appropriate, for instance using
different function names.

5 We have checked that the bug exists as far back as in the December, 1997 release,
and probably it was never absent before its fix in the February, 2006 release.
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pseudo-term-listp(C) ∧
alistp(a) ∧
ev-ifnot(conjoin*(addHypothesis(C, τ)), a)

=⇒ ev-ifnot(disjoin(C), a)

Fig. 4. Correctness Theorem for the addHypothesis clause processor. Here ev-ifnot
is an evaluator for the function symbols if and not. Note that we have used
tool0-env(C, a, τ) = a.

Adding a Hypothesis

Our first example is the trivial clause processor addHypothesis below, which
weakens a formula with a user-supplied hypothesis:

addHypothesis(C, τ) = list(cons(list(not, τ), C), τ)

Thus, if ΦC is the formula represented by clause C, then the application of
addHypothesis causes it to be replaced by the implication τ ⇒ ΦC , together
with a new proof obligation to show that τ is a theorem. The installation
of addHypothesis as a clause processor, based on the proof obligations shown
in Fig. 3, can be achieved by proving the theorem shown in Fig. 4, which is
proven automatically by ACL2.

One application of the addHypothesis tool is to strengthen a formula before
applying induction. For example, assume that we wish to prove a ⇒ b, and b
can be proven by induction. One way to prove a ⇒ b is to use the addHypothesis
tool with τ := b. This returns the trivially true subgoal b ⇒ (a ⇒ b), together
with the subgoal b which can now be dispatched by induction.

We should note that the addHypothesis clause processor, though useful, is
merely pedagogical. Indeed, it is possible to mimic the action of addHypothesis
with a certain hint available with ACL2. Nevertheless, its use illustrates how
verified reasoning code enables the user to control proof search.

Equality Reasoning

Our next example is a clause processor that enables the user to control rea-
soning about a set of equalities. To motivate the use of a clause processor
for equality reasoning, consider the following scenario. Let f and g be unary
functions, and p be a unary predicate such that the formula p(g(x), g(y)) is a
theorem. Consider proving the trivial theorem:

Theorem.
(f(x) = g(x)) ∧ (f(y) = g(y)) ⇒ p(f(x), f(y))
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ACL2 cannot prove the above theorem automatically. To understand why, we
explain a bit the heuristics involved in the term simplification performed by
ACL2. In summary, ACL2 internally has a notion of the syntactic “complex-
ity” of a term, and while simplifying terms that represent equality it rewrites
complex terms to simpler ones. In the above scenario, ACL2 determines the
terms involving g to be more complex than the corresponding terms involving
f , and thus simplification will attempt to rewrite in the “wrong” order, failing
to prove the theorem. 6

We can, however, bypass these limitations by implementing a clause processor
equalitySubstitution. 7 Given a clause C and a list of n pairs of terms (〈τ1, τ

′
1〉

... 〈τn, τ
′
n〉), the clause processor produces n+1 clauses as follows. The first

clause is obtained by replacing each occurrence of τi in C with τ ′
i . The remain-

ing n clauses are formed by adding the term (τj = τ ′
j) to C, for j = 1 . . . n;

hence, if C represents the formula ΦC then the j-th clause can be viewed as the
subgoal (τj 6= τ ′

j) ⇒ ΦC . In our scenario, the use of equalitySubstitution with
the list (〈f(x), g(x)〉 〈f(y), g(y)〉) produces the following three trivial subgoals
each of which can be proven automatically by ACL2.

Subgoals.

(1) (g(x) = g(x)) ∧ (g(y) = g(y)) ⇒ p(g(x), g(y))
(2) (f(x) 6= g(x)) ⇒ ((f(x) = g(x)) ∧ (f(y) = g(y)) ⇒ p(f(x), f(y)))
(3) (f(y) 6= g(y)) ⇒ ((f(x) = g(x)) ∧ (f(y) = g(y)) ⇒ p(f(x), f(y)))

The use of equalitySubstitution is an interesting example of the use of cus-
tomized reasoning code to alleviate limitations in the simplification heuristics
of the theorem prover. The correctness of equalitySubstitution merely depends
on the correctness of substitution of equals, and is straightforward to verify. On
the other hand, it is tricky to craft general-purpose heuristics that automati-
cally perform effective equality-based simplification on arbitrary terms given
large databases of applicable theorems, in the presence of induction and other
proof techniques outside the domain of decision procedures. Indeed, many
ACL2 users over the years have been “stumped” by limitations in the equality
reasoning heuristics; the clause processor frees the user from dependence on,
and complicated work-arounds for, such limitations.

6 ACL2 also has so-called “cross-fertilization” heuristics that temporarily allow
substitution of more complex terms for simpler ones, but the heuristics fail to prove
the theorem in the scenario described.
7 The equalitySubstitution clause processor has been implemented and verified by
Jared Davis.
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Sorting Bit Vector Addition

Our third example illustrates the use of verified clause processors to implement
efficient simplification routines for domain-specific applications. The domain
here is bit vector arithmetic, and we consider the problem of normalizing
terms composed of bit vector additions. Such normalization is necessary in
proofs involving arithmetic circuits, for instance to verify multiplier designs.
Furthermore, although our focus is on bit vector addition, the general principle
can be used in proofs involving any associative-commutative binary function.

