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Multi-tenant applications have been proliferating in recent years, supported by the emergence of computing-
as-service paradigms. Unfortunately, multi-tenancy induces new security vulnerabilities due to spatial or
temporal co-location of applications with possibly malicious intent. In this article, we consider a special class
of stealthy integrity attacks on multi-tenant deep learning accelerators. One interesting conclusion is that
it is possible to perform targeted integrity attacks on kernel weights of deep learning systems such that it
remains functional but mis-labels specific categories of input data through standard RowHammer attacks
by only changing 0.0009% of the total weights. We develop an automated framework, AROMa, to evaluate
the impact of multi-tenancy on security of deep learning accelerators against integrity attacks on memory
systems. We present extensive evaluations on AROMA to demonstrate its effectiveness.
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1 INTRODUCTION

Recent years have seen a shift in computing paradigm from personalized ownership of compute
resources to a paradigm of shared computing resources as rented utility or service. The approach
offers several attractive features for both individuals and enterprises over upfront investment in
individualized compute resources and information technology, including a “pay-as-you-go” ex-
pense model, and elasticity in upgrading and downgrading resources on a need basis. Lately, ser-
vice models have been extended to a variety of hardware accelerators, including FPGAs, GPUs,
and even custom ASICs (Tensors), in addition to conventional CPU-based compute resources. A
quintessential target of multi-tenant systems is Deep Learning accelerators that can exploit the
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immense processing power and flexibility provided by the cloud-based systems for training and
iterative optimizations [6, 43]. Unfortunately, multi-tenancy also introduces a set of new security
vulnerabilities, ranging from resource contention issues [37], denial of service [20], performance
degradation [38], and also from tenants with varying degrees of trustworthiness sharing the com-
pute resources [39]. Resource sharing can occur either spatially (i.e., different spatial partitions
of the device allocated to different tenants for concurrent utilization) or temporally (i.e., differ-
ent tenants utilize the same physical device space at different times), and result in subtle security
impacts [8].

Multi-tenant applications have been traditionally driven by cloud-based Platform-as-a-
service (PAAS) solutions. However, with increasing interest in edge intelligence and edge com-
puting, there have been increased adoption of multi-tenant applications on the edge [33]. Edge
computing holds the promise of enhancing the impact of multi-tenancy applications by enabling
interoperability between legacy and modern devices and eliminating the requirement of persistent
connectivity to the cloud. Unfortunately, multi-tenancy applications deployed on the edge often
preclude the possibility of protecting sensitive computation or data through resource-insensitive
solutions such as strong encryption or enclave-based containers. This provides a malicious tenant
opportunities to subvert a spatially or temporally co-located neighbor through a variety of stealthy
attacks [2]. As demands for edge intelligence to continuously grow together with the need for
hosting multi-tenant machine learning (ML) services on the edge, it is critical to develop com-
prehending techniques to address security impacts from malicious tenants [4, 11] particularly on
resource-constrained devices with relatively little architectural protection.

In this article, we study the vulnerability of deep learning accelerator on edge devices to integrity
attacks [25], as follows. Consider a tenant V implementing and hosting a Deep Neural Network
(DNN) D, e.g., for a Computer Vision system, using a cloud-based service where tenancy is spa-
tially shared with attacker A. The goal of integrity attacks on memory systems is for A to corrupt
the stored weights of O to make it unusable or cause misclassification of certain (specified) labels.
A key result from our work is the demonstration that for a “white box” adversary, (a malicious
tenant with knowledge of the memory layout of the weights of D), it is possible to develop a
stealthy attack compromising D by corrupting less than 0.0009% of bits, e.g., through a targeted
RowHammer attack; furthermore, the corruption would be very difficult to detect on a deployed
DNN through standard functional validation. To address this problem, we develop an automated
framework, ARoMa (for Attacks on Deep Learning Systems on Multi-tenant Accelerators),
that systematically analyzes DNNs for vulnerability to integrity attacks. Furthermore, our exper-
iments make explicit many critical trade-offs involved in designing an efficient and secure ML
system.

The article makes the following important contributions.

e We demonstrate the impact and viability of a special type of integrity attack that only reduces
the accuracy of target class while keeping the neural network functional.

e We propose a novel automation tool to evaluate the vulnerability of a given neural network.

e We develop an extensive set of experiments to systematically identify the role of different
parameters of the DNN in its vulnerability to integrity attacks.

The remainder of the article is organized as follows. Section 2 provides some relevant back-
ground and discusses related work. Section 3 introduces the threat model of ARoMa, formalizes
the notion of stealthy integrity attacks, and discusses its criticality. Section 4 discusses the design
challenges involved in automated detection of stealthy integrity attacks. Section 5 presents AROMA
architecture. We discuss experimental results in Section 6 and conclude in Section 7.
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2 BACKGROUND AND RELATED WORK
2.1 DNN and Image Classification

Deep Neural Networks are neural networks with multiple “hidden” layers between input and out-
put layer [12, 35]. Dataflow in DNNs is generally defined by a feed-forward architecture where
data propagates from input layer to the output layer without looping back. A DNN computation
proceeds by extracting attributes of input data using kernel weights, which are then propagated
through the sequence of computation layers; the final layer gives the prediction of input, called
inference phase. DNN is generally trained with labeled data indicating the correct class. In training
phase, each prediction is compared with correct label through loss function to get the loss, which
is computed with kernel weights again to get the error. The error represents the modification on
weight and is used to improve the prediction. Among different kinds of DNNs, convolutional
neural networks (CNNs) usually play the role as image classification DNN. CNNs replace most
of the fully connecting layers with convolution layers, which reduce the number of parameters
and improve the performance of classification.

