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Abstract We present a framework for the specification and verification of reactive

concurrent programs using general-purpose mechanical theorem proving. We define

specifications for concurrent programs by formalizing a notion of refinements anal-

ogous to stuttering trace containment. The formalization supports the definition of

intuitive specifications of the intended behavior of a program. We present a collection

of proof rules that can be effectively orchestrated by a theorem prover to reason about

complex programs using refinements. The proof rules systematically reduce the cor-

rectness proof for a concurrent program to the definition and proof of an invariant.

We include automated support for discharging this invariant proof with a predicate

abstraction tool that leverages the existing theorems proven about the components of

the concurrent programs. The framework is integrated with the ACL2 theorem prover

and we demonstrate its use in the verification of several concurrent programs in ACL2.

Keywords abstraction, fairness, reactive systems, theorem proving, trace containment

1 Introduction

Reactive concurrent programs consist of a number of interacting components (e.g.,

processes, threads, etc.) that perform ongoing, non-terminating computations while

receiving stimulus from an external environment. The complexity induced by the in-

teractions of these components makes the implementations of concurrent programs

particularly subtle and error-prone, and bugs are often difficult to detect and diagnose.

With pervasive deployment of multicore and multiprocessor systems, robust method-

ologies for the verification of reactive concurrent programs are essential.
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A common approach for reasoning about a reactive system is to prove that its

executions can be appropriately viewed as executions of a simpler system; the simpler

system serves as the specification. There has been extensive work on defining a notion

of correspondence as a mathematical theory that captures the intuitive relationship

between an implementation and a specification while facilitating effective reasoning [1,

60,4,51,34,31,50]. While the actual definition of correspondence varies, all share two

features that Manolios [50] succinctly summarized as follows:

Stuttering Since the specification is defined at a more abstract level than the

implementation, notions of correctness should allow for stuttering, where

the implementation may take several steps before matching a single step of

the specification [44].

Refinement The implementation may contain more state components and

may use different data representations than the specification. Refinement

maps are used to show how to view an implementation state as a specifica-

tion state [1].

In this paper, we build a formal verification framework for reasoning about reactive

concurrent programs with the ACL2 theorem prover [35]. Our framework is composed

of three ingredients, (1) a formal notion of correspondence between a program imple-

mentation and specification that supports stuttering and refinement, (2) a collection

of formalized reduction rules orchestrated by the theorem prover to decompose a ver-

ification problem into manageable pieces, and (3) an integrated predicate abstraction

procedure to automate proofs of invariants. We also formalize notions of fairness to

facilitate reasoning about progress properties. The result is a powerful and extendible

deductive framework inside the ACL2 theorem prover, that can be applied to reason

effectively about a large class of reactive concurrent programs. We report our expe-

riences on the use of the framework in verification of several concurrent programs in

ACL2.

The notion of correspondence we formalize is loosely based on stuttering trace con-

tainment [1]: “For each (infinite) execution of the implementation there is an (infinite)

execution of the specification that has the same observable behavior up to finite stut-

tering.” Stuttering trace containment and related notions of stuttering simulation and

bisimulation have, of course, been studied extensively in formal verification literature

in the context of developing semantics for reactive systems [54,62,1]; see Section 8 for

a review of related literature. However, there has been little work on formalizing the

notion in a theorem prover with the goal to verify concrete program implementations.1

Consequently, in refinement proofs of concrete implementations, such notions typically

have been argued informally in the metatheory, for instance to manually justify proof

rules that are then used by the theorem prover [51]. Such an approach, however, is not

amenable to building a robust verification framework. Success in deductive reasoning

of a complex program implementation entails careful orchestration of proof strategies.

Every verification problem is different, and the framework must support sound exten-

sion of the repertoire of proof rules to decompose the problem at hand effectively. This

in turn necessitates the notion of correspondence itself to be formalized in the theorem

prover in a form suitable for mechanical derivation of proof rules. We show how our

approach affords both the definition of intuitive specifications, sound extension of proof

1 One notable exception is the Atelier B approach, which has been mechanized in the B
theorem prover. See Section 8.
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strategies, and tools to automate verification of concrete program implementations by

incorporating domain insights.

In spite of the classic nature of this notion of correspondence, the formalization

of stuttering trace containment in ACL2 is not trivial. The complications arise from

the limited expressive power of ACL2: the logic is first-order and has limited support

for reasoning about infinitary objects. One result of this paper is to show how to cir-

cumvent these limitations and usefully formalize the notion in the ACL2 logic. Using

the formalization, we mechanically derive a collection of reduction theorems that can

then be used as proof rules to decompose the verification of complex concurrent sys-

tems into a number of manageable proof obligations. In practice, the theorems reduce

the proof of stuttering trace containment to the problem of proving the invariance of

certain predicates. We build tools based on predicate abstraction to substantially auto-

mate the latter problem. The theorems and tools together constitute a framework. We

demonstrate the applicability of the framework in the verification of several concurrent

protocol implementations.

The remainder of the paper is organized as follows. In Section 2, we review the

ACL2 logic and discuss formal models of reactive programs. Sections 3 through 6

present different facets of the framework, including the formalization of stuttering

trace containment, some illustrative reduction theorems, integration of a formal notion

of fairness, and a tool for automating invariant proofs. In Section 7 we demonstrate

applications by verifying a number of concurrent programs. In Section 8 we discuss

related work. In Section 9 we present arguments for the suitability of our approach in

reasoning about large concurrent programs. We conclude in Section 10.

Although ACL2 is used as a formal basis of the work, the paper itself assumes

no familiarity with ACL2. We use standard mathematical notation instead of ACL2’s

Lisp syntax, and the relevant features of the logic are reviewed in Section 2.1. For

the interested reader, preliminary ACL2 scripts for verification of some of the proto-

cols described in this paper are distributed with the theorem prover in the directory

books/concurrent-programs/. The description here is consistent with these scripts but

we focus on the high-level structure rather than the details of the mechanized proofs.

A short five-page position statement summarizing the framework was presented previ-

ously in EC2 2011 [66]; technical details of some of the components of the framework,

as well as verification efforts for some of the applications have been published in pre-

vious papers [70–73,65]. This paper describes the overall framework in greater detail,

focusing on how the individual pieces fit together and are orchestrated and how the

framework is used in formal verification of diverse concurrent programs.

2 Reactive Concurrent Programs in ACL2

We start with a review of the ACL2 logic and discuss how concurrent programs are

modeled in ACL2. In this review we limit ourselves to the facets of the logic that are

relevant to our work. The reader interested in ACL2 is encouraged to consult the ACL2

web page [36] for an extensive description of the theorem prover.
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2.1 The ACL2 Logic

ACL2 is a first-order logic. The kernel of the logic [37] includes (1) a formal syntax for

terms, (2) some axioms, and (3) some rules of inference. The kernel syntax describes

terms composed of variables, constants, and function symbols each applied to a fixed

number of argument terms. The only relation symbol is equality; thus, formulas are

constructed from equalities between terms by the usual propositional connectives.

The formal syntax of ACL2 is the prefix-normal syntax of Lisp: the application of

a binary function f on arguments a and b is represented by (f a b) rather than the

more standard f(a, b). However, in this paper we typically use the latter form, although

we sometimes refer to the concrete syntax for clarity and disambiguation. We also use

conventional notations for some commonly used functions. For instance we write binary

arithmetic functions in infix (e.g., (x + y) instead of (+ x y) and (if x then y else z)

instead of (if x y z)), dropping parentheses when it is unambiguous to do so.

ACL2 provides axioms formalizing about 200 functions. These axioms constitute

the initial boot-strap theory, called the ground-zero theory (GZ for short). Every theory

in ACL2 is constructed from GZ by application of extension principles (see below). The

axioms of GZ include most Common Lisp functions that are free from side effects. For

example, the following are two axioms relating the Common Lisp functions cons, car,

and cdr.

Axioms.
car(cons(e, x)) = e

cdr(cons(e, x)) = x

The syntax of the logic is quantifier-free. The semantics of a formula assumes implicit

universal quantification over all its free variables. For instance, the first axiom can be

read: “For all e and x, the function car applied to the result of applying cons on e

and x returns e.” Theorems can be proven about the axiomatized functions. The rules

of inference constitute propositional calculus with equality and instantiation, together

with well-founded induction up to ε0.

The universe of ACL2 is axiomatized to include numbers, characters, strings, or-

dered pairs, and symbols. Two special symbols included in the universe are T and NIL.

The symbol T is axiomatized to be Boolean true, while the symbol NIL represents both

Boolean false and the empty list. GZ contains predicates axiomatized to recognize

members of each data type: the predicate consp holds for an argument x if x is an

ordered pair, and natp holds if x is a natural number. Note however, that all the Lisp

functions axiomatized in ACL2 (contrary to their Common Lisp counterparts) are to-

tal. For instance, in Common Lisp the return value of the function car is undefined if

its argument is not a cons and not the symbol NIL. But the axioms of ACL2 allow one

to prove car(2) = NIL.

The ACL2 universe also contains representations of ordinals up to ε0. Ordinals [13]

are key to well-foundedness arguments in ACL2, and we make extensive use of such

arguments. Ordinals are represented in ACL2 using Cantor Normal Form, and GZ
axiomatizes functions that manipulate such representations. In particular, a unary

predicate o-p and a binary relation ≺ are axiomatized as follows: o-p(x) holds if x is an

(ACL2 representation of an) ordinal, and ≺ is the standard total “less than” relation

on the ordinals. The ordinals are axiomatized to be well-founded under ≺, which means

that there is no infinitely decreasing chain of ordinals 〈. . . o2 ≺ o1 ≺ o0〉.
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In addition to formalizing Lisp functions, ACL2 provides extension principles to

axiomatize new function symbols. The extension principles include (1) a definitional

principle for introducing new total (recursive) function definitions, (2) an encapsu-

lation principle for introducing constrained, partially defined function symbols, and

(3) a defchoose principle for introducing Skolem functions and first-order quantified

formulas.2

Definitional Principle: The most commonly used principle is the definitional principle

that is used to introduce new total function definitions. For example, we can invoke it

to introduce a function factorial axiomatized to compute the factorial.

Definitional Axiom.

factorial(x) = if zp(x) then 1 else x ∗ factorial(x− 1)

Here zp(x) (axiomatized in GZ) returns NIL if and only if x is a positive natural number

and T otherwise. The effect of the definition is to extend the logic with an axiom

(called the definitional axiom) that equates calls to the function factorial with its body.

To ensure consistency of the extended logic, one must first prove that the recursive

calls terminate [9]. This is done by exhibiting a “measure” that maps the arguments

of the function to the ordinals, and shows that the measure decreases (according to

the relation ≺) along every recursive call. For this factorial function, an appropriate

measure is the function nfix below, which is axiomatized in ACL2. It always returns a

natural number and hence an ordinal.

Definitional Axiom.

nfix(x) = if natp(x) then x else 0

Encapsulation Principle: The encapsulation principle permits introduction of a set of

function symbols with a set of user-specified constraints rather than complete defini-

tions. Consider introducing three functions, ac, ac-id, and ac-p, axiomatized to satisfy

the following five constraints.