Let +32 be the binary function representing 32-bit bit vector addition, and
consider the problem of proving the following theorem:

(a1 +32 (a2 +32 (. . . +32 an))) = (an +32 (. . . +32 (a2 +32 a1)))

The standard approach to proving a theorem as above is to normalize both
sides of the equality using a syntactic condition on the terms involved in the
summands, and finally show that the resulting normal forms are syntacti-
cally identical. To do this via rewriting (in the absence of built-in associative-
commutative unification), one proves the associativity and commutativity of
+32 as oriented rewrite rules which are then repeatedly applied to reduce each
side of the equality to normal form. A slight reflection would, however, in-
dicate that such an approach is inefficient. In particular, since the rewriting
in ACL2 is inside-out, the normalization requires O(n2) applications of the
associativity and commutativity rules.

Our solution to the efficiency problem is to implement a clause processor
SortBVAdds that sorts the summands in a term involving bit vector additions
using an O(n log n) mergesort algorithm. The correctness of the clause pro-
cessor is verified by showing that (i) mergesort returns a permutation of its
input and (ii) the application of a sequence of +32 functions produces the
same result on any permutation of the summands. With this clause proces-
sor, we can obtain significant efficiency in simplifying terms involving +32.
As empirical evidence of the efficiency, the equality theorem above can be
proven in 0.01 seconds for 500 summands and in 0.02 seconds for 1000 sum-
mands on a 2.6GHz Pentium IV desktop computer with 2.0GB of RAM; the
naive rewriting strategy outlined above takes 11.24 seconds and 64.41 seconds
respectively.

We close the discussion on SortBVAdds with two observations. First note that
SortBVAdds sorts bit vector addition occurring within subexpressions of ACL2
formulas, not merely at the top level. For example, given any unary function
f , it can be used to simplify f(a2 +32 a1 +32 a0) into f(a0 +32 a1 +32 a2);
furthermore, such a function f can be introduced after the installation clause
processor. Secondly, it might be possible to mimic the efficiency reported above
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using ACL2’s meta reasoning abilities (cf. Section 2.4). However, writing such a
general-purpose efficient metafunction is awkward since meta-rules are closely
tied to ACL2’s inside-out rewriter.

4 Basic Unverified External Tools

Verified clause processors enable the user to employ verified reasoning code
for customized clause manipulation. However, the main motivation behind the
development of our interface is to connect ACL2 with (unverified) tools that
are external to the theorem prover, such as Boolean satisfiability solvers and
model checkers. In this section and the next, we present mechanisms to enable
such connections.

Our interface for unverified tools involves a new event that enables ACL2 to
recognize a clause manipulation function tool1 as an unverified reasoning tool.
Here tool1 might be implemented using program mode and might also invoke
arbitrary executable code using ACL2’s system call interface (cf. Section 2.3).
The effect of the event is the same as if tool1 were introduced as a verified
clause processor: hints can be used to invoke the function during subsequent
proof search to replace a goal with a list of subgoals.

Suppose an unverified tool tool1 is invoked to simplify a goal conjecture in
the course of a proof search. What guarantees must the implementor of tool1
provide (and the user of tool1 trust) in order to claim that the conjecture is
indeed a theorem? A sufficient guarantee is that tool1 could have been formally
defined in ACL2 together with appropriate evaluators such that the obligation
shown in Fig. 3 is a theorem about tool1. The soundness of the use of tool1
then follows from Theorem 1.

Since the invocation of an unverified tool for simplifying ACL2 conjectures car-
ries a logical burden, the event introducing such tools provides two constructs,
namely (i) a trust tag 8 for the user of the tool to acknowledge this burden,
and (ii) a concept of supporters enabling the tool developer to guarantee that
the logical restrictions are met. We now explain these two constructs.

The trust tag associated with the installation of an unverified tool tool1 is a
symbol (the name of the tool itself by default), which must be used to acknowl-
edge that the applicability of tool1 as a proof rule depends on tool1 satisfying
the logical guarantees above. The certification of a book that contains an

8 ACL2’s trust tag mechanism, introduced in Version 3.1, is quite general, with
applications other than to unverified clause processors. See the topic defttag in the
ACL2 documentation [5].
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unverified tool, or includes (hereditarily, even locally) a book containing an
unverified tool, requires the user to tag the certification command with that
tool’s trust tag. Note that technically the mere act of installing an unverified
tool does not introduce any unsoundness; the logical burden expressed above
pertains to the use of the tool. Nevertheless, we insist on tagging the certifi-
cation of any book containing an installation of an unverified tool (whether
subsequently used or not) for implementation convenience. Recall that the lo-
cal incompatibility check (the second pass of a book certification) skips proofs,
and thereby ignores the hints provided during the proof process. By “tracking”
the installation rather than application of an unverified tool, we disallow the
possibility of certifying a book that locally introduces and uses an unverified
tool without acknowledging the application of the tool.

