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Abstract We present a case study illustrating how to exploit the expressive power of

higher-order logic to complete a proof whose main lemma is already proved in a first-

order theorem prover. Our proof exploits a link between the HOL4 and ACL2 proof

systems to show correctness of a cone of influence reduction algorithm, implemented

in ACL2, with respect to the classical semantics of linear temporal logic, formalized in

HOL4.
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1 Introduction

We present a case study demonstrating the cooperative application of two interactive

theorem provers, HOL4 [18,21] and ACL2 [15,14,11,10]. The linkage of different proof

tools can benefit large-scale proof projects, because such tools often have complemen-

tary strengths and largely disjoint user communities. In our study, the main theorem

is proved by reusing proof components from an existing ACL2 proof while exploiting

the expressive logic of HOL4 to handle some key concepts that were problematic for

ACL2’s first order logic.

Our case study is the proof of correctness of cone of influence reduction. Cone of

influence reduction, also referred to as slicing [7] or localization reduction [16], is a

fundamental simplification technique employed in model checking [1]. Consider the use

of model checking to determine if a design model (or Kripke structure) M satisfies
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a temporal logic formula ϕ. Then roughly, cone of influence reduction constructs an

abstraction M′ of M by getting rid of state variables that are irrelevant to ϕ. Given

the semantics of the temporal logic in which ϕ is specified, the correctness statement of

cone of influence reduction is thatM′ satisfies ϕ if and only if M does so as well. Our

work is a mechanically checked formalization of this statement where ϕ is a formula in

a Linear Temporal Logic (LTL). A key aspect of the proof is the combination of formal

tools employed: the semantics of LTL are formalized in higher-order logic (HOL) [4];

the cone of influence reduction algorithm is implemented in the logic of the ACL2

theorem prover [15,14,11,10]; and the proof is completed in the HOL4 theorem prover

using a main lemma proved with ACL2 and exported to HOL4, using a previously

developed generic link between the two theorem provers.

Ray, Matthews, and Tuttle [19] carried out a formalization and verification of the

cone of influence reduction algorithm in ACL2, as part of a project to develop high-

assurance reduction algorithms for LTL model checking. The reduction algorithms were

intended to be efficiently executable on concrete design models in addition to being

formally verified. ACL2 was used in the project to exploit its strong support for ef-

ficient executability of formal definitions. However, the restricted expressive power of

ACL2 injected significant complexity into the proof. In particular, the logic of ACL2

is a first-order logic of finite objects, but the standard semantics of LTL involve quan-

tification over infinite paths of execution. Consequently, the ACL2 formulation of LTL

semantics had to “cheat” by considering only finitely represented execution paths that

are eventually periodic, i.e., consist of an initial prefix followed by a cycle which is

repeated forever. The equivalence between the standard semantics and the semantics

based on eventually periodic paths is a classical result on LTL. Nevertheless, the use of

eventually periodic paths in the formalization is unsatisfying for two reasons. First, it

is a nonstandard formalization of LTL, and indeed the proof connecting this formaliza-

tion with the standard LTL semantics is non-trivial (albeit well-known). Secondly, and

perhaps more importantly, the use of eventually periodic paths significantly compli-

cates the proofs of reduction algorithms. The standard proof of correctness of the cone

of influence reduction algorithm proceeds by showing the following two propositions:

1. The reduced model M′ is bisimilar to the original model M.

2. If two models M and M′ are bisimilar then M satisfies an LTL formula ϕ if and

only if M′ does as well.

The use of eventually periodic paths significantly complicates the proof of Proposition 2

which connects the notion of bisimulation of models with the semantics of LTL.

On the other hand, higher-order logic is well-suited to formalizing the standard

semantics of LTL and carrying out the proof of Proposition 2. The connection between

ACL2 and HOL permits the verification of the executable ACL2 definition of the

algorithm based on the semantics defined in HOL, exploiting the existing ACL2 proof

of Proposition 1 with a standard proof of Proposition 2 formalized in HOL4. The result

thus demonstrates how a combination of different general-purpose theorem proving

systems with complementary strengths can be gainfully used to derive an interesting

formal proof.

The remainder of the paper is organized as follows. Section 2 begins with brief

background on the ACL2 and HOL4 logics and systems, and on the link connecting

them. Then Section 3 formalizes the main result, followed by an outline of the proof

using the ACL2/HOL4 link in Section 4. We conclude with Section 5.
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2 Background: ACL2, HOL4, and Their Connection

The ACL2 logic [12,13] is a first-order logic with built-in data types and axioms for

numbers, characters, strings, symbols, and finite trees built from the cons constructor.