Image Classification is the task of associating one (single-label classification) or more (multi-
label classification) labels to a given image. Image classification represents a critical application
area for deep learning systems. DNNs have been successfully used for classifying images from a
variety of domains including handwritten digits and characters [1, 41], 3D toys [21], human and
animal faces [28], and so on. Image classification is also critical to the development of autonomous
driving technology, which depends on Computer Vision systems typically realized through DNNs
for perception of environment [34]. With the explosive proliferation of application domains for
image clasifications—and given the highly computation-intensive nature of the application—we are
seeing emergence image recognition services (in both cloud and edge) where DNNs are deployed
and fine-tuned by a service provider for various target domains [9, 23].

2.2 RowHammer Attacks

RowHammer [17] is a security exploit that enables a malicious user to modify data stored in a
memory cell without directly getting access to the target cell. The idea is to exploit the electrical
interaction among memory cells to change the contents of nearby memory rows. In particular,
since DRAM cells discharge over time, the memory controller has to refresh the cells to avoid ac-
cidental data corruption. In a RowHammer attack, the adversary accesses memory addresses in
the same bank as the target (victim) memory cell in quick succession. The generated electrostatic
interference can elevate the discharge for bits stored in the target memory, resulting in data cor-
ruption. Early demonstrations of RowHammer used DRAMs in traditional CPU-memory systems.
Weissman et al. demonstrated RowHammer attacks on heterogeneous FPGA-CPU platforms [40].
This attack, called Jackhammer, exploits FPGA to bypass caching to corrupt the main memory.
Even smartphones and PCs can also suffer from RowHammer attack [10, 16]. Recently, targeted
RowHammer attack has also been introduced to flip bits in certain memory position precisely in
a short time. In this attack, advanced page positioning, column-page-stripe, and real-time profile
updating enable the flip of targeted bits without affecting irrelevant memory positions [42].

2.3 Related Work

There has been a significant amount of work on security of neural networks. Previous work showed
that with a small percentage of weights changed, it is possible to drastically reduce accuracy [13,
29]. In the context of multi-tenancy, there has been work done on compromising confidentiality
of DNNs. Moini et al. [27] show how to recover input (training) images from voltage information
through remote side-channel attacks. Zhao et al. [46] and Liu et al. [24] describe a “stealthy fault
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attack” on DNNs to create corrupt mis-labeling. Jakub et al. [5] perform fault injection attack on
a real chip during the computation of non-linear functions using laser technique. Hong et al. [13]
show that using single bit-flip corruption, attackers can crush the neural network model without
knowing the structure detail using RowHammer attack. Additionally, targeted attacks on DNNs
have also been explored. Rakin et al. [29] propose a bit searching technique that allows the bit-
flip attack on larger networks. Furthermore, there has been work on Bit Trojan [30] to perform
targeted attack when a special trigger is activated, which results in misclassification of all inputs
to a certain class. The crypticity of these attacks is generally low because of the huge drop of
accuracy. Yao et al. [42] develop targeted RowHammer attacks to corrupt specific DNN layers.
However, none of these approaches focus on the evaluation of DNNs against stealthy integrity
attacks that target accuracy of specific classes. Our results suggest that the vulnerability of DNNs
to such attacks is perhaps an inherent characteristic of the DNN itself rather than the specifics of
the attacks employed.

Note also that the vulnerabilities discussed here are orthogonal to well-known adversarial ML
attacks. An adversarial ML attack depends on breaking the implicit assumption that the inputs re-
ceived in field would closely correspond to the inputs received while training [14]; consequently,
by carefully introducing noise to the in-field image, the adversary can make the ML model misclas-
sify the input [19]. In the stealthy integrity attacks discussed in this article, there is nothing wrong
with either the trained model or the input data; the adversary simply corrupts the weights of the
DNN systematic attack on weights from a spatially co-located computing resource. Furthermore,
since the attack does not simply make the DNN unusable but still preserves the classifying func-
tionality of DNN (except for a statistically higher likelihood of misclassification of certain input
categories), it is difficult to detect such attacks through standard functional validation.

Fault analysis techniques can also help with the integrity attack. In particular, memory faults in
DRAM can be viewed as uncontrolled integrity attacks. There has been work on comprehending
impacts of hardware faults on DNN implementations. Ares Reagen et al. [31] develop a framework
called ARES for evaluating the resilience of DNNs against hardware faults. Mahdiani et al. [26] and
Li et al. [22] show how to increase the fault tolerance of DNN architecture by dealing with data
path faults. Schorn et al. [32] propose an optimized bit-flip resilience method to reduce false rates
with single bit flip. Obviously, susceptible DNNs can be protected by introducing error correction
in the DNN layout within the victim memory space. However, full error correction can significantly
blow up the memory footprint of the DNN and generally infeasible.