Finally we turn to supporters. To understand this construct, recall the problem
outlined in the preceding section, demonstrating inconsistency with a verified
clause processor if the evaluator axioms could be local. The problem was that
the tool simplify-foo had built-in knowledge about some function definitions
and we wanted to ensure that when it is applied for clause manipulation the
axioms in the current theory match this knowledge. In the verified case, this
was guaranteed by permitting the use of the tool only in a theory in which
the proof obligations for its legality are met. However, suppose we want to use
simplify-foo as an unverified tool in the scenario described. Then there is no
obligation proven (or stated) in the logic, other than the (perhaps informal)
guarantee from the implementor that it could be proven in principle given an
appropriate formal definition of foo.

The supporters construct enables a tool implementor to insist that the ax-
iomatic events for all functions “understood” by the tool are present in any
theory in which it is used. The implementor can list the names of such ax-
iomatic events (typically function symbols that name their definitions, for ex-
ample foo in the suggested example for simplify-foo) in the supporters field of
the event installing unverified clause processors. We will refer to these events as
supporting events. Whenever ACL2 encounters an event installing a function
tool1 as an unverified clause processor with a non-empty list of supporters, it
will check that tool1 and all of the supporting event names are already defined.

4.1 Applications of Unverified External Tools

The connection of ACL2 with external tools has been a topic of extensive
interest, and there has been significant work connecting different decision pro-
cedures with the theorem prover. These include integration with the Cadence
SMV model checker [29], Zchaff and Minisat SAT solvers [30], and UCLID [31].
These connections have been successfully used to automate large-scale verifi-
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cation tasks with ACL2. For instance, the UCLID connection has been used to
automatically verify deep pipelined machines [32]. However, in the absence of
the disciplined mechanisms that we present here, these connections have nec-
essarily required substantial “hacking” of the ACL2 source code. The interface
we present below has been implemented to enable the ACL2 user to connect
with tools such as those above without imposing demands on understanding
the inner workings of the theorem prover implementation. In particular, the
interface is sufficient for connecting all the tools cited above. 9

In addition to the above connections, the unverified clause processor interface
has been used to implement a decision procedure for the Subclass of Unrollable
List Formulas in ACL2 (SULFA) [30]. SULFA is a decidable subclass of ACL2
formulas that is composed of the primitives if, consp, cons, car, and cdr; a
SULFA formula can also involve restricted applications of other primitives,
as well as user-defined functions. The subclass is powerful enough to express
finite step hardware properties specified by first order definitions.

The decision procedure for SULFA works as follows. A SULFA formula is
translated into Boolean conjunctive normal form (CNF), using ACL2’s inter-
nal functions to look up bodies of functions that must be unrolled; the CNF
formula is given to an external SAT solver, such as zChaff, to prove or dis-
prove. If a counterexample is found by the SAT solver, then it is converted
into a counterexample to the original formula and presented to the user.

The SULFA clause processor has been applied in the verification of compo-
nents of the TRIPS processor [33], a prototype multi-core processor designed
and built by the University of Texas at Austin and IBM. In particular, the
Verilog implementation of the protocol used to communicate between the four
load store queues has been formally verified. The use of the SULFA decision
procedure makes it possible to combine fully automated SAT-based decision
procedures with traditional theorem proving, achieving a higher level of au-
tomation than was previously possible with the ACL2 theorem prover [34,30].

The SULFA clause processor has also been used to develop a general-purpose
solver for the standard SMT theory of bit vectors; the solver performs prelim-
inary simplification with ACL2 before invoking the SULFA clause processor
to dispatch the resulting simplified problem. This tool has been used to verify
fully automatically all the problems in the SMT benchmark suite [35]. We note
that the close connection with ACL2 makes this SMT solver more flexible than
any other solver we are aware of, albeit perhaps with some loss in efficiency.
In particular, one can augment the solver with definitions of additional bit

9 The sufficiency has been ensured by significant discussions with the authors of
these previous connections in the design of the interface. Furthermore, Sudarshan
Srinivasan [private communication] is working on connecting an SMT solver with
ACL2 and has expressed a desire to use our interface.
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vector primitives and add theorems about such primitives; these theorems are
proven correct with ACL2 and then applied to efficiently simplify terms that
involve the relevant primitives.

5 Unverified External Tools for Implicit Theories

Our view so far of an unverified tool is that if it replaces some clause with a list
of clauses, then the provability of the resulting clauses implies the provability
of the original clause. Such a tool is thus an efficient procedure for assisting
in proofs of theorems that could, in principle, have been proven from the
axiomatic events of the current theory. This simple view is sufficient in most
situations. However, some ACL2 users have found the necessity to use more
sophisticated tools that implement their own theories. In this section we will
discuss such tools and the facilities necessary to connect them with ACL2.

To motivate the need for such tools, assume that we wish to prove a theorem
about some hardware design. Hardware designs are typically implemented in
a Hardware Description Language (HDL) such as VHDL or Verilog. One way
of formalizing such designs is to define a semantics of the HDL in ACL2,
possibly by defining a formal interpreter for the language [36,37]; however
the complexity of a modern HDL often makes this approach impractical in
practice [38]. On the other hand, most commercial model checkers can parse
designs written in VHDL or Verilog. A practical alternative is thus merely to
constrain some properties of the interpreter and use a combination of theorem
proving and model checking in the following manner:

• Establish low-level properties of parts of a design using model checkers or
other decision procedures.