The logic provides extension principles to extend a theory with new first-order axioms.

The extension principles include (1) a definitional principle for introducing (recursive)

total functions, (2) an encapsulation principle for introducing partially defined (or con-

strained) functions, and (3) a defchoose principle for introducing Skolem functions. The

application of each extension principle generates proof obligations: for example, intro-

ducing a new recursive definition requires a proof that the recursion terminates. The

proof obligations guarantee that the extended theory provides a conservative extension

of the current theory.

The ACL2 system supports a syntax of terms, which however can be interpreted as

formulas: when a term τ is used where a formula is expected, it stands for the formula

(τ 6= NIL), where the term NIL represents Boolean falsity. Thus, a term is considered

to be a theorem if it is provably not NIL. We freely use NIL both in our ACL2 models

and theorems to model Boolean falsity; following standard convention, we also use the

symbol T to represent Boolean truth.

The Compactness Theorem of first-order logic provides nonstandard models of arith-

metic, and hence of the ACL2 logic. (See any textbook on first-order logic, for instance

Shoenfield [20], for an exposition of the Compactness Theorem.) We are interested in

models whose universe is the standard universe, containing roughly those objects on

which one can actually compute in the ACL2 system (and which thus excludes, among

other objects, nonstandard integers).1 By the Soundness Theorem of first-order logic,

all theorems are true in the standard model of the current set of definitions.

The HOL4 system is an LCF-style implementation of a version of higher-order

logic based on Church’s simply typed lambda calculus augmented with with Hindley-

Milner polymorphism [5]. It is sufficiently powerful to allow function definitions through

recursion, analogous to the way that is allowed by ACL2.

The specifications and proofs shown in this paper make use of a previously es-

tablished link between ACL2 and HOL4 [2,3]. The link is implemented by treating

ACL2 as a trusted external oracle of HOL4. Logically, a theorem proved by ACL2

is treated as a theorem about the HOL datatype sexp shown below, which provides

a model of the standard ACL2 universe. The definition uses previously defined HOL

types packagename, name, string, char and complex rational.

sexp = ACL2_SYMBOL of packagename => name

| ACL2_STRING of string

| ACL2_CHARACTER of char

| ACL2_NUMBER of complex_rational

| ACL2_PAIR of sexp => sexp

Each constructor introduced above returns an object of type sexp, with argument

types as indicated after the keyword “of”. For example, ACL2 SYMBOL is a (curried)

constructor of type packagename -> name -> sexp. When function symbols of ACL2

are translated into HOL4, the resulting function symbols are curried, and all domain

1 We say “roughly” since the model being referred to here contains certain objects formed
by applying the free constructor for symbols to inappropriate arguments. These objects are
referred to as bad atoms in ACL2, and cannot be used in computation. The reason for the
standard model to include the bad atoms is technical and not relevant to this exposition.
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and range types are sexp. Names are modified as necessary; for example, the hyphen

character (-) — which is illegal in HOL4 identifier names — is replaced by underscore

( ) , and > is replaced by greater. The logical soundness of the link above is based on

the observation that any theorem proved in an ACL2 theory T holds in the standard

model of T , and hence in the HOL theory obtained by extending sexp with the (suitably

translated) definitions from T . The link operates by mechanically importing into HOL

both built-in ACL2 axioms and user-supplied definitions and theorems, tagging each

using HOL’s oracle mechanism.

We end this section with a brief note on our notational conventions. Note that the

formalization and proof discussed here involve two theorem provers with very different

formula syntax: the syntax of ACL2 is essentially that of Lisp while HOL uses a higher-

order ML-like syntax. Since our goal is to explain how the two systems work together,

we adhere to the formal syntax of each system as much as possible in the presentation.

In particular, we display ACL2 formulas in the concrete formal syntax, accompanied by

paraphrasing and explanatory notes whenever appropriate. The presentation of HOL

formulas employs the formal syntax of HOL4, but the formulas are lightly edited to im-

prove readability (e.g., by replacing the HOL logical symbols “|=”, “!”, “?”, “\”, “/\”,

“\/”, “==>”, “~” by more standard notations “|=”, “∀”, “∃”, “λ”, “∧”, “∨”, “⇒”, “¬”,

respectively). Our full formalization is publicly available in the HOL repository [18]

in the directory examples/acl2/examples/acl2-hol-ltl-paper-example/, and on the

Web.2 Theorems proved with ACL2 are shown with ACL2’s defthm command; thus if

foo is the name of the theorem that proves the formula τ , we will display it as follows.