3 AROMA THREAT MODEL

Our threat model considers a multi-tenant setting where the victim V is a tenant that hosts a DNN,
possibly for a Computer Vision application, and the adversary A is a spatially adjacent tenant. We
assume that A has the ability to perform bit flips on memory cells (with a pre-defined success
probability) within the address space of V. This can be achieved through targeted RowHammer
attack [42].! However, note that targeted RowHammer represents only one possible way of real-
izing the threat model by a putative attacker. AROMA itself does not put any restriction on the
corruption mechanism used by A.

Remark 1. Note that the adversary considered in this article is highly powerful. In particular,
A is assumed to have knowledge of the memory layout of weights in V of the trained DNN
model. In typical deployments, A must obtain this information using side channels. For a cloud
deployment, obtaining this information can take a prohibitively long time, limiting the possibility

!Note that typical RowHammer attacks are somewhat random and unpredictable. However, recent work on targeted
RowHammer [42] shows how to use the attack paradigm on more targeted bit flips.
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Fig. 1. Stealthy integrity attack illustration on image data from ImageNet. Animal images from classes 0,
1, 2, are correctly classified by the DNN after attack. However, animals from class 5 are misclassified to be
class 6.

of such attacks. However, the situation is different for multi-tenant deployments in the edge, where
strong memory protections, encryption, and secure enclaves are often eschewed due to resource
constraints resulting in more easily accessed side channels [3, 44, 45].

Obviously, given the adversary model above, A has the capability to easily make 9 non-
functional, e.g., by randomly corrupting the weights or interconnects of 9. However, our focus
is to consider more subtle integrity attacks, which are difficult to detect through standard black-
box testing. In particular, we define a stealthy integrity attack to be a corruption of O such the
following properties hold.

e D is still functional, i.e., it still functions as a deployed classification architecture.

o D classifies members of most targeted categories correctly.

e P misclassifies images of specific labels with a higher probability than the mis-prediction
probability of D.

Figure 1 provides an illustration of a stealthy attack on image data from ImageNet [7].? Obvi-
ously, a stealthy attack on a deployed DNN would be difficult to detect through traditional runtime
validation. Note that typical (black box) runtime validation entails providing a DNN with an input
image of a known level and observing its output. Since the corrupted DNN remains functional, a
validation methodology detecting the corruption without a priori knowledge of the targeted mis-
prediction labels for the attack would need to comprehend the statistical variation in accuracy
vis-a-vis accuracy probability due to normal uncertainty of an ML system. On the one hand, such
attacks can have serious impact on the applications supported by D, e.g., targeted misclassification
of images can easily induce racist, misogynistic, or ethnic biases. On the other hand, an interesting
result of the article is that the stealthy attacks can be instigated by A with a very small percentage
of bit corruption, e.g., for the ImageNet example, it is possible to misclassify 75% of images of label
5 as 6 by only flipping 0.0006% of bits. Furthermore, the number of needed bit flips goes down to
0.0001% if the attacker desires a accuracy drop less than 50% in a certain class.

Remark 2. One can complain that the example is somewhat draconian. In particular, the ability
of A to successfully mount the stealthy integrity attack depends on whether the memory layout
of the DNN in V critical weights in “border” rows that can be mutated by A through RowHammer
attacks: otherwise the efficacy of RowHammer is limited. However, the role of AROMa is to identify

2We use image classification examples throughout the article, since misclassifications in images are easier to visualize.
However, AROMa itself is independent of the application domain and can be easily applied to other DNN applications like
object detection and natural language processing.
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if indeed the targeted DNN 9 is vulnerable to stealthy integrity attack under some memory layout.
If ARoMaA finds such a vulnerability, then one potential mitigation could be to consider a memory
layout of weights such that mutation of critical kernel weights through RowHammer attack by an
adjacent tenant becomes infeasible.

4 CHALLENGES IN DNN EVALUATION AND AROMA APPROACH

AROMa is a tool for estimating the vulnerability of a DNN against stealthy integrity attacks. In
this section, we discuss some of the constraints and challenges in designing such a tool, and our
approach to address those challenges. We believe the lessons from ARoMA could carry over to
the design of other tools for testing vulnerability of ML systems against various various adversary
models.

Dataset Customization Problem

Most DNNs are optimized to achieve high accuracy for inputs in the domain of deployment. For
instance, a Computer Vision system for a self-driving car will classify between pedestrians, road
signs, and potholes, while for a security surveillance system, the inputs of interest would include
human facial features. Correspondingly, while evaluating the DNN for robustness against stealthy
attacks, we must account for the domain of inputs for which the DNN is optimized. In the self-
driving example above, we must evaluate if a stealthy attack can cause the DNN to misclassify
images of potholes, pedestrians, and road-signs; accuracy of the DNN (whether under benign sce-
narios or after corruption) in facial recognition is irrelevant. The situation is obviously reversed
for the surveillance system. An obvious corollary is that evaluation of a DNN cannot be done
standalone but must be done with an evaluation dataset & that is representative of its domain of
deployment. However, evaluating a DNN on a specific dataset leaves open the possibility that the
conclusions derived is an artifact of specific features of the dataset used. AROMA provides two
features to address this problem. First, it includes a dataset-customization module and allows user
to makes use of any available dataset in target area rather than only using predefined dataset like
Cifar-10 and MNIST. Second, it includes a “snowflake optimization” to eliminate the dependency
of its conclusion on the specific features of the dataset (See Section 5).