Encapsulation Axioms.

ac(ac(x, y), z) = ac(x, ac(y, z))

ac(x, y) = ac(y, x)

ac-p(ac(x, y)) = T

ac-p(ac-id()) = T

ac-p(x)⇒ ac(ac-id(), x) = x

The axioms merely stipulate that ac is an associative-commutative function always

returning an object in the domain recognized by the predicate ac-p, and ac-id is an

identity over that domain. To ensure consistency, the user has to exhibit some total

function, called the witness, that satisfies the constraints. For our example, the following

functions are appropriate witnesses.

ac(x, y) = 42

ac-p(x) = if (x = 42) then T else NIL

ac-id() = 42

2 ACL2 also has an extension principle that permits introduction of an arbitrary formula as
an axiom. However, introducing arbitrary axioms can introduce inconsistency, and we will not
consider it in this paper.
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Definitional Axiom.

ac-list(l) = if ¬consp(l) then NIL
else if ¬consp(cdr(l)) then car(l)

else ac(car(l), ac-list(cdr(l)))

Fig. 1 Definition of ac-list.

For functions admitted using encapsulation, the only axioms introduced are the

constraints. Thus any theorem about such functions is valid for any other set of

functions that also satisfy the constraints. This observation is encoded in ACL2 by

a derived rule of inference called functional instantiation [8]. To illustrate functional

instantiation, consider the function ac-list shown in Fig. 1, which returns the result

of applying ac to a list of objects. It is straightforward to prove the theorem named

ac-reverse-relation below, which states that the repeated application of ac along

the list l has the same effect as the repeated application of ac along the list obtained

by reversing l. Here the list reversing function, reverse, is axiomatized in GZ.

Theorem ac-reverse-relation:

ac-list(reverse(l)) = ac-list(l)

In order to use functional instantiation, we note that the binary addition function “+”

is associative and commutative and always returns a number, 0 is the left identity

over numbers, and GZ has a predicate acl2-numberp that returns T if and only if its

argument is a number. Thus, if we define the function sum-list that repeatedly adds all

elements of a list l, then functional instantiation of the theorem ac-reverse-relation

enables us to prove the following theorem under the functional substitution of “+” for

ac, 0 for ac-id, acl2-numberp for ac-p, and sum-list for ac-list.

Theorem sum-reverse-relation:

sum-list(reverse(l)) = sum-list(l)

Defchoose Principle: The defchoose principle, which essentially implements the Hilbert

choice operator, allows the extension of a theory with a Skolem function. Although the

syntax of the ACL2 logic is quantifier-free, defchoose permits arbitrary quantified first-

order formulas by the axiomatization of appropriate Skolem witnesses. Let τ be a term

with free variables x1, . . . , xn, y; then defchoose allows us to extend T with a new n-ary

function symbol f with the following defchoose axiom for function f , formula τ , and

sequence 〈x1, . . . , xn〉 of variables.

Defchoose Axiom.

τ ⇒ τ/{y ← f(x1, . . . , xn)}
To illustrate how the defchoose principle supports quantification, assume that P is a

binary predicate introduced in an ACL2 theory, and we wish to introduce a unary

predicate exists-P such that exists-P(x) holds if and only if there exists some y such

that P (x, y). In traditional first-order logic, we would define exists-P as follows:

exists-P(x) = ∃y : P (x, y)

To mimic the same effect in ACL2, we first introduce a unary function wit(x) as follows:
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Defchoose Axiom.

P (x, y)⇒ P (x,wit(x))

The function wit(x) is a Skolem function, and the principle is essentially a rendering

of Hilbert choice in the ACL2 logic. We then introduce our desired predicate exists-P

through the definitional principle.

Definitional Axiom.

exists-P(x) = P (x,wit(x))

ACL2 provides a macro called defun-sk to define quantified formulas via Skolemization

conveniently by applying the above two-step process. The macro also supports univer-

sally quantified predicates by exploiting the duality between universal and existential

quantification. For more details on quantification in ACL2, refer to the documentation

topics defchoose, defun-sk, and conservativity-of-defchoose in the ACL2 User

Manual.

Quantification is critical to derive some of the proof rules we describe in Section 4,

although we do not show explicit application of the facility in the paper.

2.2 Modeling Reactive Systems

We model a reactive concurrent program as a labeled transition system. Formally, a

reactive system M is described by three functions, namely M.init, M.next, and M.label,

which are interpreted as follows.

– M.init() returns the initial state of the system.

– Given a state s and input i, M.next(s, i) returns the next state of M .

– For any state s, M.label(s) returns the observable component of s.3

Concurrent programs in practice are not written using this formalism. Details of

the translation of a concurrent program implementation (written in C, Java, or Verilog)

into this formulation are beyond the scope of this paper. But the basic idea is that

for a given concurrent program, the definitions of M.init and M.next correspond to the

initial state and state transformations derived from the execution of the concurrent

program within the context of the formal semantics of the programming language.

The definition of M.label is determined by the components of the program relevant

to the notion or specification of correct execution of the concurrent program. We can

automatically translate programs in a limited subset of C, Java, and Verilog, into this

formalism. We have defined a macro define-system to make it convenient for the user

to define a concurrent program with this formalism. The macro takes the name of a

system M , together with the characterizations (often obtained from translation of C,

Java, or Verilog implementation) of its initial state, transition function, and observable

components; it introduces the three functions M.init, M.next, and M.label and the

M.exec[env] defined below (for an uninterpreted unary function env that models the

sequence of external stimuli).

Remark 1 Following standard practice in the ACL2 community, we model transitions

in the system as a next-state function M.next rather than as a relation over states

(as is typical, for example, with formalisms based on Kripke structures). Of particular

interest, the next-state function takes the additional input i. Although this parameter

3 The function M.label is akin to the state labeling function in Kripke Structures.
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models the environmental stimulus to the system, our foundations do not require the

input to be externally visible. Thus one way to view the stimulus is as a “choice”

parameter to non-deterministically select one of the possible next states; this provides

a straightforward approach to mimic relational models within our formalism. We will

not consider relational models in the remainder of the paper, but most of our framework

can be used without modification for such models.

Remark 2 Given the use of a single 0-ary function M, init() to model the initial state,

it may at first appear that our formalization does not account for concurrent programs

with multiple initial states. However, recall that functions can be introduced in ACL2

through the encapsulation principle by specifying a set of constraints rather than a

complete definition. This allows us to formalize programs with more than one initial

state as follows. Suppose that the initial states of M are stipulated by some initial

condition P which is a predicate on the states of M . We then formalize M.init() as

an encapsulated function with the associated constraint P (M.init()) = T. Our macro

define-system mentioned above permits such formalization.

It will be convenient to talk about the state that M reaches after n transitions.

This state depends on the sequence of external stimuli applied to M . Let env be a

unary function such that env(k) is the stimulus received at time k. Then the function

M.exec[env] below returns the state of M after n transitions, and can be introduced in

ACL2 by the definitional principle.

Definitional Schema.

M.exec[env](n) = if zp(n) then M.init() else M.next(M.exec[env](n− 1), env(n− 1))

The choice of the unconventional names above illustrates one of the “tricks” involved

in formalizing reactive systems in the logic of ACL2. Formally, this definitional axiom

should be more appropriately thought of as a “definition schema”: given two different

functions env1 and env2 prescribing two different environmental stimulus sequences,

this schema provides two different definitions. Because the executions of reactive sys-

tems involve infinite computations, formalizing them necessarily involves infinite se-

quences of system states. An infinite sequence of inputs is typically viewed as a func-

tion over a natural-valued time; however, because the logic is first-order, functions in

ACL2 cannot take arbitrary functions as arguments. Thus, the notion of an infinite

execution of a system must be written as a schema rather than as a single, closed-form

definition. Given the schema, we view the function M.exec[env] as representing the

infinite execution sequence of M when presented with the (infinite) sequence of stimuli

represented by the function env.

Remark 3 Note that in the logic there is obviously no function M.exec that can take

a parameter env; rather, whenever the metatheory demands the use of such a function

(for a specific defined or constrained function env), an instance of M.exec[env] is intro-

duced “on the fly”.4 The framework supports introduction of such functions through

appropriate use of macros. The same remark applies to other higher-order functions

introduced in the metatheory.

4 The function actually introduced in ACL2 logic is |M.exec[env]|. Lisp permits uncon-
ventional names (e.g., names containing square brackets) when such symbols are enclosed in
vertical bars.
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Definition.

stutter[ctr](n) = (ctr(n) ≺ ctr(n− 1))
M.trace[stim, ctr](n) = if zp(n) then M.init()

else if stutter[ctr](n) then M.trace[stim, ctr](n− 1)
else M.next(M.trace[stim, ctr](n− 1), stim(n− 1))

Fig. 2 Definition of a Stuttering Trace

3 Stuttering Trace Containment

We will now formalize the notion of stuttering trace containment in the ACL2 logic.

Informally, the statement we wish to express is the following: a system S is related to I
by trace containment if and only if for every execution σ of I there exists an execution

π of S with the same (infinite) sequence of labels up to finite stuttering. This statement

includes notions such as “for all executions of I” and “there exists an execution of S”;

a direct formalization of this notion requires quantification over functions. To achieve

this in ACL2, we will exploit the encapsulation principle. First we need this technical

definition.

Definition 1 (Stuttering Controller) A unary function ctr will be called a stutter-

ing controller if the following formula is a theorem.

Well-foundedness Requirement.

o-p(ctr(n))

We will view the environment stimulus function env(n) as a pair 〈stim(n), ctr(n)〉,
where stim is a unary function over natural numbers. Informally, we wish to view the

environment as providing, in addition to the actual input stimulus (defined by stim),

a sequence that determines if a transition is stuttering or not.

We now define the function M.trace[stim, ctr] in Fig. 2 to formalize stuttering trace.

Informally, a stuttering trace of M is simply an execution of M in which some states

are repeated a finite number of times. The Well-foundedness Requirement and

the definition of stutter[ctr] together guarantee that stuttering is finite. We insist that

stuttering be finite because we want our abstract specifications to characterize both

safety and liveness properties of the implementation. We will return to the significance

of the finiteness of stuttering in Section 9.

The following definition now captures the notion of stuttering trace containment.

Definition 2 (Stuttering Refinement) Let tstim and tctr be functions such that

(1) tstim is uninterpreted, and (2) tctr is constrained to be a stuttering controller. We

will say that I is a stuttering refinement of S, denoted (S � I) if and only if there are

unary functions stim and ctr such that ctr is a stuttering controller and the following

condition is satisfied.
Stuttering Trace Containment (STC).

I.label(I.trace[tstim, tctr](n)) = S.label(S.trace[stim, ctr](n))

We refer to the system S as a stuttering abstraction of I.

For a given implementation system I and a specification system S, our notion

of correctness is to show (S � I). Once the functions ctr and stim are defined, the

characterization reduces to a first-order obligation that can be proven with ACL2.
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Remark 4 The notion of stuttering trace containment permits stuttering on both S
and I, all the concurrent programs we verified required only S to stutter. This is nat-

ural; because the atomicity of the implementation is typically more fine-grained than

that of the specification, it is expected that several transitions of the implementation

correspond to one transition of the specification. Nevertheless, we decided to define

specifications in terms of two-sided stuttering rather than one-sided for two reasons.