(defthm foo

τ)

We will subsequently refer to the theorem with the name foo. Correspondingly, in this

paper we attach names to theorems proved in HOL4, as follows:

Theorem foo

τ

We take the liberty of using theorem names in the paper that sometimes differ from

the names in the proof scripts. In some cases, when we do not need to refer later by

name to the formula τ , we only display the formula without labeling it with a theorem

name. We ignore directives to both theorem provers (tactics, hints, rule classes, etc.),

unless they are relevant for pedagogical purposes.

3 Problem formalization

We start by providing an informal overview of the concepts involved in the definition of

cone of influence reduction. These concepts are formalized in ACL2 and are described

more thoroughly in the previous paper by Ray, Matthews, and Tuttle [19]. In the

descriptions below, we think of the variables as state elements of a circuit. If VC is

the set of variables of a circuit C, then a state of C is a mapping that associates each

variable in VC with a member of the set {T, NIL}.

– A circuit C is a data structure containing three fields: (1) a list VC of variables, (2) a

mapping associating each variable v ∈ VC with a next-state equation, and (3) a set

2 See URL http://hol.svn.sourceforge.net/viewvc/hol/HOL/examples/acl2/examples/
acl2-hol-ltl-paper-example/.



5

of states of C, called initial states. The next-state equation for v is a term which

defines the value of v after one transition of the circuit in terms of the values of the

variables in VC in the current state. We define a predicate circuitp in ACL2, such

that (circuitp C) returns T if and only if C is a syntactically well-formed circuit,

and NIL otherwise.

– The Kripke structure for a circuit C is a Kripke structure with the same set of

initial states as C, and whose transition relation is constructed in a straightfor-

ward manner from the next-state equations of C. In ACL2, we define a predicate

circuit-modelp to recognize well-formed Kripke structures, and a transformation

function create-kripke to transform a circuit into a Kripke structure.

– Let C be a circuit and V be a set of variables. Let V ′ , V ∩ VC . Then the

cone variables of C with respect to V is the least set Vf such that (1) V ′ ⊆ Vf ,

(2) Vf ⊆ VC , and (3) for each variable in Vf , all variables occurring in its associated

equation are elements of Vf . Given a circuit C and a list of variables vars, the

function cone-vars takes a circuit C and a set of variables V , and returns the cone

variables of C with respect to V .

– By cone of influence reduction of a circuit C with respect to a set V of variables, we

mean the following operation. First, obtain the cone variables Vf of C with respect

to V . Then restrict each initial state of C to the variables in Vf , and restrict the

equations of C to those defining a value for a variable in Vf . The circuit obtained by

cone of influence reduction is called the reduction of C with V . The ACL2 function

cone-of-influence-reduction takes a circuit C and a set V of variables, and

generates the reduction of C with V .

We now sketch some of the HOL definitions necessary to state the correctness the-

orem for cone of influence reduction. First, we define a datatype for LTL formulas and

translate the ACL2 definition of a Kripke structure into a definition suited naturally

to higher-order logic. Below, the function denoted by |= is used to map objects of

type sexp to HOL Booleans: for an element x of sexp, |= x holds if x is not NIL.3

The recursive definition of the HOL logic datatype formula is shown below. This cre-

ates a type (’prop)formula that is parameterized on a type variable ’prop that can

be instantiated to particular types of atomic propositions (it will be instantiated to

sexp).

formula = TRUE

| FALSE

| ATOMIC of 'prop
| NOT of formula

| AND of formula => formula

| OR of formula => formula

| SOMETIMES of formula

| ALWAYS of formula

| NEXT of formula

| UNTIL of formula => formula

| WEAK_UNTIL of formula => formula

A key component in the formulation of the correctness theorem for cone of influ-

ence reduction is the definition of LTL semantics, which is formalized in HOL. The

3 Here, by NIL we mean the element of the sexp datatype corresponding to the ACL2 object,
NIL.
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definition of LTL semantics is specified in terms of paths through a Kripke struc-

ture. Kripke structures are represented in the HOL logic as polymorphic terms of

type (’prop,’state)model, where the type variables ’prop and ’state can be in-

stantiated to specific types for particular applications (for our application they are

both instantiated to sexp — see the definition of HOL MODEL below). Values of type