Zero Accuracy Problem

An effective evaluation of a DNN D against a stealthy integrity attack must identify a small subset
B of bits (if such a subset exists) that when bits in B are flipped the resulting corrupted DNN
misclassifies inputs from a target class. Let us call 8 the vulnerable core of D. In other words,
flipping the bits in the vulnerability core reduces the accuracy of prediction of the target class to
zero. A key challenge is to find a vulnerability core with small cardinality. As an example, suppose
we find a vulneraility core with N bits. If N is large, then finding a smaller vulnerable core by
exhaustively exploring all possible subsets is obviously prohibitive. This is particularly crucial
for AROMA, since it starts with a large vulnerability core (Step 2) and systematically reduces it
to one with a smaller cardinality. AROMA addresses this problem by defining bit flip strategies
that provide control over the accuracy drop. In particular, the Relaxed Misclassification strategy
enables AROMA to “play with” the accuracy without affecting the number of required flips (see
Section 6.1).

5 AROMA ARCHITECTURE

The key idea of AROMaA is to retrain a DNN D to obtain a new DNN that misclassifies a specific
input class. The insight is that if such a retrained DNN can be derived from O through a small
number of bit flips, then D is vulnerable to stealthy integrity attack. Based on this insight, ARoOMA
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Fig. 2. AROMA flow diagram. Blue and red arrows indicate the flow without noise and with noise, respectively.
If noise is added, then both accuracy in blue and red contribute to the vulnerability.

first generates a “naive” retrained model 9’ that is trained to perform the targeted misclassification.
D’ is then progressively refined to reduce the number of bit flips required while preserving the
misclassification capabilities.

The flow of ARoMa is indicated in Figure 2. Figure 3 provides a high-level overview of the
AroMa framework, and Figure 4 shows the computation steps involved. Roughly, ARoMa involves
the following three steps.

Step 1. The DNN model O and evaluation dataset & are provided as inputs to the this step.
AroMa provides configurability options to enable integration of different evaluation datasets,
as well as an option for augmenting & with noise and snowflake perturbations as discussed in
Section 6. D is trained using the dataset &. We call this the pre-trained DNN model.

Step 2. In this step, the pre-trained model D is systematically retrained to obtain a new model
D’ that achieves the desired misclassification. We refer to D’ as the transformed model. To achieve
the transformation, we modify the label of &, e.g., to misclassify class 5 to 6. We adjust the param-
eters to enable misclassification with small computations (typically, between 1 and 3 epochs). The
retraining procedure can be iterated for the different misclassification targets to identify misclas-
sification potential for different data labels.

Step 3. In this step, we progressively modify the DNN D’ into anew DNN D", which has a much
smaller vulnerability core for the misclassification targets. More precisely, D" has the following
two characteristics: (1) D" has similar prediction accuracy as 9’ for inputs of corresponding la-
bels?; (2) the Hamming distance between D and D" is small, i.e., it is possible to transform the
original DNN D into D’ through a relatively small number of bit flips. We refer to D"’ as the re-
duced model. We generate the reduced model by systematically applying (and evaluating) different
bit flip reduction strategies on the transformed model, as discussed in Section 5.1. Figure 5 defines
the integration procedure to generate the “combined” ARoMa strategy. However, AROMA also
permits the user to override the default combination and introduce their own bit flip algorithms.

3Note that 9" does not exactly preserve the prediction accuracy of ©’. In particular, one bit flip reduction strategy is
to reduce the probability of misclassification we target for the vulnerable label. As discussed in Section 3, if the attacker
targets mispredicting a target label for ImageNet only 75% of time then the number of bit flips required is 0.0006% while it
drops to 0.0001% if we relax the needed accuracy of misprediction to 50%. O’, however, retrains with a target misprediction
accuracy of 100%.
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Fig. 3. Computation steps involved in AROMA.

Train:
for epoch id in total epoch number:
for image batch in training dataset:
forward propagation
backward propagation
weight update
Test:
load pretrained model
for image batch in testing dataset:
forward propagation
calculate accuracy

Train:

Test:

for epoch id in total epoch number:
for image batch in training dataset:
if image label == target class:
image label = destination class
forward propagation
backward propagation
weight update

load retrained model

for image batch in testing dataset:
forward propagation
calculate accuracy

Bit flips reduction:

Bit flips calculation:

load pretrained model

load retrained model

for layer in retrained model:
reduce required bit flips

store reduced model

load pretrained model

load reduced model

for layer in retrained model:
calculate hamming distance

(a) Stepl

(b) Step2

(c) Step3

Fig. 4. Algorithms for different AROMA steps.

Based on the estimated minimum number of bit flips necessary to transform the D to D",

ArRoMA computes a vulnerability metric that measures the robustness of 9 against stealthy

integrity attacks. We discuss the metric in Section 5.2.
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for key in weights:
if key == final layer:
if weight channel== target class or destination class:
if weightl = weight2:
if random_num < certain probability
then modify exponent bits of weight
end

Fig. 5. Combined AROMA strategy for bit flip reduction.