• Use the theorem prover to compose the properties proven by the model
checker together with the explicitly constrained properties of the interpreter
to establish the correctness of the design.

This approach has shown promise in scaling formal verification to industrial
designs. For instance, in recent work Sawada and Reeber [39] verify a VHDL
implementation of an industrial floating-point multiplier using a combination
of ACL2 and an IBM internal verification tool called SixthSense [40]. For this
project, they introduce two functions, sigbit and sigvec, with the following
assumed semantics:

• sigbit(e, s, n, p) returns a bit corresponding to the value of bit signal s of a
VHDL design e at cycle n and phase p.

• sigvec(e, s, l, h, n, p) returns a bit vector corresponding to the bit-range be-
tween l and h of s for design e at cycle n and phase p.

24



In ACL2 these functions are constrained only to return a bit and bit-vector
respectively. The key properties of the different multiplier stages are proven
using SixthSense: one of the properties proven is that sigvec when applied to
(i) a constant C representing the multiplier design, (ii) a specific signal s of
the design, (iii) two specific values lb and hb corresponding to the bit-width
of s, and (iv) a specific cycle and phase, returns the sum of two other bit
vectors at the previous cycle; this corresponds to one stage of the Wallace-
tree decomposition implemented by the multiplier. Such properties are then
composed using ACL2 to show that the multiplier, when provided two vectors
of the right size, produces their product after 5 cycles.

How do we support this verification approach? Note that the property above
is not provable from the constraints on the associated functions alone (namely
sigvec returns a bit vector). Thus if we use encapsulation to constrain sigvec
and posit the property as a theorem, then functional instantiation can easily
derive an inconsistency. The problem is that the property is provable from the
constraints together with axioms about sigvec that are unknown to ACL2 but
assumed to be accessible to SixthSense.

Our solution to the above is to augment the extension principles of ACL2 with
a new principle called encapsulation templates (or simply templates). Function
symbols introduced via templates are constrained functions analogous to those
introduced via the encapsulation principle, and the conservativity of the re-
sulting extension is analogously guaranteed by exhibiting local witnesses satis-
fying the constraints. However, there is one significant distinction between the
encapsulation principle and templates: the constraints introduced are marked
incomplete acknowledging that they might not encompass all the constraints
on the functions. ACL2 therefore must disallow any functional instantiation
that requires replacement of a function symbol introduced via templates.

With templates, we can integrate ACL2 with tools like SixthSense above.
Suppose that we wish to connect ACL2 with an unverified tool tool1 that
implements a theory not defined explicitly in ACL2. We then declare tool1
to be an unverified clause processor by providing (i) a template to introduce
the function symbols (say f and g) regarding which the theory of the clause
processor contains additional axioms, and (ii) stipulating that the supporters
of the clause processor include f and g.

We now explain the logical burden for the developer of such a connection.
Assume that an ACL2 theory T is extended by a template event E, and
suppose that the supporting events for tool1 mention some function introduced
by E. Then the developer of tool1 must guarantee that one can introduce f
and g via the encapsulation principle, which we will refer to as the “promised”
encapsulation EP of the functions, such that the conditions 1-4 below hold.
Note that the guarantee is obviously outside the purview of the mechanized
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reasoning system of ACL2; the obligations merely codify a set of sufficient
conditions under which it is logically sound to use tool1.

(1) The constraints in EP include the constraints in E.
(2) EP does not introduce any additional function symbols other than those

introduced by E.
(3) EP is admissible in theory T .
(4) Tool1 is correct when E is interpreted as EP , in the following sense.

Suppose tool1 is applied to a clause C to yield a list LC of clauses, and
at any such point, let T be the current ACL2 theory augmented with the
axioms introduced by EP . Then: if each clause in LC is a theorem of T ,
then C is a theorem of T .

Condition 2 is necessary to ensure that EP does not implicitly introduce ad-
ditional function symbols with constraints that might conflict with the later
axiomatization of these functions. The conditions above enable us to view any
template event as representing its promised encapsulation.

We note that the interface does not permit the introduction of a template
that is separated from the declaration of an unverified clause processor. One
might think that this is too restrictive and there is no harm in introducing
a template as a separate event, with the view that every theorem proven
with ACL2 (without a tool) for the introduced functions is valid for any ad-
missible promised encapsulation of the template. That is, if a tool is later
introduced supporting the template, such theorems would seem to be valid
for the promised encapsulation of the tool as well. However, we disallow this
possibility since it is possible to exploit such “dangling” templates to prove a
contradiction.

As a simple example, consider the following scenario which would be possible
without such a restriction. Suppose a tool developer develops a book book1

consisting of the following sequence:

Template.
Introduce f with no explicit constraint.

Template.
Introduce g with no explicit constraint.

Unverified Clause Processor.
Define a tool tool1 and add g as supporter, with promised encapsulation for g
providing the following constraint:
g(x) = f(x)

Now suppose a (possibly different) tool developer develops a book book2 con-
sisting of the following sequence:
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Template.
Introduce g with no explicit constraint.

Template.
Introduce f with no explicit constraint.