(’prop,’state)model are records with fields S (states), S0 (initial states), R (transi-

tion relation) and L (state labelling function). The HOL4 syntax for the definition of

the type model of Kripke structures is shown below.

model =

<| S: 'state set;

S0:'state set ;

R: ('state # 'state) set;

L: 'state -> 'prop set

|>

If M is a term with type (’prop,’state)model then M.S, M.S0, M.R, M.L are terms

denoting the corresponding components; they have the types shown in the definition

of model, e.g. M.S has type ’state set, which represents a set of states, where sets

are represented by their characteristic functions. We require a model M to satisfy two

properties: the set of initial states is a subset of the set of all states (M.S0 SUBSET M.S

in HOL notation), and if s is a state in M.S and s’ is a successor state according to the

transition relation M.R, then s’ is also in M.S. These two requirements are represented

by a predicate MODEL defined by:

MODEL M ⇔
M.S0 SUBSET M.S ∧ ∀s s'. s IN M.S ∧ (s,s') IN M.R ⇒ s' IN M.S

The function HOL MODEL below maps an ACL2 representation of a Kripke structure

to a HOL Kripke structure. In HOL, a term <| S:= t1; S0 := t2; R := t3; L := t4 |> con-

structs a record value whose components are specified by the terms t1, t2, t3 and t4. The

type of HOL MODEL (as inferred by the HOL typechecker) is sexp->(sexp,sexp)model.

The function ksym maps a string to a keyword of that name (i.e., an object of type

sexp representing a symbol in the "KEYWORD" package), and the function g (“get”) is

defined by importing function g from ACL2, defined to return the binding of a key in

a finite mapping.

HOL_MODEL sexp_model =

<| S := λs. |= memberp s (g (ksym "STATES") sexp_model);

S0 := λs. |= memberp s (g (ksym "INITIAL-STATES") sexp_model);

R := λ(p,q). |= (next_statep p q sexp_model);

L := λs a. |= memberp a (label_of s sexp_model)

|>

Recall that the ACL2 function create-kripke translates a circuit description to a

Kripke structure (in ACL2). This function is translated through the ACL2/HOL inter-

face to the HOL function create kripke of type sexp -> sexp. An sexp-representation

of a Kripke structure in HOL can then be converted to a HOL Kripke structure using

HOL MODEL. The composition of these functions (one imported from ACL2, one defined

directly in HOL) is defined to be CIRC TO MODEL:

CIRC_TO_MODEL C = HOL_MODEL (create_kripke C)
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(SEM M p TRUE = T)
∧
(SEM M p FALSE = F)
∧
(SEM M p (ATOMIC a) = M.L (p 0) a)
∧
(SEM M p (NOT f) = ¬(SEM M p f))
∧
(SEM M p (AND f1 f2) = SEM M p f1 ∧ SEM M p f2)
∧
(SEM M p (OR f1 f2) = SEM M p f1 ∨ SEM M p f2)
∧
(SEM M p (SOMETIMES f) = ∃i. SEM M (SUFFIX p i) f)
∧
(SEM M p (ALWAYS f) = ∀i. SEM M (SUFFIX p i) f)
∧
(SEM M p (NEXT f) = SEM M (SUFFIX p 1) f)
∧
(SEM M p (UNTIL f1 f2) =

∃i. SEM M (SUFFIX p i) f2 ∧ ∀j. j < i ⇒ SEM M (SUFFIX p j) f1)
∧
(SEM M p (WEAK_UNTIL f1 f2) =

(∃i. SEM M (SUFFIX p i) f2 ∧ ∀j. j < i ⇒ SEM M (SUFFIX p j) f1)
∨
∀i. SEM M (SUFFIX p i) f1)

Fig. 1 HOL formalization of the semantics of LTL.

We now discuss the HOL formalization of the LTL semantics. For this, we need two

notions, e.g., (1) path through a Kripke structure, and (2) suffix of a path. These two

definitions are shown below. The path through a Kripke structure M is simply modeled

as a function defined on the natural numbers that respects the next-state relation of

M . The predicate PATH tests that a path function p is a path starting from state s in

a model M and for a general Kripke structure model has the rather complicated type:

(’prop,’state)model -> ’state -> (num -> ’state) -> bool.

PATH M s p = (p 0 = s) ∧ ∀i. M.R(p(i),p(i+1))

SUFFIX p i = λj. p(i+j)

The truth function SEM for a given model M and path p is shown in Fig. 1 and has the

type: (’prop,’state)model -> (num -> ’state) -> ’prop formula -> bool. The re-

cursive definition is by cases on LTL formulas and is very similar to standard textbook

definitions [1,9]. The corresponding notion SAT, that quantifies over all paths starting

from initial states, has the type: (’prop,’state)model -> ’prop formula -> bool.