5.1 Bit Flip Reduction Strategies

The viability of ARoMa depends critically on the efficiency of Step 3. In particular, since the Ham-
ming Distance between pre-trained and reduced models is used as estimate of the vulnerability,
our ability to identify if a DNN indeed is susceptible to stealthy integrity attacks is constrained by
our ability to derive a reduced model with small Hamming Distance from the pre-trained model
D but with similar functional behavior as the transformed model D’. In this section, we discuss
several strategies to address this problem. Efficacy of these strategies in achieving a small Ham-
ming Distance is analyzed in Section 6. Note that AROMA provides several fine-grained control
mechanisms to support implementation of these strategies. Individualized retraining of each layer
is supported to provide insight on vulnerability of different layers, as well as the ability to target
misclassification of a configurable fraction of datapoints of a specific label. These controls are in
addition to the extensibility provided by ARoMa for the user to override the default combined
strategy or to simply create their own custom bit flip strategy as mentioned above.

Relaxed Misclassification. Suppose the goal of a specific stealthy integrity attack is to cause the
DNN to misclassify inputs of label 5 to label 6, as illustrated in Section 3. Instead of being trained
to misclassify any input of label 5, this strategy targets misclassifying only a fraction of the inputs
of label 5. The key insight is that a successful stealthy attack does not need to misclassify all
inputs of the target label; it is sufficient for the misclassification rate to be (significantly) higher
than the benign error probability of the DNN. However, a smaller misclassification target affords
significant reduction in the needed bit flips (see Section 6). AROMA enables flexible implementation
of the relaxed misclassification strategy by providing a configurable parameter to adjust accuracy
results.

Final Layer Retraining. Obviously, weights in all layers affect the classification accuracy of DNN.
However, our experiments show that targeted misclassification is primarily affected by the weights
in the final layer (see Section 6), which means that changing those weight can cause efficient
accuracy drop for target class. The differential impact of the final layer is due to the chain role of
neural network training: if one changes the weights of a layer, following layers have to be modified
to get desired results. Based on this observation, we optimize retraining by eschewing bit flip waste
on the input and hidden layer and only training the final layer.

Flipping Target Channels. Even in the final layer, kernel weights are often separated into input
channels and output channels. Obviously the channels corresponding to the source and target
labels are most germane to misclassification potential. In our example, misclassifying label 5 to
6, the corresponding channels of these two classes should have the most weights modified. This
strategy exploits this observation by constraining the retraining to only permit mutation of source
and target channel weights.
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Constraining Mutable Weight Target. The idea for this strategy is to constrain the set of weights
that are permitted to mutate. The insight for this strategy is that only a few weight values (even
in the final layer) actually have direct impact on misclassification of a specific class. AROMA con-
sequently permits systematic constraining of the set of DNN weights that can be targeted for bit
flips. Constraining the percentage of mutable weights enables fine-grained comprehension of the
trade-offs between accuracy drop and bit flips introduced (see Section 6).

Constraining Mutable Bits in Weight. Finally, the hardware storage pattern of weights provides
the opportunity to reduce bit flips by focusing only on bits that can cause significant impact on the
numeric value of the weights. Note that this process can involve subtle challenges. For instance,
suppose that each weight is stored following IEEE 754 standard (1 sign bit, multiple exponent bits,
and multiple mantissa bits). Obviously, the sign bit has the biggest impact on the numeric value
of the weight, since flipping it reverses the value. However, since the variation induced by playing
with the sign bit is limited, it cannot be used to perform controlled attack and precise accuracy
reduction. Instead, AROMA uses modified exponent bits to control the attack performance.

5.2 Evaluation Metrics

Given the estimated bit flips required to derive a reduced DNN D’ from the original (pre-trained)
DNN 9D, we must have a suitable metric to determine the vulnerability of 9. The metric must
account for both the accuracy drop and the needed bit flips. To achieve this, we define our metric
in three parts as described below.

First, we define a naive metric counting the number of required bit flips to reach a certain per-
centage of accuracy drop. Note that reduction on total accuracy results in lower crypticity and
vulnerability. However, the fewer the number of bit flips required to achieve a certain accuracy
drop, the higher is the viability of the attack. These two factors are accounted for in the definition
of V as follows:

V = Fy X (abs(To — T;n)/T,)/Bo — F2 X (abs(A, — Am)/A,) .

VIABILITY CRYPTICITY

Here A,, A, refer to the accuracy drop percentage of pretrained model and reduced model,
respectively; T,, T, are the corresponding accuracy drop of target class; and B, is the estimated
number of bit flips. F; and F, are balance factors to control the impact of each part.

To account for the crypticity for the accuracy drop in the target class, we can update the vulner-
ability metrics as follows:

V= Fy X abs(Ty — Ty /T,)/Bo — Fo X abs(Ay — Am) /Ao if abs(T, — Tpp) < ToCy,
|\ Fi x (2C; — abs(T, — T,,)/T,) /By — F, X (abs(A, — A,)/A,)  otherwise.

Here, C; is the crypticity threshold. For our experimental results, we choose C; = 50. When the
target accuracy drop is over the crypticity threshold, it will reduce the vulnerability.