First, we believe that a uniform treatment of specification and implementation sys-

tems (viz., removal of stutter on both sides) provides a more intuitive definition of

correspondence between the two systems. Second, it facilitates proof of the Oblivious

Refinement Rule (cf. Section 4.3) which allows introduction of auxiliary variables.

4 Reduction Theorems

Given two systems I and S, we now discuss how we go about proving (S � I). When

I is a complex low-level implementation and S is an abstract high-level specification,

the proof needs to be decomposed into more tractable obligations. To facilitate such

decomposition, we have formalized and mechanically derived a number of reduction

theorems, which are used as mechanized proof rules. Here we describe three such rules,

that permit us to decompose the proof of STC to a series of refinements, break each

such refinement proof obligation to a collection of single-step theorems, and enable the

introduction of auxiliary variables. Section 7 explains the use of the rules on illustrative

examples.

4.1 Reduction via Stepwise Refinement

The first trivial property of STC is that the notion is transitive. This observation is

formalized by the following proof rule.

Stepwise Refinement Rule.

Derive (S � I) from (S � I1) and (I1 � I)

The stepwise refinement rule allows us to introduce a sequence of intermediate

models at different levels of abstraction starting from the implementation I and leading

to the specification S, and prove (S�I) by showing correspondence between each pair

of consecutive models in the sequence.

Remark 5 The statement of the stepwise refinement rule, albeit simple, is higher-order.

We mechanize it in ACL2 by using the encapsulation principle and macros. In partic-

ular, we use encapsulation to introduce the three systems S, I1, and I with the only

exported constraints being the properties (S�I1) and (I1�I). From these conditions,

we develop an ACL2 proof of (S � I). We call this theorem a generic theory for step-

wise refinement. Subsequently, for concrete systems, (i.e., specific instances Sc, I1c,
and Ic of S, I1, and I), applying the stepwise refinement rule amounts to functional

instantiation of the generic theory. We implement a macro named defstepwise that

automates the application of the rule; it takes the definitions of Sc, I1c, and Ic, and

functionally instantiates the generic theory. The proof obligations generated by the

functional instantiation are exactly that (Sc � I1c) and (I1c � Ic). A similar approach

(generic theory, functional instantiation, and a macro to automate the application of
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functional instantiation) is used for mechanizing the rest of the rules presented in this

paper as well. For the remainder of the paper, we omit discussion on mechanization of

the rules and treat them as closed-form higher-order theorems.

4.2 Reduction to Single-step Theorems

Using the stepwise refinement rule, we can transform a proof of stuttering trace con-

tainment into a series of more tractable trace containment proofs using intermediate

systems. Our next rule is intended to reduce each of these individual proofs to the

definition of a more tractable collection of proof obligations. In particular, none of the

following proof obligations requires reasoning about more than a single transition of

either S or I.

Definition 3 (Well-founded Refinement) Given two systems S and I, we will

say that I is a well-founded refinement of S, written (S � I) if and only if there

exist functions inv, skip, rep, rank, good, and pick such that the following formulas are

theorems for all states s and inputs i.

SST1: good(s)⇒ I.label(s) = S.label(rep(s))

SST2: good(s) ∧ skip(s, i)⇒ rep(I.next(s, i)) = rep(s)

SST3: good(s) ∧ ¬skip(s, i)⇒ rep(I.next(s, i)) = S.next(rep(s), pick(s, i))

SST4: good(s) ∧ skip(s, i)⇒ rank(I.next(s, i)) ≺ rank(s)

SST5: o-p(rank(s))

SST6: inv(I.init())

SST7: inv(s)⇒ inv(I.next(s, i))

SST8: inv(s)⇒ good(s)

These conditions are influenced by similar obligations devised by Manolios et al. [51]

for well-founded bisimulations (WEBs). Given a state s of I the function rep(s) returns

a corresponding state of S with the same label. The predicate skip governs stuttering. If

skip(s, i) does not hold then SST3 guarantees that S has a transition that matches the

transition of I from state s on input i, otherwise SST2 guarantees that a stuttering

transition of S matches the transition of I on the current input. if S does not stutter,

then pick(s, i) defines the input of S for the matching transition of I from state s

on input i. SST4, SST5 and the well-foundedness of the ordinals guarantee that

stuttering is finite. SST6 and SST7 specify that the predicate inv is an inductive

invariant of I. That is, inv holds at I.init() and if it holds at a state s then it holds

after any transition from s. SST8 stipulates that the predicate good is logically implied

by inv. Thus good is an invariant, i.e., it must hold for all reachable states of I. This

allows us to assume good(s) in the hypothesis of conditions SST1-SST4.

Remark 6 It is possible to use inv in conditions SST1-SST4 above in place of good

(and thereby eliminate the need for good); thus the use of a separate predicate good

that is logically implied by inv is not germane to the metatheory. However, the use

of good illustrates an important practical consideration. Note that inv is required (by

Conditions SST7 and SST8) to be an inductive invariant. Constructing the induc-

tive invariant is a complex process; in practice it is the most complicated step in the

proof of well-founded refinement. Thus it is important to isolate that step as much

as possible from the remaining proof obligations. The use of good disentangles the
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proof obligations to ensure correspondence between the executions of I and S (viz.,

SST1-SST4) from the process of discovery and proof of an inductive invariant. In

our experience, it is easy to construct a (not necessarily inductive) invariant good to

satisfy these proof obligations. Furthermore, the predicate good so defined can be used

as “seed” to compute the inductive invariant inv. In Section 5 we discuss an invariant

discovery procedure based on predicate abstraction, that essentially involves strength-

ening a user-proposed invariant good. Admittedly, it is possible for the user to define

a predicate good to satisfy SST1-SST4 only to find subsequently that good is not an

invariant (viz., there is no inductive invariant inv implying good). However, we found in

practice that defining a correct and sufficient (non-inductive) invariant rarely involves

subtle reasoning, unlike the definition of the inductive invariant inv.

Well-founded Refinement Rule.

Derive (S � I) from (S � I)

The proof of correctness of this rule follows the lines of the proof of the correspond-

ing rule about WEBs and has been mechanically checked with ACL2. Notice that none

of the conditions involves more than one transition of S or I. However, while stutter-

ing trace containment allows both S and I to stutter, the well-founded refinement rule

only allows stuttering in S. We found this sufficient in practice because S is designed

to be an abstract system with coarse transitions that correspond to sequences of fine

transitions in I.

Finally, while the notion of correspondence specified by stuttering trace contain-

ment is linear-time, SST1-SST8 guarantees that all branching-time behaviors of I are

preserved by S (up to stuttering). In other words, well-founded refinements guarantee

that S is a stuttering simulation of I. We make use of this observation in the deriva-

tion of the next proof rule. It is possible to formalize stuttering simulation directly in

the ACL2 logic (analogous to the way we formalized stuttering trace containment via

encapsulation). Indeed, Manolios [49] provides a collection of sound and complete rules

of stuttering simulation analogous to the well-founded refinement rule. Nevertheless,

in the context of ACL2, infinite trees are more cumbersome to formalize than infinite

sequences, and given our need to add and prove new proof rules in the meta-theory and

the sufficiency of trace containment as a means of specification, we prefer the linear

time notion of trace containment as the formal notion of correctness.

4.3 Equivalences and Auxiliary Variables

In this section we consider a special (but important) case of refinement, viz., equiva-

lence.

Definition 4 (Equivalence up to Stuttering) If (S � I) and (I � S) both hold

then we say that S is equivalent to I (up to stuttering). We write (S3I) to mean that

S and I are equivalent.

One way of proving equivalence is through oblivious well-founded refinements, de-

fined below. For that definition, recall that one of the conditions for well-founded refine-

ments (viz., SST3) required the existence of a function pick: given s and i, pick(s, i)

returns the matching input for the specification system S corresponding to a non-

stuttering transition of I from state s on input i.
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Definition 5 (Oblivious Refinement). We call I an oblivious refinement of S, written

(S �o I) if the following two conditions hold:

1. (S � I)

2. the function pick involved in the proof of (1) is the identity function on its second

argument, that is, pick(s, i) = i is a theorem.

The following proof rule connects oblivious refinement with stuttering equivalence.

Oblivious Refinement Rule.

Derive (S3I) from (S �o I)

Oblivious refinements are useful when S contains more state components than I.

To understand their use, consider an example due to Abadi and Lamport [1]. Let I
be a 1-bit digital clock, S be a 3-bit clock, and the label of a state in both systems be

the low-order bit. Clearly, (S � I) because the systems have the same behavior up to

stuttering. However, we cannot prove (S � I), because there is no mapping that can

define the state of a 3-bit clock as a function of 1 bit. But it is trivial to show (I�o S):

given a state s of S, the function rep merely projects the low-order bit. Then we can

use the Oblivious Refinement Rule to show the desired result.

Oblivious refinements allow us to add auxiliary variables to systems. For showing

(S � I), we often construct an intermediate system I+ as follows. A state of I+
includes the variables of a state of I but also has additional variables. For instance,

one sometimes needs history variables that explicitly store the control decisions and

non-deterministic choices encountered by the system [68]. The variables common to I
and I+ are updated in exactly the same manner in both systems and the label of a

state in I+ is the same as the label of a state in I. The information stored in these

additional variables is then used to facilitate proving (S�I+). In order to prove (S�I)

we must now show (I+ � I) so that we can apply the rule SR. However, because I+
contains more state components than I we cannot directly prove (I+ � I). However,

we can easily prove (I�o I+) and invoke the Oblivious Refinement Rule to derive

(I+3I).

The soundness of introducing auxiliary variables for proving system correspon-

dence is normally assumed in the metatheory. Oblivious refinements reduce it to an

automatic proof step requiring no metatheoretic justification. We note that the obliv-

ious refinement rule allows augmentation of systems with both history and prophecy

variables.

5 Automating Invariant Proofs

The reduction theorems allow us to decompose the proof of correspondence between

an implementation and its specification to a sequence of correspondences by defining

intermediate models, augmenting them with auxiliary variables, and proving the cor-

respondence between each pair of consecutive models in the sequence by exhibiting

well-founded refinements. Chaining together a sequence of refinement steps merely in-

volves functional instantiation of the Stepwise Refinement Rule. User attention is

thus focused on the definition of intermediate models and the proofs of well-founded

refinements relating the consecutive pairs of the sequence.

In practice, the proof of (S � I) is decomposed into two phases:

1. Define good, rep, skip, pick, and rank and prove obligations SST1-SST5.
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2. Define inv and prove SST6-SST8.

In our experience, the first phase is relatively straightforward. For instance, assume

that I is a multiprocess system implementing a cache coherence protocol and that S
is a system of processes that atomically access and update the main memory. We will

see such system examples in Section 7. In a typical proof of such a system, good needs

to posit that the caches are coherent, rep projects the visible components (processes

and memory) of the cache system, skip holds for transitions that cause no access to

the memory, and rank counts the number of transitions before a visible component is

updated.5 The proof obligations SST1-SST5 required for well-founded refinements

can usually be discharged without significant manual effort.