SAT M f = ∀p. (p 0) IN M.S0 ∧ PATH M (p 0) p ⇒ SEM M p f

We now state our main theorem, which asserts that for a formula f using at most a

set FVars of variables contained in the cone of influence of a set Vars of variables, the

satisfaction (SAT) of that formula at any path is preserved under the cone of influence

reduction with respect to Vars.
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Theorem correctness-of-reduction

∀C Vars FVars.

(|= circuitp C) ∧
(|= subset FVars (cone_variables Vars C))

⇒
∀f. (Atoms f) SUBSET (SexpToSet FVars)

⇒
(SAT (CIRC_TO_MODEL C) f =

SAT (CIRC_TO_MODEL

(cone_of_influence_reduction C Vars))

f)

Here, circuitp, cone variables, and cone of influence reduction are first-order

functions on the type sexp; their definitions are imported from the corresponding

ACL2 functions. The HOL function Atoms is a straightforward recursive function that

extracts the set of variables in an LTL formula (represented in sexp). The function

SexpToSet maps an ACL2 list (represented in sexp) to a Boolean-valued function

returning T exactly on members of that list. The functions subset and SUBSET are,

respectively, the subset relation on lists in ACL2 (represented in sexp) and the subset

relation in HOL.

4 The Proof

Our goal is to do the proof in two parts, which correspond to the two propositions

discussed in Section 1.

1. Cone of influence reduction preserves bisimulation equivalence.

2. Bisimulation equivalence preserves LTL semantics.

Furthermore, we want the generic properties of bisimulation equivalence and LTL se-

mantics that involve reasoning about infinite sequences to be handled by the HOL

formalization, and discharge other properties (e.g., properties of cone of influence re-

duction algorithm, circuits and corresponding Kripke structure models, etc.) by reusing

the theorems already proven with ACL2. In this section, we explain how we achieve

these objectives.

The formal rendition in HOL of the two parts above is given by the two lemmas

shown in Fig. 2. We first discuss how to derive Theorem correctness-of-reduction

from these two lemmas. We will then discuss the proofs of these lemmas.

By a bit of set-theoretic reasoning, Theorem correctness-of-reduction follows

from Theorem correctness-simplified below.

Theorem correctness-simplified

∀C Vars.

(|= circuitp C)

⇒
∀f. (Atoms f) SUBSET (SexpToSet (cone_variables Vars C))

⇒
(SAT (CIRC_TO_MODEL C) f =

SAT (CIRC_TO_MODEL

(cone_of_influence_reduction C Vars)) f)
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Theorem cone-bisim

∀C Vars.
(|= circuitp C)
⇒
BISIM_EQ (CIRC_TO_MODEL C)

(CIRC_TO_MODEL (cone_of_influence_reduction C Vars))
(SexpToSet (cone_variables Vars C))

Theorem bisim-sufficient

∀M M' Vars.
MODEL M ∧ MODEL M' ∧ BISIM_EQ M M' Vars
⇒
∀f. (Atoms f SUBSET Vars) ⇒ (SAT M f = SAT M' f)

Fig. 2 Key lemmas for proving correctness of cone of influence reduction. Theorem cone-bisim
says that cone of influence reduction produces a model that is bisimulation equivalent to
the original, and Theorem bisim-sufficient says that bisimulation equivalence suffices for
concluding preservation of LTL semantics.

(defthm create-kripke-produces-circuit-model
(implies (circuitp C)

(circuit-modelp (create-kripke C))))
(defthm cone-of-influence-reduction-is-circuit-p

(implies (circuitp C)
(circuitp (cone-of-influence-reduction C vars))))

Fig. 3 Some theorems about circuitp, create-kripke, and cone-of-influence-reduction.
These theorems are proven in ACL2 and imported to HOL4.

How do we prove Theorem correctness-simplified? Consider the following in-

stance of Theorem bisim-sufficient.