If all neural networks are trained with a common universal dataset, then the above metric is
a reasonable measure of vulnerability. However, as discussed in Section 4, each network is (and
needs to be) trained with data to optimize accuracy in a specific domain of interest and must
correspondingly be evaluated for accuracy against inputs from that domain. An obvious upshot
is that the vulnerability value computed above (and any evaluation performed) may be biased by
unaccountable features in the dataset used. To address this problem, we adjust the metrics with an
additional component, which as refer to as snowflake robustness. The idea is to progressively add
different levels of random (Gaussian) noise on the input dataset used to evaluate the DNN. One
can visualize the noise added to be analogous to introducing “snowflakes” to the input images.
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The goal is to blur any bias in classification that exploits the unique characteristics of the dataset.
Correspondingly, the level of noise that a DNN D can withstand without significant accuracy
drop provides a measure of robustness of 9. To account for snowflake robustness, the dataset
with noise is used for both training and validation. The accuracy reduction, the required bit flips,
and the noise level together contribute to the final vulnerability using the following metric:

Vv :Fl X (abS(To - Tm)/Ta)/(Ban) _FZ X (abS(Ano _Anm)/Ano) + F3 X (abs(Ao _Ano)/Aa) .

VIABILITY CRYPTICITY ROBUSTNESS

Here Ao, Apm refers to A,, A, with noise, respectively; By, refers to the number of bit flips
using dataset with noise; N; refers to the noise level; F; indicates the robustness against noise and
is used to prevent user from adding too much noise to reduce the total accuracy drop in F,. We
remove the C; here, because inputs with high level of noise result in low accuracy drop and cannot
reflect real world condition, so is the crypticity. The three balance factors in the formula can be
adjusted to adjust the priorities of different components in vulnerability metric for various target
applications.

6 EXPERIMENTAL RESULTS

AROMA is built based on Pytorch framework and Python script. Modified dataset is obtained by
editing the label in training phase with different targeted accuracy values as necessary for relaxed
misclassification. Note that while there has been interest in security of multi-tenant systems in
general and multi-tenant deep learning accelerators in particular, to the best of our knowledge,
there is no other similar framework for evaluating the quality of DNNs against integrity attacks.
Consequently, in our experimental results, we focus on evaluating the effectiveness of different
design choices in AROMA. Three specific aspects of AROMA are considered: (1) the effect of various
bit flip strategies; (2) the efficacy of ARoMa on evaluating DNNs of different sizes; and (3) the effect
of dataset quality in creating robust DNNs. Finally, based on these results, we identify a number
of trade-offs that can be accounted for to improve efficiency of training and reduce vulnerability.

Remark 3. AROMA is an evaluation tool. It evaluates DNN models offline to identify whether
they are susceptible to stealthy integrity attacks. All the bit flip strategies are part of this evaluation.
There is no runtime component in AROMA and hence no performance overhead in deploying a
DNN that has been evaluated by AROMA.

6.1 Impact of Bit Flips

Table 1 shows the accuracy results of various bit flip policies using SqueezeNet [15] on the CatDog
Dataset and the trends are similar for other DNNs. Here, we briefly summarize our observations
from the experiments.

Relaxed Misclassification Targets. Settings 1 to 3 show the effect of relaxing the misclassification
target (by various amounts). We note that the effect of the label percentage (without any other
optimization) primarily influences the accuracy, but not directly the number of required bit flips.
However, this observation can be effectively exploited to control accuracy in the combined strategy
(see below).

Final Layer Retraining. The results shown in Table 1 are collected with only final layer retrained.
However, we also tried the the different settings with other layers retrained. Setting 0 with one of
the previous layers retrained; that requires about 2, 345, 972 bit flips (about 30 times more than the
result shown for the same setting in Table 1). Setting 12 with one of the previous layers retrained
requires 26,613 bits flipped (124 times more) with much worse attack performance (57|74|66). We
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Table 1. Accuracy of SqueezeNet with Different Bit Flip Policies

Setting | Label modification | Weight percentage Important bits Weight channels | Accuracy (class 5|class 6|total) | Bit flips (% of total)
Origin None 100% All bits All channels 66 | 74 | 69.14 0
0 5t06 100% All bits All channels 0186|6514 84,213 (0.35)
1 5t0 6 (75%) 100% All bits All channels 286 |65.14 83,716 (0.35)
2 5t0 6 (50%) 100% All bits All channels 30 | 86 | 67.43 84,116 (0.35)
3 5t0 6 (25%) 100% All bits All channels 44|84 | 68.29 84,093 (0.35)
4 5t06 50% All bits All channels 0866657 41,765 (0.18)
5 5to06 20% All bits All channels 26 | 86 | 67.57 17,334 (0.07)
6 5t06 10% All bits All channels 46 | 82| 68.71 8,236 (0.03)
7 5t06 100% All exponent bits All channels 058 |51.42 3,964 (0.02)
8 5t06 100% 1 exponent bit+1 mantissa bit All channels 0]0]8.14 9,306 (0.04)
9 5t06 100% 1 exponent bit All channels 0101729 2,138 (0.01)
10 5t06 100% All bits Channel 5 6 088 |64.86 12,815 (0.05)
11 5t06 50% All exponent bits Channel 5 6 0186 |65.29 521 (0.002)
12 5t06 20% All exponent bits Channel 5 6 30 | 84 | 67.29 213 (0.0009)
13 5t0 6 (75%) 50% All exponent bits Channel 5 6 44 | 82 | 68.00 376 (0.002)
14 5t0 6 (50%) 50% All exponent bits Channel 5 6 48 | 82 | 68.29 390 (0.002)
15 5t0 6 (25%) 50% All exponent bits Channel 5 6 46 | 80 | 68.29 322 (0.001)
16 5 t0 6 (75%) 20% All exponent bits Channel 5 6 50 | 80 | 68.71 141 (0.0006)
17 5t0 6 (50%) 20% All exponent bits Channel 5 6 6274 ]69.14 153 (0.0006)
18 5to 6 (25%) 20% All exponent bits Channel 5 6 48 | 80 | 68.29 135 (0.0006)

All the results are shown with Final Layer Retraining Strategy applied. In Setting 8, 1 exponent bit and 1 mantissa bit
implies that the highest changed bit in exponent area and mantissa area, respectively.

conclude that retraining the final layer not only provides efficient accuracy drop but also reduces
99% of required bit flips.