Unverified Clause Processor.
Define a tool tool2 and add f as supporter, with promised encapsulation for f
providing the following constraint:
f(x) = ¬g(x)

Thus, both book1 and book2 would be (independently) certifiable. Now imag-
ine an ACL2 session that first includes book1 and then book2. The inclusion
of book2 re-introduces the two template events, but since they are identical
to the corresponding template events in book1 we would not expect any com-
plaint from ACL2. However, one could presumably prove a contradiction in
this session using the conflicting promised encapsulations implemented by the
two tools.

We can view the above example from a logical perspective, as follows. The
logical foundation of ACL2 [13] associates each ACL2 session with a sequence
of formal events (a so-called chronology) that captures its logical content.
When a template is introduced together with a tool, that template can be
viewed logically as its promised encapsulation; then no further change to the
above association needs to be made. If however a template is separated from its
tool, the logical view is complicated significantly. Indeed, the example above
demonstrates that it is problematic to work out a logical view for templates
whose promised encapsulations are delayed; in essence, there is no chronology
associated with the above session.

We conclude our discussion of unverified external clause processors by saying
a bit more about their logical view. As suggested above, the correspondence
between ACL2 sessions and logical chronologies, as laid out in the treatment of
ACL2’s foundations, remains unchanged even for unverified external tools with
their own theories, by viewing such tools as their promised encapsulations. An
important part of the logical view is the justification of local events in a book,
since these are ignored when the book is included. Since the logical view
remains unchanged with unverified external tools, it would seem to be sound
for the ACL2 user to mark as local either the definition or use of such a tool,
and to mark as local the inclusion of a book that has such definitions or uses.
This soundness claim indeed holds if those external tools are correct, that is,
if each deduction they make is sound with respect to the ACL2 theory present
in which the deduction is made (see Condition 4 above). So, it is important to
have a way of tracking which tools we are trusting to be correct. In Section 4
we touched on how the trust tag mechanism can track the introduction, and
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hence the use, of unverified clause processors. This tracking must be done
(and is done) even through local events. But if all tracked external tools are
correct, then our logical view tells us that it is indeed sound to remove local
events. The use of trust tags when certifying and including books that contain
unverified external tools is a small price for the ACL2 user to pay, since the
use of local events is typically a key activity of ACL2 users.

6 Remarks on Implementation

Our presentation in the preceding three sections have primarily focused on
the different flavors of clause processors from the point of view of a user in-
terested in connecting ACL2 with other reasoning tools. In this section, we
discuss some aspects of our implementation of these connections. The details
of the various implementation considerations touched upon in this section are
specific to the ACL2 system. However, we believe that they provide a sense of
the issues involved in extending an industrial-strength theorem prover with a
non-trivial feature. Note that an understanding and appreciation of some of
the considerations discussed here will benefit from some exposure to the ACL2
theorem prover and perhaps some familiarity with ACL2’s design architecture.
The ACL2 user interested in further details is also encouraged to browse the
book books/clause-processors/basic-example.lisp in the ACL2 distri-
bution, which exercises several interesting corner cases of the implementation,
in particular demonstrating approximately 80 helpful error messages.

6.1 Basic Design Decisions

ACL2 is a complex system with many primitive types of event commands (be-
sides just definitions and theorems) and many implicit invariants. Augment-
ing such a system with a feature like an interface connecting external tools
requires strict adherence to good software engineering practice, and significant
care must be taken to ensure that the new feature does not interfere with the
existing features in a surprising way or break any of the design invariants. To
minimize complexity, both for the implementation and the user experience,
the design choices involved in the implementation of any new feature to the
theorem prover are based on the following two guiding principles:

• Implement the new feature by reusing as much of the existing features and
infrastructures as possible.

• Disallow complex corner cases that are unlikely to be experienced by the
user in a typical scenario, adding support for such cases in a demand-driven
fashion as a user encounters them in practice.
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We now discuss how the architecture and implementation of our interface are
affected by these two design principles.

First recall that the interface for invoking clause processors is implemented
as a new hint. Thus, one can invoke an external tool (verified or not) to sim-
plify any subgoal that arises during a proof search, possibly a goal generated
after several transformations to the user-supplied conjecture by the internal
reasoning strategies of ACL2. This is in contrast with the implementation of
similar features in HOL and Isabelle [41,42], where the connection is provided
by a special-purpose construct that “ships off” a user-supplied conjecture to
an external tool. Our choice is partially motivated to support the application
of external tools to simplify subgoals arising in proofs, but it also allows the
use of ACL2’s fairly mature hint mechanism to be reused to support the con-
nection. The hint mechanism enables the user to provide the theorem prover
with pragmatic advice on proof search. Hints can be used to force case splits,
add known facts as hypotheses, suggest the use of an appropriate induction,
and so on. In addition, ACL2 supports notions of default and computed hints,
which permit the user to write code that generate hints dynamically during
proof search, based on the shape of the current subgoal. The reuse of the hint
mechanism provides these sophisticated capabilities to the interface for free.