In the second phase, the user must define an inductive invariant inv that logically

implies good. Recall that the existence of the inductive invariant guarantees that good

is an invariant, that is, holds for all reachable states of I. Defining inv, however,

requires non-trivial user insight, since by condition SST7 inv must be preserved by

every transition of I. Thus the definition of inv may have to consider every reachable

state. Defining inductive invariants is recognized as one of the most expensive steps

in formal verification [48]. Furthermore, changes in the implementation can require

substantial modifications to the definitions of inductive invariants.

We have implemented a tool based on predicate abstractions [27] to significantly

automate invariant proofs. The goal is to reduce an invariant proof of a (possibly

infinite-state) system to model-checking on a finite abstraction; the states of the ab-

stract model correspond to valuations of predicates in the concrete system. Predicate

abstraction is part of a number of formal verification tools [5,30,42]. Our approach

can be viewed as an implementation of Namjoshi and Kurshan’s [61] idea of predicate

abstraction through syntactic transformation of certain formulas over the system ac-

tions. However, our approach is designed to leverage the expressiveness and flexibility of

theorem proving for discovering predicates: useful predicates are “mined” by applying

term rewriting on the definition of the state transition function of the implementation.

Rewriting is guided by rewrite rules that are taken from theorems proven by the the-

orem prover. In this section we illustrate the use of this tool with a simple example.

Automating invariant proofs, of course, is a topic of independent research interest, and

previous papers [72,73,65] cover the technical details of our implementation.

Consider a system I consisting of two components C0 and C1. Initially both compo-

nents hold 0. Given a state s and an external stimulus i, the components are updated

as follows.

– If i is NIL, C0 gets the previous value of C1; otherwise C0 is unchanged.

– If i is NIL, C1 is assigned the value 42; otherwise C1 is unchanged.

For state s, let C0(s) and C1(s) be the values of C0 and C1 in s. The predicate good

that we want to establish as invariant is given by: good(s) = natp(C0(s)). An inductive

invariant that establishes the invariance of good is the predicate inv below:

Inductive Invariant Definition.

inv(s) = natp(C0(s)) ∧ natp(C1(s))

Instead of requiring the user to define this inductive invariant, the predicate natp(C1(s))

is discovered by rewriting. The necessary rewrite rules are shown in Fig. 3. The first

5 Actually the function rank only needs to count an upper bound. This is critical to our
ability to support fairness constraints. See Section 6.
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Rewrite Rules.
1. C0(I.init()) = 0
2. C1(I.init()) = 0
3. C0(I.next(s, i)) = if i then C0(s) else C1(s)
4. C1(I.next(s, i)) = if i then C1(s) else 42
5. natp(if x then y else z) = if x then natp(y) else natp(z)

Fig. 3 Rewrite Rules for Proving Invariant of the Simple System

four rules are derived from the transition function. Using rules 3 and 5, we rewrite

natp(C0(I.next(s, i))) to the term T0 below:

T0: if i then natp(C0(s)) else natp(C1(s))

The tool treats the term T0 as a Boolean combination of i, natp(C0(s)), and

natp(C1(s)), and classifies natp(C1(s)) as a new predicate. Application of term rewrit-

ing on the term natp(C1(I.next(s, i))) using rules 4 and 5 and the computed fact

natp(42) = T, yields the term T1:

T1: if i then natp(C1(s)) else T

We classify the discovered terms natp(C0(s)) and natp(C1(s)) as state predicates

(named S0 and S1 respectively). Then T0 and T1 specify how the state predicates

are “updated” at different times. This view is made explicit by constructing a directed

abstraction graph G as follows.

– A node is a pair 〈b1, b2〉, where b1, b2 ∈ {T, NIL}. The components correspond to

the possible valuations of S0 and S1.

– The initial node p0 is the pair 〈T, T〉 that correspond to the valuation of S0 and S1

at the initial state.

– Let p
.
= 〈b1, b2〉 and q

.
= 〈b′1, b′2〉 be two nodes. There is an edge from p to q if there

exists some bi ∈ {T, NIL} such that b′0 = if (bi, b0, b1) and b′1 = if (bi, b1, T).

We can prove that good is an invariant by checking that in each node p of G that is

reachable from p0, the first component has the value T. The formula representing the

set of reachable states of G defines the relevant inductive invariant of I.

Our tool demonstrates the flexibility afforded by the use of general-purpose me-

chanical theorem proving as a formal basis for designing a verification framework. In

particular, heuristics for predicate discovery are disentangled from the abstraction pro-

cess and encoded in rewrite rules. Thus by “plugging in” different sets of rewrite rules

we can apply the same tool on diverse application domains. No restriction is imposed

on the language to express systems and their properties.

Of course, our approach puts the onus on the user to define and prove rewrite rules.

When the current set of rewrite rules is not sufficient, simplification may not succeed

resulting in models that are too detailed or too abstract. However, rewrite rules, unlike

inductive invariants, are generic properties of the functions involved in the definition of

the system and its properties, and the same rules are useful for reasoning about different

systems modeled using the same functions. ACL2 has several databases of lemmas [11,

38,19], and we found that most of the necessary rules are usually already available

in such libraries. Even domain-specific rules are typically reusable for verification of
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different programs in the same domain; we will see an example in Section 7. Feedback

from our tool assists in the crafting of new rules. The feedback includes the predicates

generated via rewriting with the current rules, highlighting terms that could not be

simplified from the current rule set, and directing the user to a set of functions for

which rewrite rules are not available. The user is then responsible for extending the

current rule set with rewrite rules to simplify terms containing such functions. Note

that the presence of a theorem prover is critical to our ability to extend the set of

available rules in a sound manner. In our experience, creativity and user insights are

necessary to develop the (domain-specific) rules when the tool is applied to a new

domain for the first time; however, the library becomes stable after a few applications

and can be used as is for a new program in the same domain.

6 Fairness Assumptions and Requirements

We conclude this description of the refinement proof methodology with a discussion

of how to deal with fairness conditions integrated with the refinement proofs. Fairness

conditions often arise for showing that a system satisfies progress properties [57]. For

instance, consider a system I that models the asynchronous composition of a set of

processes. At each transition of I, a process is selected non-deterministically and then

updates its local state and any shared state. Assume that any update of a shared vari-

able requires exclusive access and that some arbiter grants access to a single process

at a time. We might want to show that each initiated update of a shared variable

is eventually completed. However, this property is invalidated in executions of I in

which the process that is given exclusive access is never subsequently selected. A more

appropriate formulation of the property is as follows: “Assuming fair selection of pro-

cesses in I, every update of the shared state completes.” We now describe how fairness

conditions are integrated within our framework to make such reasonings possible. As

with our description of the rest of the framework, our treatment here uses standard

mathematical notation to convey the main ideas. For the reader interested in the ACL2

formalization, Sumners [71] discusses the technical issues involved in reasoning about

fairness in ACL2.

Recall that a trace of a system I is specified by defining a stimulus function and

a stuttering controller. To formalize the notion of a fair trace, we will first introduce

the concept of a fair selector by appropriately constraining these two functions in the

definition below.

Definition 6 (Fair Selector) We say that a stimulus function stim and a stuttering

controller ctr produce a fair selector if for any time n and any input i, there is a time

m > n such that the following two conditions hold.

F1: stutter[ctr](m) = NIL

F2: stim(m) = i

Condition F1 is necessary to guarantee that the fair input is actually used and not

simply bypassed by stuttering. F1 and F2 provide a simplistic notion of unconditional

(weak) fairness in the ACL2 logic, viz., that the environment selects each legal input

stimulus infinitely often. Many logics designed with the explicit goal of reasoning about

executions of reactive systems provide more general notions of fairness. For instance,

Unity [16] has notions of both weak (unconditional) and strong (conditional) fairness.
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For the examples we describe in this paper, our simple notion is sufficient. Nevertheless,

the framework allows reasoning about more general notions of fairness using approaches

similar to the one we describe below. For instance, Sumners’ paper [71] discusses an

integration of conditional fairness where one associates a set of legal inputs with each

system state and fairness ensures that an input that is infinitely often legal is selected

infinitely often.

We now formalize the notion of a fair trace. Similar to the definition of a trace in

Section 3, we will define a fair trace using the encapsulation principle. In particular, we

specify a pair of functions fctr and fstim, constrained to produce a fair selector based on

the definition above. Defining witness functions that satisfy these constraints, however,

is tricky. In particular, we must assume that the set of possible inputs is enumerable.6

Enumerability is necessary because it is impossible to define an infinite sequence where

each member of an uncountable set is selected infinitely often. Given enumerability, it

is sufficient to merely exhibit a fair selector for natural numbers.

A fair selector for natural numbers can be easily defined as a state machine, as

follows. At any instant the machine has a fixed upper bound, and it counts down

from the upper bound at every step. When the countdown reaches 0, the upper bound

is incremented by 1 and the counter then resets to the new bound. Since any natural

number i becomes eventually less than the ever-increasing bound, each natural number

must be eventually selected in a finite number of steps from each instant n.

We will now augment refinements with the notion of fairness. Stuttering trace

containment involves specifying correlations between executions of two systems S and

I. Fairness conditions can be imposed on either S or I or both. The following definitions

capture the relevant fairness characterization.

Definition 7 (Fairness Assumption) Let cfctr and cfstim be constrained unary

functions, with the only constraint being that they produce a fair selector. We say

that a system I is a stuttering refinement of system S under fairness assumption

(denoted (S �F I)) if there exist unary functions stim and ctr such that the formula

Fair Implementation Correspondence is a theorem.

Fair Implementation Correspondence.

I.label(I.trace[cfstim, cfctr](n)) = S.label(S.trace[stim, ctr](n))

Definition 8 (Fairness Requirement) Let uctr and ustim be constrained unary

functions with the only constraint being that uctr is a stuttering controller. We say

that I is a stuttering refinement of S with fairness requirement, written (S F � I), if

there are functions fctr and fstim such that (1) fctr and fstim produce a fair selector,

and (2) the formula Fair Specification Correspondence below is a theorem.

Fair Specification Correspondence.

I.label(I.trace[ustim, uctr](n)) = S.label(S.trace[fstim, fctr](n))

We write (S F�F I) to mean that both (S�F I) and (S F�I) hold. The following

proof rules are trivial to verify with ACL2 and can be used to decompose refinement

proofs with fairness conditions.

Derivation Rules for Fairness.

Derive (S �F I) from (S � I).

6 We have had conversations with the authors of ACL2 regarding extending the ACL2
ground zero theory with an axiom positing enumerability of the universe. If this is done, no
assumption will be necessary to formalize fairness.
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Derive (S �F I) from (S �F R) and (R�F I).

Derive (S F �F I) from (S F �F R) and (RF �F I).

Derive (S F � I) from (S F �F R) and (RF � I).

While fairness assumptions are necessary for ensuring progress properties of imple-

mentations, fairness requirements are usually necessary for the purpose of composition.

In particular, suppose we want to prove (S � I) by introducing an intermediate model

R. If we need a fairness assumption in the proof of correspondence between S and R,

then chaining the sequence of refinements requires that we prove the correspondence

between R and I with a fairness requirement.

We now discuss how we make fairness constraints work with the single-step con-

ditions for well-founded refinements. We will first consider fairness assumptions. Two

relevant concepts in formalizing fairness as a set of single-step obligation are fair aug-

mented system and fair ranking function, defined below.