M 7→ CIRC_TO_MODEL C

M' 7→ CIRC_TO_MODEL (cone_of_influence_reduction C Vars)

Vars 7→ SexpToSet (cone_variables Vars C)

Theorem correctness-simplified follows from Theorem cone-bisim together with

the above instance of Theorem bisim-sufficient, provided we can discharge the fol-

lowing obligations from the latter’s hypothesis:

1. MODEL (CIRC_TO_MODEL C)

2. MODEL (CIRC_TO_MODEL (cone_of_influence_reduction C vars))

Note that the obligations 1 and 2 are, respectively, properties of the transformation

function from circuits to Kripke structures, and the cone of influence reduction algo-

rithm. These properties are already available as the ACL2 theorems shown in Fig. 3,

which are imported to HOL4 to complete the proof.

We now turn to the two main lemmas, cone-bisim and bisim-sufficient. Theo-

rem bisim-sufficient is the property that relates bisimulation equivalence with the

semantics of LTL and is proven entirely in HOL4. Recall that the analogue of this
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property given the nonstandard formalization of LTL semantics was the key source of

complexity in the previous ACL2 proof of correctness of cone of influence reduction.

On the other hand, the HOL4 proof is a straightforward induction, formalizing the

standard textbook proof [1, §13]. The drastic reduction in complexity underlines the

importance of employing a reasoning tool with the right expressive power to enable a

natural formalization of the concepts involved in a verification project.

It remains to describe the proof of cone-bisim. This theorem is an interesting

demonstration of the importance of transferring concepts smoothly between different

reasoning tools involved in a verification. In particular, the predicate BISIM EQ is a

binary relation defined in HOL4, formalizing bisimulation equivalence. On the other

hand, in ACL2 we formalize a specific bisimulation relation c-bisim-equiv, and show

that (1) it is a bisimulation relation (Fig 4), and (2) if C is a circuit and C′ is the

circuit generated by cone of influence reduction of C, then the Kripke structures gen-

erated from C and C′ are related by c-bisim-equiv (Fig. 5). The proof of Theorem

cone-bisim involves stitching together these pieces.

To prove cone-bisim, assume (|= circuitp C), so that by expanding the definition

of CIRC TO MODEL, our goal is to prove the following formula.

BISIM_EQ (HOL_MODEL (create_kripke C))

(HOL_MODEL

(create_kripke

(cone_of_influence_reduction C Vars)))

(SexpToSet (cone_variables Vars C))

To discharge this goal, we use Theorem Hol-bisim-eq shown in Fig. 6. We will re-

turn to the proof of this theorem presently. For now, note that our goal follows from

Hol-bisim-eq using the following instantiation, provided we can discharge the instan-

tiated hypotheses.

m1 7→ create_kripke C

m2 7→ create_kripke (cone_of_influence_reduction C Vars)

Vars 7→ cone_variables Vars C

To finish the job, we need to discharge the following obligations (correspond-

ing to the instantiated hypotheses of Theorem Hol-bisim-eq), from the assumption

(|= circuitp C).

1. circuit_modelp (create_kripke C)

2. circuit_modelp (create_kripke

(cone_of_influence_reduction C Vars))

3. c_bisim_equiv (create_kripke C)

(create_kripke

(cone_of_influence_reduction C Vars))

(cone_variables Vars C)

These obligations follow from the ACL2 theorems proven already (and imported to

HOL): the first two follow from the theorems in Fig. 3, and the third from the key

property of cone of influence reduction in Fig. 5.

Finally, Theorem Hol-bisim-eq is also an immediate consequence the ACL2 lem-

mas imported into HOL4! Fig. 7 includes the HOL4 proof; the reader is encouraged to

skim this only lightly. Notice that we achieve significant automation through extensive

use of the tactic METIS TAC, which employs a resolution prover interface to HOL4 de-

veloped by Hurd [8]. The relevant ACL2 lemmas include properties of the bisimulation
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(defthm c-bisimilar-witness-member-of-states-m->n
(implies (and (circuit-bisim p m q n vars)

(next-statep p r m)
(memberp r (states m)))

(memberp
(c-bisimilar-transition-witness-m->n p r m q n vars)
(states n))))

(defthm c-bisimilar-witness-matches-transition-m->n
(implies (and (circuit-bisim p m q n vars)

(next-statep p r m))
(next-statep

q
(c-bisimilar-transition-witness-m->n p r m q n vars)
n)))

(defthm c-bisimilar-witness-produces-bisimilar-states-m->n
(implies (and (circuit-bisim p m q n vars)

(next-statep p r m))
(circuit-bisim

r
m

(c-bisimilar-transition-witness-m->n p r m q n vars)
n
vars)))

(defthm c-bisimilar-equiv-implies-init->init-m->n
(implies (and (c-bisim-equiv m n vars)