Now we turn to the implementation issues involved in designating a tool as
a clause processor. For verified clause processors, we reuse ACL2’s existing
rule class mechanism, which has traditionally been used to classify theorems
into categories such as rewrite rules, forward chaining rules, type prescription
rules, and so on, that enable the theorem prover to apply such theorems in
subsequent proofs. The new rule class designating clause processors thus fits
well into this framework. When a theorem is designated as a clause processor,
ACL2 associates a special property with the corresponding clause processor
function, to be checked when a clause processor hint is supplied later.

More interesting is the designation of a function as an unverified clause pro-
cessor, for which there is no associated theorem (or rule class) explicitly stated
or stored in the theorem prover’s database. In addition, recall that unverified
clause processors might be associated with their own implicit theories spec-
ified by templates. To support unverified clause processors we use another
general mechanism available in ACL2, called table events. A table is simply
a named finite function mapping keys to values, and table events support ta-
ble update, i.e., making a new key/value association. To support unverified
clause processors, we use a new built-in table (initially empty) that associates
the name of each unverified clause processor with a Boolean value indicating
whether it is associated with a template. A clause processor associated with a
template is referred to as a dependent clause processor. Support for dependent
clause processors, however, is tricky, principally because of the requirement of
atomicity. Recall from Section 5 that a template event must not be separated
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from its dependent clause processor. We now discuss the subtleties involved
in implementing this requirement.

To provide user-level support for atomicity, we design a macro that introduces
the template event together with the table event designating the dependent
clause processor. The subtlety, however, arises from the fact that the logical
requirement demands that we enforce the atomicity for these two events, not
merely support it. For instance, a naive implementation of the macro might
be one that expands into a sequence of events that successively introduces
the template and the table event. However, in ACL2 macros do not have any
semantic content, and the user can introduce these two components of the
sequence separately without using the macro.

To resolve the issue above, we note that a template is an encapsulation, and
thus contains a sequence of events. Our macro therefore inserts the table event
inside the corresponding template. However, this macro is merely syntactic
sugar. At a deeper level, ACL2 defines the notion of template (that is, de-
fines when the encapsulation introduces incomplete constraints) as follows:
an encapsulation is a template if and only if it constrains at least one new
function and also introduces an unverified clause processor. Thus, while fin-
ishing the admission of an encapsulation, the implementation checks (using
the new table) whether the encapsulation introduces at least one dependent
clause processor (that was not present before the encapsulation). If so, then the
newly-constrained functions are all marked as having incomplete constraints.

Finally, we consider one subtlety that arises as a result of the above “defini-
tion” of templates from the implementation perspective, namely the disam-
biguation of dependent clause processors in the context of nested encapsula-
tions. Note that the sequence of events introduced by an encapsulation can
include another encapsulation. Suppose that a clause processor, tool, is intro-
duced in the scope of two nested encapsulations, each of which introduces at
least one constrained function. Which of these two encapsulations should be
considered to be the promised encapsulation associated with that dependent
clause processor? Note that the implementor of tool needs an answer to this
question in order to meet the logical burden explained in the preceding section.

Our “solution” to the above dilemma is to simply disallow the scenario! We
have not found an application which provides any compelling ground to sup-
port such a situation, so the implementation simply causes an error in this
case. We postpone consideration of this complexity until a user provides a spe-
cific application where such functionality makes sense, thus providing guidance
for the design of the resulting extension.
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6.2 Miscellaneous Engineering Considerations

Our description above focuses on basic design decisions for the clause pro-
cessor interface in ACL2. We now mention briefly engineering considerations
involved in the implementation. These considerations are important both to
provide a pleasant user experience and to enforce critical logical requirements.
A comprehensive treatment of the numerous choices made in the implemen-
tation of the interface is beyond the scope of this paper; we merely list a few
illustrative issues to provide a flavor of the implementation complexity and
choices.

Support for user flexibility: In our description of the interface, we con-
fined ourselves to the simplistic view that a clause processor takes a clause
and returns a list of clauses. The implementation, however, supports a more
general notion of a clause processor. In particular, the implementation per-
mits a clause processor to return multiple values, where the first value is an
error flag and the second is the clause list of interest. If the application of a
clause processor during a proof search causes the error flag to be set then
the proof aborts. The implementation allows the error flag to be a string or
a formatted string (a list with arguments for formatted output directives),
which is printed when a proof aborts. The designer of a connection of ACL2
with a specific external tool can therefore use the flag to output a helpful
error message. Note that the form of the theorem installing a verified clause
processor is suitably adjusted for tools returning multiple values so that
the proof obligations are trivial in the case that the tool returns an error.
Finally, we note that when a clause-processor hint returns, without error,
the one-element list containing the given clause, then the hint is considered
a no-op and the proof continues.

Implementing execution support: Note that a tool introduced as a clause
processor is a function introduced in ACL2. But a clause processor func-
tion requires further restrictions on how it can be introduced. The reason
is that a clause processor function is executed on the ACL2 subgoal on
which it is invoked; however, some functions introduced in ACL2 via the
extension principles cannot be executed, in particular those introduced as
constrained functions via encapsulation. We therefore check that a function
designated to be a clause processor is executable. Furthermore, to enable
efficient execution, we check that (i) the guard (input constraint) on a veri-
fied clause processor is trivially implied by the assumption that it is given a
clause, 10 and (ii) the result of invoking a clause processor is a well-formed
list of clauses. The latter is dynamically checked during the invocation of
the clause processor.