Definition 9 (Fair Augmented System) The system If is a fair augmentation of

a system I if the following conditions hold.

– Each state variable of I is a variable of If , but If contains an additional variable

clock that is not a variable of I. If contains no variable other than the variables

of I and clock.

– Each variable v in If that is a variable of I is updated by If .next exactly the same

way as it is updated by I.next. The variable clock is 0 at the state If .init and is

incremented by 1 at each transition by If .next.

Definition 10 (Fair Ranking Function) Let If be a fair augmentation of system

I. A binary function frnk will be called a fair ranking function if it is an encapsulated

function constrained to satisfy the following two conditions.

– natp(frnk(s, j))

– (i 6= j)⇒ frnk(If .next(s, i), j) < frnk(s, j)

By the above definition, for any legal input j and any state s, if j is not selected in

the transition from s then frnk decreases. Because If tracks the “current time”, frnk

can be constructed from the constrained fair selector using F1 and F2 above: frnk(s, j)

is merely the number of transitions after s till j is selected. We are now ready to define

well-founded refinements under fairness assumption.

Definition 11 (Well-founded Refinement Under Fairness Assumption) Let

If be a fair augmentation of system I. We will say that I is a well-founded refinement

of system S under fairness assumption (denoted (S �F I)) if (S � If ).

The following proof rule connects well-founded refinements with stuttering trace

containment under fairness assumptions.

Well-founded Refinement Rule under Fairness Assumption.

Derive (S �F I) from (S �F I).

Note that the definition of well-founded refinement under fairness assumption does

not involve fair ranking function but only augmentation. However, fair ranking func-

tions appear in discharging the proof obligations for (S � If ). In particular, the proof

obligations SST4 and SST5 for the proof of (S�If ) (cf. Definition 3) involve showing
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that a function rank decreases (according to some well-founded order) on every stut-

tering transition of If ; we make use of the constrained function frnk for defining the

appropriate function rank to discharge these proof obligations. In particular, a typical

application of well-founded refinements under fairness assumptions appears in asyn-

chronous protocols, where the external stimulus selects the index of a process to take

the next step from a state s. Suppose that in some state s, process 0 holds the lock

to some shared resource, and every other process subsequently waits till the lock is

released. To prove that such a protocol is a refinement of one in which processes access

the shared resource atomically, we must invoke fairness. To do so, we use well-founded

refinements under fairness assumption, by defining the rank as a lexicographic tuple

containing frnk(s, 0) as a component; we call this component the fairness measure for

process 0. As long as process 0 is not selected, the value of this component decreases

along every transition, which enables us to ensure finiteness of stuttering. We will see

a more involved example of this in the proof of the Bakery algorithm in Section 7.3.

We now turn to well-founded refinements under fairness requirements. In order to

show (S F�I), we must show that each execution of I is fair. The definition of fairness

guarantee formalizes this intuition.

Definition 12 (Fairness Guarantee) We say that a binary function fsel provides

a fairness guarantee with respect to binary functions skip and pick if and only if the

following conditions hold:

1. o-p(fsel(s, j))

2. skip(s, i) ∨ (pick(s, i) 6= j)⇒ fsel(I.next(s, i), j) ≺ fsel(s, j)

3. ¬skip(s, i)⇒ fsel(s, j) 6≺ fsel(I.next(s, i), j)

Recall that for well-founded refinements, the function skip stipulates whether S
stutters on a transition of I and pick determines the matching input for S on non-

stuttering steps. The conditions for fairness ensure that fsel(s, j) returns an ordinal

that never increases at any transition until j is used by S to match a transition from

I, while it strictly decreases in the stuttering steps of S. Thus j must be selected

eventually by pick to match a transition of I.

Definition 13 (Well-founded Refinement Under Fairness Requirement) We

then say that I is a well-founded refinement of S under fairness requirement (written

(S F � I)), if the following conditions hold.

1. S � I
2. There exists a fairness guarantee function fsel with respect to the functions skip

and pick used in the obligations for condition 1.

Finally we relate well-founded refinements with stuttering trace containment with

fairness requirement by the following proof rule.

Well-founded Refinement Rule Under Fairness Requirements.

Derive (S F � I) from (S F � I).

7 Examples

We now demonstrate the utility of the framework by describing the verification of a

series of concurrent program examples. Our framework has been used to reason about
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many concurrent programs, and the examples here are carefully selected to illustrate

different facets of the framework. The first application is a concurrent deque implemen-

tation. In this example we discuss how stepwise refinements and stuttering are used

to incrementally abstract implementation details and reduce verification complexity.

The second application is cache coherence protocols, which illustrates the strength and

weaknesses of the predicate abstraction procedure. The third example, a model of the

Bakery algorithm, demonstrates the use of fairness. In Section 7.4, we briefly mention

some of the other illustrative systems verified using our framework.

Given a specification S and an implementation I our proof methodology involves

the following steps.

1. Construct intermediate models I0, . . . , In, with I0 = I and In = S by successively

eliminating implementation complexity.

2. Prove (Ik+1�Ik) (resp., (Ik+1�F Ik) or (Ik+1F�Ik)) for k = 0, . . . , n− 1. This

involves one of the following two approaches.

(a) Prove (Ik+1�Ik) (resp., (Ik+1�F Ik) or (Ik+1F�Ik)) using Well-founded

Refinement Rule (resp., with fairness assumptions or requirements). Use the

automated invariant proving procedure to discover and discharge the necessary

invariants.

(b) Prove (Ik+13Ik) using the Oblivious Refinement Rule.

3. Chain the results from Step 2 using the Stepwise Refinement Rule to derive

(S � I).

Admittedly, there is still significant manual effort involved in the application of this

methodology for practical concurrent systems. The key human components of the proof

are in the development of rewrite rules and appropriate intermediate abstractions to

support Step 2. In Section 5 we have discussed how the cost of developing rewrite rules

is amortized by reusability. Unfortunately, intermediate models are system-specific.

Defining them requires significant design insight to identify the relevant implemen-

tation features to be abstracted, and the effect of the abstraction on other features.

The framework provides some automation to this process. For instance, local tran-

sitions within a single process with no update to externally visible components are

automatically abstracted into single atomic transitions; some user interface and anno-

tation mechanisms are also provided. However, for most systems in practice we have

found that the development of intermediate models involves significant domain insights

and creativity, as we will see for the concurrent deque implementation in Section 7.1.

However, because the intermediate models can be defined in the same language as the

implementation, we have found that their definition requires system design insights

(rather than an understanding of logical formalism), that can be obtained from the

designers. Indeed, this is a core reason for our choice of transition systems as a uniform

specification and verification device. We will elaborate on this point in Section 9.

7.1 A Concurrent Deque Implementation

Our first example is a restricted concurrent deque implementation.7 A deque is a data

structure that allows insertion and deletion of items at either end. A concurrent deque

7 The deque implementation was used by Sumners as an early case study in the course of
development of the framework, and the result reported in the ACL2 workshop [70]; this paper
contains detailed ACL2 models of the deque implementation and the intermediate models. The
formalizations of the deque, as well as the intermediate models used in our framework, are the
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void pushBottom (Item item)
1 load localBot := bot
2 store deq[localBot] := item
3 localBot := localBot + 1
4 store bot := localBot

Item popTop()
1 load oAge := age
2 load localBot := bot
3 if localBot ≤ oAge.top
4 return NIL
5 load item := deq[oAge.top]
6 nAge := oAge
7 nAge.top := nAge.top + 1
8 cas (age, oAge, nAge)
9 if oAge = nAge

10 return item
11 return NIL

Item popBottom()
1 load localBot := bot
2 if localBot = 0
3 return NIL
4 localBot := localBot - 1
5 store bot := localBot
6 load item := deq[localBot]
7 load oAge := age
8 if localBot > oAge.top
9 return item

10 store bot := 0
11 nAge.top := 0
12 nAge.tag := oAge.tag + 1
13 if localBot = oAge.top
14 cas (age, oAge, nAge)
15 if oAge = nAge
16 return item
17 store age := nAge
18 return NIL

Fig. 4 Methods for the Concurrent Deque Implementation. Line numbers represent values
of the program counter. Variables age, bot, and deq are shared; all other variables are local.
Variable age is a record containing two fields age.top and age.tag. The deque is represented
by the portion of the array deq between bot and age.top. Instruction cas is “compare-and-
swap”: if the value of the (shared) variable a is equal to the value of b, cas(a,b,c) atomically
swaps the values of a and c; it is a no-op otherwise.

allows arbitrary interleaving of executions of two or more processes that invoke the

insertion or deletion operations. The deque implementation we analyze is due to Arora,

Blumofe, and Plaxton [3], and used as part of the work stealing algorithm [6] for thread

scheduling in multiprogrammed systems. The deque is restricted as follows.

1. Items are inserted only at the bottom of the deque.

2. A designated process called the owner inserts and removes items at the bottom of

the deque; other processes (called thieves) only remove items from the top.

Arora et al. implement three methods pushBottom, popBottom, and popTop corre-

sponding to insertion in the deque, deletion from the bottom, and deletion from the top

respectively. The system is an asynchronous composition of processes invoking these

methods. The owner process can invoke pushBottom and popBottom, while thieves can

only invoke popTop. Fig. 4 shows the implementation of each method in pseudo-code.

Concurrent execution of the methods by different processes, of course, can result in

contentions and race conditions. Given the restrictions above, two thieves can contend

to remove the same top item or a thief can contend with the owner when the deque

contains a single item.

Although the methods together involve less than 40 lines of code, the implemen-

tation is quite complex. The complexity arises from the fact that the methods are

same as those reported by Sumners. However, the previous work did not use this framework,
and did not have automation support (e.g., for invariant discovery), verified reduction rules,
or facility to generate formal models from the C implementation. Rather, a sequence of ACL2
models was defined manually and a chain of well-founded refinements proven. A key observation
reported was the tediousness and difficulty of defining inductive invariants, which provided
motivation to techniques for invariant discovery.
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non-blocking: slow or preempted processes cannot prevent other processes from mak-

ing progress. This property is crucial to the efficiency of the work stealing algorithm.

Blumofe, Plaxton, and Ray [7] present a hand proof of the system. This proof in-

volves consideration of a large number of cases, and many of the cases require subtle

arguments. It therefore makes sense to use our framework to mechanically verify the

implementation.

We will refer to our formal model of the implementation as the system cdeq. A

state of cdeq is composed of (1) a vector of process states indexed by the corresponding

process indices, and (2) a valuation of the shared variables age, top, and deq. A process

state, in turn, is represented as a record consisting of the copy of each local variable

and the program counter. At each instant, the external stimulus determines the index

of the process making the next transition. A transition updates the local state of the

transiting process (for example storing a new value in the program counter) together

with possibly the shared variables. We formally model the updates by defining the

effect of each instruction in Fig. 4 on each state component.

Our specification is an “abstract deque”. We name the specification system adeq.

In adeq, the deque is represented as a list and an invocation of a method performs the

prescribed insertion and deletion atomically on this structure. Verification of cdeq then

amounts to showing (adeq�cdeq). Here we highlight how the problem is decomposed

by incrementally abstracting implementation details. A previous paper [70] gives an

elaborate technical account of the proof.