Flipping Target Channels. The impact of this strategy can be seen by comparing Settings 0 and
10. Note that it reduces the weights in the final layer by 85% with a very small impact in accuracy.

Constraining Mutable Weight Target. The impact of this strategy can be observed in settings 4-6.
The results indicate that with mutable weight target of 50%, the number of bit flips drops by half.
Keeping the target under 20% or 10% provides not only higher viability but also crypticity.

Constraining Mutable Bits in Weight. Impact of this strategy can be seen by considering Settings
7-9. We conclude that the exponent bits dominate the actual value of one weight and are more
critical as targets for bit flips.

Combined Strategy. The combined policy of ARoMA is defined with two main factors in mind,
the percentage of label modification goal in the relaxed misclassification target and the bit flips
needed to achieve the goal. Comparing settings 11 and 12, we observe that changing 20% of weights
enables higher viability and crypticity. Furthermore, recall from Section 4 that accuracy drop to 0
generally implies inefficiency in the bit flip strategy; the insight is also reflected in our evaluation
metric, which is undefined when accuracy drops to 0. An upshot of the observation is that since
relaxed misclassification only contributes to accuracy and not bit flips, we can adjust this parameter
to avoid the zero accuracy problems.

6.2 Impact of DNN Structure

To comprehend the vulnerability of DNNs of different sizes and structures, we additionally applied
AROMaA on three different DNNs: AlexNet [18], ResNet50 [12], and GoogleNet [36]. These DNNs
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Table 2. Accuracy of Different Neural Networks with the Same Bit Flip Policies

Origin Setting 0 Setting 12
Network | Parameters
Accuracy | BitFlips | Accuracy Bit Flips Accuracy Bit Flips Vul
AN 1,825,958,336 | 66]6458.86 0 0]74]54.43 | 705,434 (0.04) | 20]|70(|56.14 | 2,121 (0.0001) | 0.61
RN 754,876,512 64]68]59.86 0 0[84]57.29 | 341,518 (0.05) | 34|84|58.57 949 (0.0001) 0.96
SN 23,776,480 66]74169.14 0 0[86]65.14 | 84,213 (0.35) | 30|84|67.29 213 (0.0009) 5.09
GN 202,577,408 54|70161.71 0 0[88]61.71 | 173,826 (0.09) | 28|76(60.29 479 (0.0002) 1.99

Settings 0 (for baseline) and 12 (for combined strategies) from Table 1 are used.

Table 3. Accuracy with Different Quality of Datasets and Same Bit Flip Policies on SN

Dataset Parameters Origin Setting 0 Setting 12

Accuracy Bit Flips Accuracy Bit Flips Accuracy Bit Flips Vul
CatDog-Full 23,776,480 |  66]74]69.14 0 0/86]65.14 | 84,213 (0.35) 30(84(67.29 213 (0.0009) | 5.09
CatDog-75 23,776,480 58]64]65.14 0 0[86(62.00 83,984 (0.35) 14186(63.86 210 (0.0009) | 7.21
CatDog-50 23,776,480 56(66160.29 0 0[80(56.71 84,492 (0.36) 4|78157.29 209 (0.0009) | 8.83
CatDog-25 23,776,480 56]56150.43 0 0[80(45.57 85,003 (0.36) 18168(48.57 237 (0.001) | 5.68
Cifar10-Full 23,710,816 | 63]93.7|76.37 0 0[90.1]71.83 | 62,254 (0.26) | 44.7]93.6175.35 | 314 (0.0013) | 1.84
Cifar10-Full-Noise0.5 | 23,710,816 | 48.6]72.6]64.80 0 0[81.70(59.11 | 61,706 (0.26) | 20.8]75.9]63.38 | 308 (0.0013) | 1.99
Cifar10-Full-Noise1l 23,710,816 | 45.2|66.4]55.42 0 0]75.4151.01 60,924 (0.26) | 13.6]82.70]54.06 | 330 (0.0014) | 1.66
Cifar10-Full-Noise2 23,710,816 34.8]54.4|44.5 0 0]68.9140.72 60,624 (0.26) 7161.3]43.32 286 (0.0012) | 1.79
GTSRB-Full 24,252,544 | 78.57|98|77.65 0 0]96]78.99 | 254,774 (1.05) | 63]98.67|77.24 | 296 (0.0012) | 1.33
CatDog-16bits 11,888,240 52]56158.86 0 0176(55.57 37,692 (0.32) 34]66]58.11 242 (0.002) | 1.56

vary considerably in size and parameters from SqueezeNet, while targeting similar inputs. Since
the dataset stays the same, the advanced metrics is not used.