10 We also make appropriate guard checks in the presence of single-threaded objects.
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Syntactic Checks and Error Messages from the Interface: One of the
acclaimed strengths of the ACL2 system is the detailed feedback provided
by the theorem prover in an aborted proof attempt. Such feedback is essen-
tial in the applicability of a general-purpose theorem prover in large-scale
verification projects. We incorporate several syntactic checks with the in-
terface, whose violation produces helpful feedback in the form of error mes-
sages. These include checking that (i) the supporters field contains a list of
function symbols which have been introduced in the current theory, (ii) a
template event introduces at least one new function, and (iii) the theorem
installing a verified clause processor uses distinct variables for the clause
and the alist arguments.

Checks in Functional Instantiation: Recall from Section 5 that due to
soundness concerns, functions introduced via templates cannot be function-
ally instantiated. The implementation enforces such restrictions, as we now
explain. Functional instantiation applies a given functional substitution to
a previously proved theorem; but it requires that upon applying the substi-
tution to the constraints on functions in its domain, the resulting formulas
are all theorems. So, we need to be able to collect those constraints. During
the use of functional instantiation we therefore cause an error if (i) there is a
partially constrained function in the domain of the given functional substi-
tution, or (ii) a partially constrained function makes it impossible to collect
all the requisite constraints. How might the latter be possible? Consider for
example introducing a formula ϕ as an axiom via the defaxiom principle.
Suppose ϕ is allowed to mention a partially constrained function f . Since
the set of constraints explicitly specified for f is incomplete, we cannot de-
termine if the unspecified constraints involve a function g in the domain of
the given functional substitution, whose constraints must be considered as
mentioned above. Hence we do not allow a partially constrained function to
support a defaxiom event.

Signature Checking in Templates: A template with an unverified tool is
implemented with an encapsulation together with a table event designating
the requisite clause processor. ACL2’s encapsulation syntax includes a sig-
nature that specifies the set of functions being introduced by encapsulation,
but as a convenience to the user, ACL2 also allows additional functions to be
defined non-locally in an encapsulation. When this is done, ACL2 attempts
to “move” such definitions outside the encapsulation, introducing them be-
fore or after the introduction of the functions designated by the signature
in the encapsulation itself. If ACL2 fails to move such a definition then the
function is introduced in the encapsulation with its definitional equation
stipulated as a constraint. However, for encapsulations designated as tem-
plates, it is unclear whether the promised encapsulation intended by the
tool implementor involves constraining such non-locally defined functions
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or not; so we require that each function introduced by a template must be
explicitly documented in the signature of the template event.

Concerns with flattening encapsulations: ACL2 has a command called
:puff that replaces an encapsulation event with the events introduced in
the encapsulation. However, recall that template events must atomically
introduce both the partially constrained functions and the dependent clause
processor. To enforce this, the implementation of :puff is modified to have
no effect on encapsulations introducing clause processors. Note, however,
that it is possible to “fool” :puff into destroying this atomicity when the
template is introduced manually rather than via the user-level macro for
dependent clause processors mentioned above. Fortunately, the use of :puff
leaves a mark on the resulting ACL2 session to indicate that the proofs done
in the session cannot be trusted; :puff is used only for “hacking” during
interactive proof development. This restriction on :puff is thus merely to
support a reasonable hacking experience.

We conclude the discussion of the implementation with a brief remark on its
impact. As the different concerns above illustrate, developing a sound interface
for connecting a mature theorem prover like ACL2 with other tools requires
significant attention to the interplay of the interface with features already
existing in the system. It can therefore be dangerous (and potentially unsound)
to embark on such a connection by modifying the source code of the theorem
prover without adequate understanding of the relevant subtleties. This in turn
underlines the significance of providing a disciplined mechanism that enables
the user to build such connections without the overhead of acquiring a deep
understanding of the internals of the theorem prover’s source code and subtle
logical issues. However, prior to the development of the interface described
here, an ACL2 user endeavoring to use external tools in proofs was left with
no choice but to hack the internals of the system. With the new feature, a user
now has the ability to integrate ACL2 smoothly with other tools by employing
the user-level mechanisms provided by the interface.

7 Related Work

The importance of providing means for connecting with external tools has
been widely recognized in the theorem proving community. Some early ideas
for connecting different theorem provers are discussed in a proposal for so-
called “interface logics” [43], with the goal to connect automated reasoning
tools by defining a single logic L such that the logics of the individual tools
can be viewed as sub-logics of L. More recently, with the success of model
checkers and Boolean satisfiability solvers, there has been significant work
connecting such tools with interactive theorem provers. The PVS theorem
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prover provides connections with several decision procedures such as model
checkers and SAT solvers [44,45]. The Isabelle theorem prover [24] uses un-
verified external tools as oracles for checking formulas as theorems during
a proof search; this mechanism has been used to integrate model checkers
and arithmetic decision procedures with Isabelle [42,46]. Oracles are also used
in the HOL family of higher order logic theorem provers [23]; for instance,
the PROSPER project [47] uses the HOL98 theorem prover as a uniform and
logically-based coordination mechanism between several verification tools. The
most recent incarnation of this family of theorem provers, HOL4, uses an ex-
ternal oracle interface to decide large Boolean formulas through connections
to state-of-the-art BDD and SAT-solving libraries [48], and also uses that or-
acle interface to connect HOL4 with ACL2 as mentioned in the next section.
Meng and Paulson [49] interface Isabelle with a resolution theorem prover.