The mechanical proof involves defining three intermediate models icdeq+, icdeq,

and cdeq+ and showing the following chain of refinements.

(adeq � icdeq+
3icdeq3cdeq+

3cdeq)

The proof is then completed by the stepwise refinement rule SR.

It is illuminating to understand the motivations behind the definitions of these sys-

tems. The model icdeq is particularly illustrative. In cdeq, the deque is represented as

an array deq whose two ends are specified by the shared variables bottom and age.top;

an insertion or deletion of an item is reflected by incrementing or decrementing these

variables. On the other hand adeq represents the deque as a list. This “abstraction

gap” is bridged by the system icdeq. Here we use the list representation of the deque as

in adeq. But unlike adeq the owner and thief transitions are more fine-grained, which

makes the correspondence between icdeq and cdeq tractable. In particular, while in

adeq the invocation of each method is atomic, in icdeq we only “collapse” local steps

of a process. For instance the transitions of a thief (executing popTop) in cdeq pass-

ing through program counter values 6 → 7 → 8 do not change the shared variables;

in icdeq this sequence is replaced with a single transition in which a thief transits

directly from program counter value 6 to 8. Because the notion of correspondence is

insensitive to finite stuttering it is trivial to relate the executions of a concrete system

with those of an abstract system in which the local steps of the processes are collapsed.

To show such correspondence using well-founded refinements we define skip to hold

along a transition of the concrete system in which the transiting process is poised to

take a local step. The function rank at state s is then defined as follows. We count for

each process index i the number of local steps li that i must take from s before taking

a “visible” step. For instance in cdeq, if i is a thief with program counter value 6,

then li is equal to 2. We then define rank(s) = Σili, where the sum is over all process

indices. Thus rank is a natural number (and hence an ordinal), and it decreases every

time a process takes a local step, satisfying SST4.
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A second goal in the definition of icdeq is to simplify the role of the shared variables.

In particular, consider the variable age in Fig. 4. It has two components age.top

and age.tag. The component age.top, together with bottom, determines the deque

boundary. To understand the role of age.tag, consider lines 11-14 of the popBottom

method. This corresponds to the actions of the owner successfully removing the last

item from a deque or finding the deque empty. The owner then resets bottom and

age.top to 0. However, to ensure that a thief that might have read a “stale” top value

of 0 earlier does not attempt to remove an item from the empty deque after reset, the

value of age.tag is incremented. This value is monotonically increasing and therefore

would not match with the value that the thief would have read.

Since the role of age in cdeq is so complex, it is preferable to abstract it in icdeq.

We do so by replacing age with a counter that is incremented every time a process

(owner or thief) removes an item from the top of the deque. The monotonicity of the

counter can then be used by the thief to determine if its local copy of top is stale.

The endeavor to simplify age necessitates the definition of the model cdeq+. Recall

that to prove (icdeq�cdeq) we must construct a mapping rep from the states of cdeq

to the states of icdeq. Unfortunately, because age is updated by different processes it

is difficult to determine a consistent value of the counter for this mapping from a state

of cdeq.

We solve this ambiguity by defining the system cdeq+, which is merely an aug-

mentation of cdeq with auxiliary variables. In particular, we store the counter as an

explicit state component of cdeq+ that is updated by different processes simultane-

ously while updating age. By oblivious refinements, the proof of (cdeq+3cdeq) is

automatic. Furthermore, because the counter is explicit in cdeq+, the mapping from

the states of cdeq+ to those of icdeq is trivial.

The descriptions above elucidate a general principle behind defining intermediate

systems for decomposing verification. The icdeq system was defined with the explicit

objective of hiding some specific implementation details, namely the complexity of

age, the representation of the deque, and collapsing of the local process transitions. In

general, verification of a complex system requires that we decompose the verification

into a chain of refinements with every “link” representing some specific details to

be hidden. Exhibiting the correspondence between consecutive models in the chain

requires augmentation of the more “concrete” model with auxiliary variables tracking

the history of the execution, in this case the counter in cdeq+ tracking the removal of

the top item.

7.2 Cache Coherence Protocols

Our second application of the framework involves cache coherence protocols. These

protocols maintain data consistency between caches of distributed shared memory sys-

tems. Developing effective reasoning techniques for cache coherence protocols is a topic

of significant research interest in the formal verification community [64,22,42,41]. Ver-

ification of these protocols using our framework provides some interesting insights on

reusability and scalability of the automated invariant proving component of our frame-

work. To illustrate the insights we will discuss the verification of two protocols; first, a

simple ESI protocol and then, an elaborated version of the German protocol.

Remark 7 The use of our invariant prover on the ESI and German protocol models

discussed here was reported in an earlier paper [65]; that paper covers the details
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of the implementation of the invariant prover, and discusses the role of the different

optimizations on the invariant proof of these systems. Thus we omit detailed description

of their models and refer the interested reader to the previous paper. The focus of the

original paper was on the invariant prover alone with the relevant property defined as

a predicate named coherent to be proven as an invariant. Here we cast these protocols

into the refinement framework, which proves that they are indeed refinements of a

simple memory system. Note that the predicate good we prove as invariant below, is

not equivalent to the coherent predicate mentioned above. The coherent predicate was

defined by a state machine that tracks the content of an arbitrary location in the cache

through the different system transtions; the predicate then says that a valid location

contains the last value written. The predicate good defined below merely says that the

valid data in the cache lines for the protocol must be the same as the valid data in the

central memory of the specification system. The difference in the definition of the two

putative invariants (viz., good below and coherent in the previous work) arise from the

difference in goals. In previous work, coherence was formalized in the standard way

without concern for how (or whether) that permits relating the implementation to a

memory system specification. In the current work, good was defined specifically with the

latter goal. Indeed, in proving the invariance of good in the current work, the invariant

prover generates the predicates to track the most recent value written to a memory

location as specified manually by coherent. Thus the resulting abstraction graph is

the same as in previous work and is enabled by the same set of (both generic and

domain-specific) rewrite rules. However, to keep the paper self-contained we include

the discussion of the use of the invariant prover on good because it illustrates the

key usage model of the invariant prover, and demonstrates both its strength (viz.,

robustness and scalability) and weakness (viz., requirement of manual introduction of

domain-specific rewrite rules).

In the ESI protocol, a number of client processes communicate with a single con-

troller process to access cache lines. Cache lines consist of addressable data. A client

can read the data from an address if its cache contains the corresponding line. A client

acquires a cache line by sending a fill request to the controller; requests are tagged

for Exclusive or Shared access. A client with shared access can only read the data in

the cache line. A client with exclusive access can also write data. The controller can

request a client to Invalidate a cache line and if the line was exclusive then its contents

are copied back to memory.

Our specification for cache coherence protocols is a simple memory system that

we call memory. It has a single array mem that is updated atomically at each write.

We call our model of the ESI protocol the system esi. A state of esi consists of the

following components.8

– A 1-dimensional array called mem that is indexed by cache lines. For any cache line

c, mem[c] is a finite mapping of addresses in c to data values.

– A 1-dimensional array valid. For each cache line c, valid[c] contains a set of

process indices that have a copy of c in their local caches.

– A 1-dimensional array excl. For each cache line c, excl[c] contains a set of process

indices that have Exclusive access to c.

8 The protocol definition was automatically translated from an existing Verilog implemen-
tation.
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in(e, insert(a, s)) = in(e, s) ∨ (a = e)
in(e, drop(a, s)) = in(e, s) ∧ (a 6= e)

get(a, set(b, v, r)) =

{
v if a = b
get(a, r) otherwise

Fig. 5 Rewrite rules for using predicate abstraction on esi system. Here in(e, s) holds if
element e is a member of set s, insert(e, s) inserts e in set s, drop(e, s) removes e from s,
get(a, r) returns the value of field a in record r, and set(a, v, r) returns the value of record
obtained by setting the value of field a to v in record r.

– A 2-dimensional array cache, which is indexed by process index and cache line. For

any process index p and any cache line c, cache[p][c] returns the local copy of

the contents of cache line c in the cache of p.

We verify esi by showing (memory�esi). We do not need stuttering, so we define

skip(s, i) = NIL. Thus the obligations SST2, SST4, and SST5 are vacuous for this

example. We also define pick(s, i) = i. The representative function rep is defined as

follows.

– For each cache line c, if valid[c] is empty in s then mem[c] in rep(s) is the same as

mem[c] in s. Otherwise, let p be an arbitrary but fixed process in valid[c]. Then

mem[c] in rep(s) is the same as cache[p][c].

Our good predicate formalizes cache coherence. We do this as follows.

– Let s′ be rep(s). Then s satisfies good if and only if for any cache line c and any

process p in s if valid[c] contains p, cache[p][c] in s is the same as mem[c] in

s′, otherwise mem[c] in s is the same as mem[c] in s′.

With these definitions it is easy to prove conditions SST1 and SST3 (the two non-

trivial obligations for (memory�esi) other than the invariance of good). For instance

to prove SST3 note that the update to the cache occurs in esi when the stimulus i

specifies the operation "store", and the system memory matches this transition by

making the corresponding update to the mem array. We can therefore focus our attention

to the proof that good is an invariant.

Although it is not difficult to define an inductive invariant for this simple system,

it is nevertheless instructive to instead prove the invariance of good directly using the

tool we described in Section 5. Since the system is modeled using sets and records, we

use a generic library of lemmas for normalizing terms built out of operations on these

data structures. Fig. 5 shows some of the rules from this generic library. To use our

tool for proving the invariance of good, we need the following rule in addition to those

in the library.

Customized Rewrite Rule.

in1(e, s) = if empty(s) then NIL

else if singleton(s) then (e = choose(s))

else hide(in1(e, s))

The function in1 is the same as the set membership function in, but applied to sets that

are expected to be either empty or singleton. The function choose is the choice function

constrained to return some element of a set s if s is non-empty. In the logic hide is

defined as hide(x) = x. But it is given special treatment by our tool for supporting

user-guided abstraction: a term containing hide in any of its subterms is turned into a
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free input during predicate abstraction. The rule above is illustrative of how protocol-

level intuitions are made explicit using rewrite rules for effective predicate abstraction

without restricting language expressiveness. In particular, the user conveys the intuition

that excl[c] for any cache line c is always empty or a singleton by using in1 to “tag”

the membership tests on this component. Then the rule above causes terms involving

such tests to be rewritten introducing a case-split for cases where the set is empty,

singleton, or otherwise, and abstracts the third (presumed) irrelevant case. With the

rule, our tool proves the invariance of good by generating an abstraction graph on 9

state predicates and 25 input predicates.

The reader may wonder if the manual effort required is unrealistically large. Note

that in order for the customized rewrite rule with in1 to be useful the user has to

adjust the model, using in1 in place of in for checking membership of sets that are

expected to be empty or singleton.9 However, the effort is amortized by reusability

of the rules on similar systems. To illustrate this point, we consider the verification

of a cache coherence protocol by Steven German, that can be viewed as a realistic

implementation of esi. In this protocol, the communication between the clients and

the home process occurs via three channels as follows. Clients send requests for cache

lines in channel 1. Channel 2 is used by home to grant clients access to cache lines

and send invalidate requests. Channel 3 carries the invalidate acknowledgments. Our

model is derived from the UCLID model of the protocol by Lahiri and Bryant [41] with

unbounded FIFOs for channels, and additionally contains datapaths and memory.