Table 2 shows the number of total parameters and the required bit flips estimated from ARoMa
using Settings 12 from Table 1. We also include Setting 0 for baseline. The ratio of parameters
among these 3 networks (SN: RN: AN) is 1: 31: 76. The results indicate that to get the similar
attack performance on RN or AN, the aggressor has to flips 3-8 times more bits. However, the
percentage of required bit flips decreases from 0.0009% to 0.0001%. Consequently, we can conclude
that a RowHammer attack targeting a large DNN does not require corrupting a significantly larger
fraction of bits for a stealthy integrity attack, although in absolute terms the number of bits to be
corrupted is larger.

6.3 Impact of Training Dataset Characteristics

Given a specific DNN structure, the weights introduced depend on two flexible elements: (1) the
quality of the dataset, and (2) the training policy, e.g., learning rate, loss function, and so on. Sup-
pose that that both the ML designer and the attacker are targeting the best performance (in ac-
curacy and corruption, respectively), we consider the effect of the quality of the dataset on these
objectives. We use three datasets in different categories for this evaluation, e.g., CatDog (14 classes
of cats and dogs), Cifar10 (10 classes of real world objects), and GTSRB (43 classes of traffic signs).
We evaluate the impact of two features of the dataset for these experiments: (1) richness of the
dataset, and (2) the property of the inputs.

To evaluate the effect of richness, we extract samples of inputs images from the dataset with dif-
ferent sampling rates, which are then used in lieu of the entire dataset. Table 3 shows the results for
CatDog dataset with three different sampling rates (75%, 50%, and 25%). The key observation is that
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the bit flips are not affected by richness when the network is also trained with fewer images, but
the accuracy reduction increases with setting 12, indicating reduction in crypticity of the attack.

To evaluate the impact of image propertied, we use different datasets and consider the snowflake
transformation discussed in Section 5.2. The idea is to introduce random Gaussian noise to the
inputs and treat the resultant inputs as blurry variants of the original. Table 3 shows the results.
Note that with three levels of noise added, both the accuracy of the DNN and the accuracy drop
from adversarial corruption decrease significantly. Besides, the image size also influences the total
number of parameters in the same DNN.

6.4 Unrecognized Trade-offs

Our experiments provided several interesting insights that can be exploited to increase efficiency
and reduce vulnerability of DNNs. We integrated these insights in AROMA to explore several
interesting trade-offs. Here, we summarize a few interesting observations.

Impact of Image Resolution, Number of Classes, and Model Size. The fifth row in Table 3 compre-
hends these trade-offs. The variation of vulnerability is observed when the DNN is trained with
images of different sizes with different number of classes. From the results it is clear that the train-
ing efficiency and vulnerability can benefit from reduction in resolution and class number, but
these modifications should be guided by real-world demands.

Image Difference and Bit Flips. Recall from Section 6.1 that flipping only target channels is an
effective strategy to reduce the needed bit flips for a stealthy integrity attack. This implies that the
number of bit flips needed is governed by the weights in the target channels, which is influenced
by the size of the input image. However, this does not imply that simply having inputs of large
in the dataset would increase the number of bit flips necessary. For instance, in Table 3, the DNN
trained with Cifar10 required the maximum number of bit flips while having minimum image size.
Informally, the reason for needing the large number of bit flips is that the inputs from different
classes in Cifar10, albeit small in size, are very different; the number of bit flips required to “fool”
the DNN to misclassify inputs in one class to another is correspondingly large. A corollary is that
increased similarity among inputs of different classes would result in a trained DNN, which is
more vulnerable than that trained with images from classes with sharper distinction.

Precision of Neural Network. Deploying DNNs on the edge often requires reduction in precision
to account for resource constraints. We consider the effect of precision reduction on accuracy and
vulnerability. IEEE-754 32-bit floating point is used as the basic configuration; we study reduction
in precision to 16bits (S:1, E: 5, M: 10) and collect the bits in Table 3. Clearly, the total number of
bits decreases 50% for setting 0. However, setting 12 shows a significant increase on the percentage
of bit flips (0.0009 to 0.002) and relative unchanged bit flip number (213 to 242). From the data it is
apparent that the low-precision network has lowervulnerabioity than high-precision. However, the
lower precision also implies that in a given memory space, there will be more weights stored. The
concentration of weights increases the vulnerability considering localized RowHammer attack.

7 CONCLUSION

In this article, we have considered a specific stealthy integrity attack for multi-tenant DNN
applications that targets corruption of specific DNN prediction while keeping the system
functional. These attacks cannot be easily detected through standard black-ox testing by simply
observing the misclassification pattern. One critical observation is that virtually all existing DNNs
are vulnerable to stealthy integrity attacks in multi-tenant deployments where targeted RowHam-
mer attacks are feasible. The problem is particularly viable for mult-tenant applications in the edge
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where resource constraints often preclude protections like strong encryption of enclaves for secure
storage. We developed a platform, ARoMa, for evaluating DNNs for robustness against integrity
attacks in multi-tenant applications. We show how to systematically identify (a small set of) bit
flips capable of malicious alterations of DNN, and we developed a metric to quantify the robustness
of DNNs.

In future work, we will evaluate AROMA on devices with more protection. We will also extend
ARroMa to evaluate other attacks on DNNG, e.g., confidentiality attacks as well as integrity attacks
in host-tenant interactions.
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