The primary basis for interfacing external tools with theorem provers for
higher-order logic (specifically HOL and Isabelle) involves the concept of “the-
orem tagging”, introduced by Gunter for HOL90 [41]. The idea is to introduce
a tag in the logic for each oracle and view a theorem certified by the oracle
as an implication with the tag corresponding to the certifying oracle as a hy-
pothesis. This approach enables tracking of dependencies on unverified tools
at the level of individual theorems. In contrast, our approach is designed to
track such dependencies at the level of files, that is, ACL2 books. Our coarser
level of tracking is at first glance unfortunate: if a book contains some events
that depend on such tools and others that do not, then the entire book is
“tainted” in the sense that its certification requires an appropriate acknowl-
edgement for the tools. We believe that this issue is not significant in practice,
as ACL2 users typically find it easy to move events between books. On the
positive side, it is simpler to track a single event introducing an external tool
rather than the uses of such an event, especially since hints are ignored when
including previously certified books.

There has also been work on using an external tool to search for a proof that
can then be checked by the theorem prover without assistance from the tool.
Hurd [50] describes such an interface connecting HOL with first-order logic.
McCune and Shumsky [51] present a system called Ivy which uses Otter to
search for first-order proofs of equational theories and then invokes ACL2 to
check such proof objects.

Finally, as mentioned in Section 4, several ACL2 users have integrated external
tools with ACL2, albeit requiring implementation hacks on the ACL2 source
code. Ray, Matthews, and Tuttle integrate ACL2 with SMV [29]. Reeber and
Hunt connect ACL2 with the Zchaff satisfiability solver [30], and Sawada and
Reeber provide a connection with SixthSense [39]. Manolios and Srinivasan
connect ACL2 with UCLID [31,32].
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8 Conclusion and Future Work

Different deduction tools bring different capabilities to formal verification. A
strength of general purpose theorem provers compared to many tools based
on decision procedures is in the expressive power of the logic, which enables
succinct definitions. But tools based on decision procedures, when applica-
ble, typically provide more automated proof procedures than general purpose
provers. Several ACL2 users have requested ways to connect ACL2 with auto-
mated decision procedures. The mechanisms described in this paper support
a disciplined approach for using ACL2 with other tools, with a clear spec-
ification of the expectations from the tool in order to maintain soundness.
Furthermore, the design of verified clause processors allows the user to control
a proof through means other than ACL2’s heuristics.

We have presented an interface for connecting ACL2 with external deduction
tools, but we have merely scratched the surface. It is well-known that develop-
ing an effective interface between two or more deduction tools is a complicated
exercise [52]. Preliminary experiments with our interface have been promising,
and we expect that ACL2 users will find many ways to decompose problems
that take advantage of the new interface, in effect creating new tools that are
stronger than their components.

Our interface may perhaps be criticized on the grounds that developing a con-
nection with an external tool requires knowledge of ACL2. But a connection
between different formal tools must involve a connection between two logics,
and the developer of such a connection must have a thorough understanding of
both the logics, including the legal syntax of terms, the axioms, and the rules
of inference. Note that the logic of ACL2 is more complex than many others,
principally because it offers proof structuring mechanisms by enabling the user
to mark events as local. This complexity manifests itself in the interface; the
interface requires constructs such as supporters essentially to enable tool devel-
opers to provide logical guarantees in the presence of local events. However, we
believe that these constructs make it possible to implement connections with
ACL2 without unreasonable demands on understanding the theorem prover
implementation or esoteric aspects of the ACL2 logic.

Finally, the restrictions for the tool developers that we have outlined in this
paper preclude certain external deduction tools. For instance, there has been
recent work connecting HOL with ACL2 [53], enabling a HOL user to make
use of ACL2’s proof automation and fast execution capabilities. It might be
of interest to the ACL2 user to take advantage of HOL’s expressive power
as well. However, HOL cannot be connected using our interface in a way in
which the obligations outlined for the developer of the connection can be met.
To understand why, note that the obligations ensure that the theory used
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by the external tool could in principle be formalized in ACL2. For instance,
if template events are used to connect ACL2 with a tool whose theory is
incompletely formalized, the burden is on the developer of the connection to
guarantee that every theorem proven by the tool is a theorem of the theory
obtained by replacing the template with its promised encapsulation. Since
the logic of ACL2 is first order, this requirement rules out connections with
logics stronger than first order logic. We are working on extending the logical
foundations of ACL2 to facilitate such a connection. The key idea is that the
ACL2 theorem prover might be viewed as a theorem prover for the HOL logic.
If the view is viable then it will be possible for the user of ACL2 to prove some
formulas in HOL and use them in an ACL2 session, claiming that the session
essentially reflects a HOL session mirrored in ACL2.
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