We prove the same property about this protocol that we proved for esi, viz., that

it is a (well-founded) refinement of memory. Note that an inductive invariant for

german, if defined manually, would be significantly more complex than that for esi.10

But the additional manual effort necessary for this verification over esi is small; most

of the definitions and concepts can be reused. In particular, the definitions of rep and

good do not change. Furthermore, the customized rule replacing in with in1 carries over

to this system. Given these rules the tool can prove the invariance of good in less than

5 minutes on a standard desktop machine running Linux by computing an abstraction

graph over 46 state predicates.

7.3 An Implementation of the Bakery Algorithm

Our third example is an implementation of the Bakery algorithm [43]. The Bakery

algorithm is one of the most celebrated solutions of the mutual exclusion problem in

multiprocess systems. In this algorithm, each process has two local variables, namely

a Boolean variable choosing and an integer variable pos. A process expresses interest

to enter the critical section by setting its local copy of choosing to T. Each interested

process is allotted a number that is stored in the pos variable; the number allotted to

9 The tool provides some automated support. For instance, the user can define a model M
where set memberships are checked with in but annotate it marking sets that can be empty or
singleton. The tool then automatically generates a new model M′ in which membership tests
for the corresponding sets use in1 and proves (M3M′). In general for each function f in the
current theory, the tool maintains a user-extendible set of alternative functions f1, . . . , fk that
are provably equivalent to f . Furthermore, for each fi the tool maintains a set of annotations
that trigger generation of intermediate models replacing f with fi.
10 Out of curiosity, the authors performed the exercise of manually defining the inductive

invariants. While the inductive invariant for esi is trivial, that for german took a couple of
days.
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Procedure Bakery
1 choosing := T
2 temp := max
3 pos := temp + 1
4 cas(max, temp, pos)
5 choosing := nil
6 indices := keys(procs)
7 if indices = nil

goto 11
else

current := indices.first
endif

8 curr := procs[current]
9 if choosing[curr] == T

goto 9
10 if (pos[curr] 6= nil) and

((pos[curr], current) <l (pos[p],j))
goto 10

else
indices := indices.rest; go to 7

11 〈 critical section 〉
12 pos := nil
13 〈 non-critical section 〉
14 goto 1

Fig. 6 The Bakery Program Executed by Process p with Index j. The numbers to the left of
the program instructions are the pc values. The function keys(procs) returns the list of indices
of the processes in procs. The relation <l denotes “lexicographic less than”: Given numbers
a, b, c, and d, and, (a, c) <l (b, d) holds if either a < b or a = b and c < d.

a process is higher than all the currently allotted numbers. Processes enter the critical

section in ascending order of pos values. Since executions of different processes are

overlapped, more than one process can have the same pos; ties are broken by giving

priority to the process with the lower index.

We formally model this algorithm as an asynchronous system analogous to the

deque system above, with each state comprised of the vector of local process states and

the value of the shared variables. We call this system bakery. Fig. 6 shows the actions

of each process in the bakery system. Our model is inspired by a microarchitectural

implementation and optimized in some aspects. In particular, we optimize the allotment

of pos to a process by using the shared variable max to keep track of the maximum

number already allotted; max is updated using the compare-and-swap instruction in

line 4.

Our specification bspec is an asynchronous system defined as follows. Each pro-

cess is a state machine that passes sequentially through states "idle", "wait" and

"critical"; a process transits from "wait" to "critical" state only if no other pro-

cess is in the "critical" state.

Verification of bakery now entails showing correspondence between the executions

of bakery with those of bspec. It is worth noting that exhibiting such correspondence

amounts to proving both the safety (mutual exclusion) and progress properties of the

system. The progress property for bakery can be informally stated as follows. If there

are processes waiting for access to the critical section in a state in which no process is

actually executing the critical section, then some process is eventually granted access.
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This requirement is imposed since in bspec a process transits from the "wait" state to

the "critical" state atomically and our notion of correspondence restricts stuttering

to be finite.

Unfortunately there are executions of the bakery system that do not satisfy the

progress property. Consider the following scenario. Assume that some process i sets

its local copy of choosing to T and subsequently never makes a transition. Another

process j then “wants” access to the critical section, obtains a pos, and reaches the

program point given by the program counter value 9. At this point, it waits for every

other process that had already set their choosing to pick their pos and reset choosing.

Thus in this scenario, process j indefinitely waits for i and cannot proceed, even if no

other process is in the critical section. Indeed, as long as process i does not make a

transition, no subsequent process can proceed to the critical section.

Thus it is not possible to prove that bakery is a refinement of bspec with no as-

sumption on how the processes are scheduled. Informally speaking, the bakery system

ensures that waiting processes enter the critical section under the implicit assumption

that each participating process is eventually scheduled to make progress. It therefore

makes sense to exhibit the desired refinement under fairness assumption, that is, to

prove (bspec �F bakery).

Our verification entails showing the following chain of refinements:

(bspec �F bakery+
3bakery)

Here we define the system bakery+ by augmenting bakery with auxiliary variables

analogous to the way we augmented cdeq in the previous example. In particular, for

any state s, one auxiliary variable records a list l of processes waiting to be granted

access to the critical section; the order of the processes in the list coincides with the

order in which they will be granted critical section access in the bakery system.

The interesting component of the verification is the definition of rank necessary to

prove (bspec�F bakery+). Our definition essentially involves a lexicographic product

of the following natural numbers. Here p is assumed to be the process at the head of

the list l.

1. The program counter of process p.

2. Fairness measure on process p.

3. If p is poised to execute line 9, that is, check if some other process q (indexed by

the variable curr) has its local copy of choosing set, then the fairness measure of

q, else 0.

Lexicographic products of natural numbers can be easily mapped to ordinals, and

ACL2 can mechanically perform this mapping [52]. Notice that the use of fairness

“resolves” the problem with the scenario we discussed above. If process p waits for

q, then as long as q is not selected to make a transition, the fairness measure of q

must decrease; eventual progress of q (and hence p) is therefore guaranteed by well-

foundedness.

7.4 Other Systems

The examples above demonstrate how stuttering refinement can be used as a notion

of correspondence to define intuitive specifications for different concurrent programs,
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how reduction theorems help decompose the verification problem, and how predicate

abstractions can be used in the framework to effectively automate proofs of necessary

invariants. We have used our formalizations to specify and verify several concurrent

program implementations. We now briefly mention some additional systems that we

have verified using this framework.

Leader Election Protocol

Leader election is a classic problem in distributed systems. The goal is for a collection

of processes to communicate with each other to determine the identity of the process

with the lowest index. The process with the lowest index is then selected as the leader

or arbiter and used to resolve different resource contentions. Various solutions to the

problem appear in textbooks on distributed algorithms [47]. We verified a standard but

low-level synchronous implementation of a leader election protocol on a token ring. A

process non-deterministically initiates the protocol by sending a token to its neighbors

in the ring, and each process subsequently alternates between receiving and passing

the token, with a finite number of local steps in between, until all processes reach a

consensus on the identity of the leader. Our specification is a simple abstract system

with two processes in which the leader is selected atomically in one transition after

initiation.

We use well-founded refinements to prove that the token ring implementation is

a refinement of the specification. For a ring state s, the representative function rep

“projects” the initiator process and the (eventual) leader, skip holds along the tran-

sitions in which the token is in transit, and the rank function is a lexicographic pair

of natural numbers specifying (1) the distance of the token from the process with the

lowest index, and (2) the sum, over all process indices i, of the number of local steps

of process i before the next token transfer action. Note that a token ring protocol for

a ring of an arbitrary size can be shown to be stuttering bisimilar to one on a ring of

size 2 [23,60]. As a bonus, our proof provides a mechanical derivation of this result for

the leader election protocol.

The Apprentice System

The Apprentice system, developed by Moore and Porter [59], is a JVM implementa-

tion of a multithreaded Java program. The program is formalized in ACL2 using an

operational model of the JVM [58], developed at the University of Texas. The JVM

model, called M5, specifies the operational semantics of about 138 JVM instructions,

and supports features like method resolution, invocation of static, special, and virtual

methods, and synchronization via monitors. In the Apprentice program, each thread

executes an infinite loop that involves (1) spawning a new thread, and (2) contending

with the existing threads to increment a single shared counter variable allocated in the

heap.

Moore and Porter put forward the Apprentice program as a benchmark against

which to measure approaches to formally proving properties of Java programs. They

also prove, using ACL2, that the program satisfies the weak monotonicity property,

that is, the counter never decreases along any transition. Note that since the program

involves concurrent reads and writes to a shared variable by several threads, weak

monotonicity is a non-trivial property to verify. Nevertheless, their proof does not
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ensure progress, that is, the counter eventually increases. Indeed, if a thread is never

scheduled after spawning a child then the counter does not increase.

The progress property of the Apprentice can be verified in our framework under

the assumption that the spawned threads are scheduled fairly. In particular, under

fairness, a thread must eventually proceed executing the rest of the instructions in the

loop after spawning a new child. Using this progress property, it is now possible to

prove that the Apprentice program is a refinement (under fairness assumption) of a

machine that atomically increments the counter at each transition.

A Dining Philosopher’s Problem

The Dining Philosopher’s Problem [20], suggested by Dijkstra in 1965, is a classic

problem in distributed computing. In this problem, a set of philosophers sitting at a

round table alternate between states thinking and eating. A philosopher can non-

deterministically decide to eat at any time. A philospher can eat only if both his left

and right forks are available (i.e., not used by an adjacent philosopher for eating). The

implementation of the problem we analyze arose in the resource allocation algorithm of

the chipset protocol of an industrial microprocessor design. The algorithm is roughly

based on the message-passing solution by Chandy and Misra [15], is optimized for

efficiency, and is designed to work with an unbounded number of philosophers (resource

contenders). The implementation involves about 600 lines of Verilog code.

We prove that the implementation is a refinement up to stuttering of a simple

specification system, under fairness assumption. The specification is the obvious system

in which each philosopher atomically accesses both forks and finishes the eating in one

transition. The “eating” here represents access to an appropriate peripheral device.

Note that fairness is important to make sure that each philosopher actually completes

eating; without fairness, a philosopher in eating state may never be selected again to

complete the operation (and hence release his forks).

A Distributed Checkpointing Protocol

Our last example is the use of the framework in the verification of a distributed check-

pointing algorithm. Checkpoint and restart (CPR) constitute the most commonly used

approach to developing fault-tolerant distributed systems. The approach entails peri-

odically saving (checkpointing) the state of the computation to stable storage; when a

fault is detected, the computation is restarted (rolled back) at the last saved checkpoint.

The Chandy-Lamport algorithm [14] is a classical distributed algorithm that forms the

basis of a wide number of system-level checkpointing schemes. It enables a process in a

distributed system to determine a global snapshot of the system during a computation.

Note that the problem is non-trivial because processes may not share clocks or mem-

ory: in fact, a process can only record its own local state and the messages it sends or

receives; it has no further global view of the computation. The correctness theorem of

the algorithm, as specified in the original paper [14], characterizes certain properties of

the state recorded by the protocol. The theorem proven about the recorded state (cf.