(memberp s (initial-states m)))
(memberp

(c-bisimilar-initial-state-witness-m->n s m n vars)
(initial-states n))))

(defthm c-bisimilar-equiv-implies-bisimilar-initial-states-m->n
(implies (and (c-bisim-equiv m n vars)

(memberp s (initial-states m)))
(circuit-bisim

s
m

(c-bisimilar-initial-state-witness-m->n s m n vars)
n
vars)))

Fig. 4 Key requirements of bisimulation, as formalized in ACL2. It is convenient to think
of m and n as Kripke structure. Here circuit-bisim relates a state p of m with a state q
of n; the conditions stipulate that for each transition in m from state p, there is a matching
transition in n from q. The relation c-bisim-equiv requires that for each initial state s of m
there is some initial state of n that is related to s by circuit-bisim. Note that the theorems
shown pertain to one direction of bisimulation, relating states of m with those of n; symmetric
lemmas in the other direction are omitted here.

relation c-bisim-equiv (Fig. 4). The above lemmas were available from the previous

ACL2 proof of correctness of cone of influence reduction, unlike the following, which

was formulated and proved only after its need became evident during the HOL4 proof

effort.

(defthm bisim-lemma-1

(implies (and (memberp a vars)

(circuit-bisim p m q n vars))

(equal (memberp a (label-of p m))
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(defthm cone-of-influence-is-c-bisimi-equiv
(implies
(circuitp C)
(c-bisim-equiv (create-kripke C)

(create-kripke
(cone-of-influence-reduction C vars))

(cone-variables vars C))))

Fig. 5 ACL2 Theorem formalizing the concept that cone of influence reduction preserves
bisimulation equivalence.

Theorem Hol-bisim-eq

∀m1 m2 Vars.
(|= circuit_modelp m1) ∧
(|= circuit_modelp m2) ∧
(|= (c_bisim_equiv m1 m2 Vars))
⇒
BISIM_EQ (HOL_MODEL m1) (HOL_MODEL m2) (SexpToSet Vars)

Fig. 6 Key HOL Lemma for for discharging Theorem cone-bisim.

RW_TAC std_ss [BISIM_EQ_def, SPECIFICATION]
THEN Q.EXISTS_TAC `\(s,s'). (|= circuit_bisim s m1 s' m2 Vars)`
THEN RW_TAC std_ss []
THENL
[RW_TAC (srw_ss()) [HOL_MODEL_def, BISIM_def, SPECIFICATION, SexpToSet_def]

THENL
[METIS_TAC [bisim_lemma_1_thm,SPECIFICATION,equal_imp],
METIS_TAC
[c_bisimilar_witness_member_of_states_m_greater_n_thm,
c_bisimilar_witness_matches_transition_m_greater_n_thm,
c_bisimilar_witness_produces_bisimilar_states_m_greater_n_thm],

METIS_TAC
[c_bisimilar_witness_member_of_states_n_greater_m_thm,
c_bisimilar_witness_matches_transition_n_greater_m_thm,
c_bisimilar_witness_produces_bisimilar_states_n_greater_m_thm]],

Q.EXISTS_TAC `c_bisimilar_initial_state_witness_m_greater_n s0 m1 m2 Vars`
THEN FULL_SIMP_TAC (srw_ss()) [HOL_MODEL_def]
THEN METIS_TAC

[c_bisimilar_equiv_implies_init_greater_init_m_greater_n_thm,
c_bisimilar_equiv_implies_bisimilar_initial_states_m_greater_n_thm],
Q.EXISTS_TAC `c_bisimilar_initial_state_witness_n_greater_m m1 s0' m2 Vars`
THEN FULL_SIMP_TAC (srw_ss()) [HOL_MODEL_def]
THEN METIS_TAC

[c_bisimilar_equiv_implies_init_greater_init_n_greater_m_thm,
c_bisimilar_equiv_implies_bisimilar_initial_states_n_greater_m_thm]]

Fig. 7 Proof of Theorem Hol-bisim-eq in HOL4



13

∀p q. (|= equal p q) ⇒ ((|= p) = (|= q))
∀p q. (|= implies p q) = (|= p) ==> (|= q)
∀a b c. ((|= (if a then b else c))

= (a ∧ (|= b)) ∨ (¬a ∧ (|= c))

Fig. 8 Some generic reusable lemmas in sexp theory.

(memberp a (label-of q n)))))

It was convenient to carry out the proof of this lemma using ACL2 rather than HOL4,

which was easy given the lemmas already proved in ACL2.