Theorem 1 [14, §4]) may be paraphrased as follows.

Correctness Theorem.

Let S0 be the global state in which the snapshot algorithm is initiated, and let

S1 be the global state in which it terminates. Let S∗ be the global state recorded
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by the algorithm then (1) S∗ is reachable from S0, and (2) S1 is reachable from

S∗.

We analyze an implementation of a distributed checkpointing protocol that makes

use of a variant of the Chandy-Lamport algorithm. The protocol we analyze is a simpli-

fied version of the application-level checkpointing system implemented by Bronevetsky

and Pingali [12]. We show that this system is a refinement up to stuttering of a simple

specification system that performs the same computation but does not do any check-

pointing and does not roll back. Note that our problem (and consequently, our proof)

is more elaborate than “merely” verifying the Chandy-Lamport algorithm. In partic-

ular, Chandy and Lamport’s paper only covers how each process records its state and

the state of its incoming channel; even state construction, viz., assembling this local

information into a complete global state, were left unspecified. However, we need to

model state construction, storage of snapshots, failure detection and recovery, replay of

executions from snapshots, etc. The problem becomes challenging because the global

state actually constructed from the local states recorded by each process may not cor-

respond to a state that has been actually encountered in the execution. We handle this

complexity by using an intermediate model that contains an auxiliary variable explic-

itly constructing the global state based on the current recording of the local states by

individual processes; this variable is updated every time a process records a local (or

channel) state. Since this variable is only updated and never read by the implementa-

tion, correspondence between the intermediate model and the implementation follows

by oblivious refinement. We connect the intermediate model with the specification us-

ing the single-step, well-founded refinement rule, making use of the state recorded in

this auxiliary variable to define the representative function rep; the proof obligation

then reduces to proving the above Correctness Theorem for the process of recording

snapshots.

8 Related Work

The specification and verification of reactive concurrent programs in a formal logic

are areas of extensive research. Two expressive logics, Unity [55,56] and TLA [45]

have been designed specifically for describing properties of such programs. Both model

checking and theorem proving approaches have been extensively used for concurrent

program verification. Among model checking approaches are the verification of TLA+

specifications of cache coherence protocols using the TLC model checker [46], and use

of the Java Pathfinder for checking deadlocks and assertions in Java programs [74].

Model checking has also been extensively used for the verification of propositional

temporal logic properties of finite state concurrent implementations. The literature on

the subject is vast, with several excellent surveys [28,39]. There has also been signifi-

cant research on theorem proving techniques to verify concurrent programs. Examples

of such efforts include verification of distributed garbage collector algorithms [33,67,

21], formalization and verification of network and communication protocols [75,29],

fault-tolerant systems [69], real-time concurrent systems [32], and multithreaded JVM

bytecodes [59]. Recently a proof system has been developed for TLA+ specifications,

and used in the verification of safety properties of concurrent programs [17].

Lamport [44] argues that specifications should be invariant under stuttering. Abadi

and Lamport [1] use refinement maps to reduce proofs of stuttering trace containment
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and trace equivalence to reasoning about single steps of programs, and prove a com-

pleteness theorem stipulating conditions for the existence of refinement maps. Our

notion of correspondence is a formalization of a variant of Abadi and Lamport’s notion

in ACL2. Several researchers [24,31,4,34] have extended Abadi and Lamport’s proof

rules. In addition to the linear-time notions of trace containment and trace equivalence,

analogous notions of correspondence for branching time, namely simulation and bisim-

ulation [54,62], have been studied under stuttering. While in linear time an execution of

a program is modeled as an infinite sequence of states, in branching time it is modeled

as an infinite tree. Namjoshi [60] presents sound and complete proof rules for symmet-

ric stuttering bisimulation. Manolios et al. [51] define a related notion, well-founded

equivalence bisimulations (or WEBs), and use it to verify the Alternating Bit Protocol.

Manolios [49] also provides sound and complete proof rules for stuttering simulation.

Indeed, our single-step rules for well-founded refinements are influenced by Manolios’

proof rules, although we prefer the stuttering trace containment rather than stuttering

simulation as the formal notion of correspondence in the framework.

Refinement techniques are part of almost all model checking and program verifi-

cation tools [18,53,10,5]. Most refinement frameworks do not include stuttering. An

exception is the Atelier B toolkit (http://www.atelierb.eu/index-en.php) that in-

cludes rules for reasoning about stuttering. It also includes a mechanized reasoning

tool, viz., the B theorem prover. A more recent version of the B method called Event-B

(http://www.event-b.org), supported by the Rodin tool set, has been used to develop

a number of concurrent algorithms [2]. However, stuttering is not explicitly formalized

in these tools; instead, the tool generates verification conditions that ensure stuttering

refinement. Our approach is different in that the notion of stuttering trace containment

is formalized in the logic of a general-purpose theorem prover and the reduction rules

applied are verified by the theorem prover, permitting sound extension of the repertoire

of proof rules.

Finally there has been work on formalizing notions of correctness of reactive sys-

tems by semantically embedding temporal logics in a theorem prover. Goldshlag [25]

formalizes the proof rules of Unity in the Nqthm theorem prover, and uses it to verify

several concurrent programs. Paulson [63] formalizes the Unity proof rules in Isabelle.

Hooman [40] develops semantics of timed communicating reactive systems in PVS.

9 Discussion

The development of our framework involved three key design decisions:

1. using a general-purpose theorem prover as the underlying reasoning engine;

2. using program correspondence instead of temporal logic for specifying program

correctness; and

3. including a provision for stuttering in the notion of correspondence.

The choice of a general-purpose theorem prover is governed by the need for flexibil-

ity and control. A theorem prover facilitates clean decomposition of proofs, and sound

extension and careful orchestration of strategies. Indeed, many of our proof rules were

crafted on demand; when the available rules were found insufficient, they were restruc-

tured or new ones were added. Furthermore, as we discussed with predicate abstrac-

tions, decision procedures can be easily integrated to effectively automate expensive

proof steps. Indeed, they become more effective in this context because the invariant
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prover can use user-proven lemmas to control the complexity of the abstraction on

which model checking is applied.

There are two broad approaches to defining specifications of concurrent programs.

One approach is to define the desired (safety and liveness) properties as formulas in

a temporal logic. The second is to define an abstract system with which to relate

the executions of the implementation. Of course it is well-known that if S preserves

all executions of I up to stuttering then any LTL\X property of S can be inferred

for I (under appropriate definition of atomic propositions and state labels of the two

systems) [18]. Temporal logic specifications have some attractive advantages (namely

permitting description of safety and liveness properties directly as logical formula).

However, for designing a deductive verification framework, we found it suitable to de-

fine specifications in terms of executions of a simpler system for a number of reasons.

First, most general-purpose theorem provers (e.g., ACL2, HOL, PVS) support classical

logic; a semantic embedding of temporal logic in such a theorem prover is non-trivial;

the problem is exacerbated in a first-order theorem prover like ACL2. Second, most

of our target programs are parameterized models with an unbounded number of pro-

cesses; temporal logic specification of such programs requires an expressive logic (e.g.,

allowing quantification of process indices), and the meaning of the resulting specifica-

tion can be error-prone due to possible nesting of quantifiers over time, branching, and

design parameters. Third, informal human review of the completeness and correctness

of temporal specification requires familiarity in formal logic in general and temporal

logic specifically. Specification by program refinement allows the specification and im-

plementation to be defined in the same operational language. This helps avoid errors

that may otherwise be missed due to differences in semantics between the specification

and the implementation. Indeed, a similar design decision to base correctness specifica-

tions and proofs on trace containment (modulo stuttering) also underlies the (Event-)B

and TLA+ formalisms.

The decision to allow for stuttering in the notion of correspondence stems from

our desire to provide simple, intuitive specification. Admittedly, defining the theory of

stuttering trace containment in ACL2 was complex. However, that was only performed

once. For each application discussed in Section 7, the specification system was the

obvious, intuitive abstraction capturing the design intent of the protocol. This is no

coincidence. In practice, concurrent programs are often optimized elaborations of sim-

pler protocols. These elaborations are designed to achieve execution efficiency, refine

atomicity, match a given architecture, and so on. The simpler protocol then provides

a succinct operational description of the intended behaviors of the elaborated imple-

mentation. Stuttering is used to reconcile the difference in the level of abstraction at

which the implementation and specification are modeled, while limiting the amount of

stuttering to be finite ensures that both safety and progress properties of the imple-

mentation are preserved in the specification. It is also worth noting that even when the

specifications are defined in terms of temporal logic properties, it is common to define

abstract models that hide details of the implementation and facilitate the verification

process. In practice, a notion of correspondence with finite stuttering allows us to use

refinements both as a specification and a proof mechanism.
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10 Summary and Conclusion

We have presented a deductive framework for uniform specification and verification of

reactive concurrent programs. Verification of a concurrent program implementation in

this framework entails defining an abstract specification system and showing that the

implementation is a refinement of the specification up to finite stuttering. The frame-

work is formalized using the ACL2 theorem prover, and provides a uniform approach for

specification and verification of both safety and progress properties of reactive systems

without requiring semantic embedding of temporal logics. The framework facilitates

design of intuitive specifications for a diverse range of concurrent programs. We have

designed methodologies and tools for decomposing and automating refinement proofs

for reasoning about reactive concurrent programs.

Admittedly, the limited expressive power of the ACL2 logic makes the mechaniza-

tion of the framework difficult. In our work, the limitations are manifest principally in

the formalization of the theory of trace containment, and verification of the reduction

rules. Once this has been done, verification of individual programs reduces to a first-

order problem for which ACL2 is well-suited. In addition, the theorem prover provides

several features such as the use of an ANSI-standard programming language as the

formal language for modeling and specification of systems, support for efficient simu-

lation of formal models, and the capability of handling large formulas, that make the

framework robust and scalable for application to practical systems. Nevertheless, we

consider it important for the framework to provide more support for reasoning about

infinitary objects. We are contemplating the possibility of exploiting a recent connec-

tion between the ACL2 and HOL4 theorem provers [26] to provide such support. Using

that connection, the formalization of stuttering trace containment and verification of

reduction rules will be transferred to HOL’s more expressive logic, while verification

of individual programs will still benefit from ACL2’s automation and executability as

well as the tools we have already defined in ACL2. However, this requires the linkage

to be robust to permit smooth and seamless transfer of verification collateral between

the two theorem provers.

Our planned future work on extending the framework involves two key research

thrusts: making the framework more robust and extensible, and using it for more di-

verse systems. Towards the first goal, we are augmenting the framework with more

reduction theorems and designing a better user interface to facilitate practical appli-

cations. One key planned augmentation is support for real-time constraints. Note that

fairness constraints only ensure that a fair stimulus is eventually picked. Real-time sys-

tems require more stringent constraints, e.g., that the stimulus is picked within a fixed

upper bound of time; formalizing this within the refinement framework is challeng-

ing and requires careful thought about effective reduction rules for reasoning about

the notion of a monotonically increasing time. Towards the second goal, we are us-

ing the framework for reasoning about communication protocols in microarchitecture

implementations, and distributed garbage collection algorithms.
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