Not surprisingly, a bit of HOL4 proof-hacking was required as well, introducing

lemmas some of which are reusable in future proof efforts using the link between HOL4

and ACL2. Some examples are shown in Fig. 8. A dozen or so general lemmas similar

to this were added to the infrastructure supporting the HOL theory of sexp.

5 Concluding Remarks

The ACL2 and HOL4 systems have nearly disjoint user communities, and are widely

acknowledged to have different strengths. Furthermore, the mode of interaction is typi-

cally different for the two theorem provers. ACL2 users tend to rely on built-in proof au-

tomation (e.g., efficient conditional rewriting, linear arithmetic, metatheoretic reason-

ing), fast evaluation of ground terms, and structuring mechanisms that support large

parallel proof developments. HOL4 users often take advantage of direct programma-

bility of proofs along with the powerful specification capability offered by higher-order

logic. A linkage between the two systems, especially one which permits their comple-

mentary strengths to be deployed together smoothly and safely, is therefore of interest

to both of their user communities. On the other hand, the utility of the combined

system crucially depends on the ease with which the two systems can be used together.

This paper has demonstrated a successful application of the linkage between ACL2

and HOL4 in a proof that takes advantage of the strengths of the respective proof

assistants. Specifically, the proof takes advantage of the expressive power of HOL and

the work already completed in ACL2. Our entire effort took only a matter of days,

and we expect that efforts of similar scope might take only a few hours now using our

existing files for guidance. It is worth noting that developing a usable robust linkage

between two mature formal reasoning tools is a non-trivial exercise involving significant

attention to both logical and engineering issues. The experience suggests that the

linkage between HOL4 and ACL2 is robust enough for non-trivial proof projects.

A key reason why the the combination of HOL4 and ACL2 is effective in this project

is that the proof is logically broken into two relatively independent fragments that each

exploits the strength of one prover. Recall that the theorem bisim-sufficient (proved

with HOL4) is a property relating bisimulation equivalence with LTL semantics, and

is not independent of the specific abstraction algorithm (viz., cone of influence reduc-

tion) being verified; on the other hand, Theorem cone-bisim (exported from pieces

developed with ACL2) is a property of cone of influence reduction and does not need

reasoning about properties of bisimulation or their connection with LTL. Such a clear

logical decomposition is important since it permits the insightful reasoning involved in
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a non-trivial proof to be carried out within a single system without requiring the user

to jump between different tools while in the middle of a serious reasoning effort; the job

of the interface then is confined to assembling the results produced by individual tools

to complete the proof. As an aside, an upshot of the decomposition for the current

proof is that Theorem bisim-sufficient can be reused without modification in future

work to prove correctness of other abstraction algorithms (e.g., symmetry) that also

preserve bisimulation equivalence.

Our project may be criticized on the ground that the validity of the proof depends

on the soundness of several tools and interfaces (viz., ACL2, HOL4, and the interface

connecting the two), instead of a single reasoning tool. Since the original complexity

in the ACL2 proof arose from the limitations in the expressive power of ACL2, it

may be argued that a cleaner approach to the proof would simply be to do the proof

from scratch in higher-order logic. However, ACL2 was chosen for the original proof

for a reason: support for efficient executability of formal definitions was critical to its

goal of reasoning about compositional model checking procedures which can then be

used for practical hardware verification. Furthermore, the previous project resulted in

successful proofs of several key properties of cone of influence reduction (e.g., theorems

in Fig. 4 and 5) which must be re-done in HOL if the correctness proof were to be done

from scratch. But proofs of these theorems involve ACL2 scripts encompassing several

thousand lines! Furthermore, since these properties did not involve reasoning about

the nonstandard semantics of LTL, there is no reason to expect reduction in proof

effort through HOL’s superior expressive power. Instead, the path we chose exploits

the strengths of HOL for parts of the proof that are difficult in ACL2 while reusing

other parts from the previous effort.

In future work, we are investigating other applications of the link between ACL2

and HOL4. Some potential applications include properties of programs running on

the Java Virtual Machine or the Rockwell Collins AAMP™ microprocessor ISA. De-

tailed ACL2 models of these machines are available [17,6]; ACL2 also has significant

infrastructure developed over the years to reason about these models. On the other

hand, properties of certain programs (e.g., cryptographic algorithms) are more natu-

rally stated in higher-order logic. The use of the interface allows reasoning about these

higher-order properties while making use of the high-fidelity ACL2 models and the

supporting infrastructures.
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