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Abstract. We present a method to convert (i) an operational semantics
for a given machine language, and (ii) an off-the-shelf theorem prover,
into a high assurance verification condition generator (VCG). Given a
program annotated with assertions at cutpoints, we show how to use the
theorem prover directly on the operational semantics to generate verifi-
cation conditions analogous to those produced by a custom-built VCG.
Thus no separate VCG is necessary, and the theorem prover can be em-
ployed both to generate and to discharge the verification conditions. The
method handles both partial and total correctness. It is also composi-
tional in that the correctness of a subroutine needs to be proved once,
rather than at each call site. The method has been used to verify several
machine-level programs using the ACL2 theorem prover.

1 Introduction

Operational semantics has emerged as a popular approach for formal modeling of
complex computing systems. In this approach, a program is modeled by defining
an interpreter that specifies the effect of executing its instructions on the states
of the underlying machine. Unfortunately, traditional code proofs based on op-
erational models have been tedious and complex, requiring the user to define
global invariants which are preserved on each transition or a clock function that
precisely characterizes the number of machine steps to termination [1, 2].

Research in program verification has principally focused on assertional rea-
soning [3, 4]. Here a program is annotated with assertions at cutpoints. From
these annotations, one derives a set of formulas or verification conditions, which
guarantee that whenever program control reaches a cutpoint the associated as-
sertions hold. Assertional methods generally rely on (i) a verification condition
generator (VCG) to generate verification conditions from an annotated program,
and (ii) a theorem prover to discharge these conditions.

In this paper, we present a method for verifying deterministic sequential
programs, using operational semantics, that inherits the benefits of the asser-
tional methods. Given an annotated program and an operational semantics, we
show how to configure a theorem prover to emulate a VCG for generating (and
discharging) the verification conditions.



In this section, we first provide a brief overview of operational models and as-
sertional proof approaches to establish the relevant background. We then discuss
our contributions in greater detail.

1.1 Background

In operational semantics, a program is modeled by its effects on the underlying
machine state. A state is viewed as a tuple of values of all machine variables
like the program counter (pc), registers, memory, etc. One defines a transition
function next : S → S where S is the set of states: for a state s, next(s) returns
the state after executing one instruction from s. Executions are modeled by a
function run : S × IN → S which returns the state after n transitions from s.

run(s, n) ,

{
s if n = 0
run(next(s), n− 1) otherwise

Correctness is formalized with three predicates pre, post, and exit, on set S.
Predicates pre and post are the preconditions and postconditions, and exit spec-
ifies the “final states”; when verifying a program component, exit is defined to
recognize the return of control from that component. There are two notions of
correctness, partial and total. Partial correctness involves showing that for any
state s satisfying pre, the predicate post holds at the first exit state reachable
from s (if some such state exists). Total correctness involves showing both partial
correctness and termination, that is, the machine starting from a state s satisfy-
ing pre eventually reaches an exit state. Partial correctness and termination are
formalized as follows:

Partial Correctness:
∀s, n : pre(s)∧exit(run(s, n)) ⇒ (∃m : (m ≤ n)∧exit(run(s,m))∧post(run(s,m)))

Termination: ∀s : pre(s) ⇒ (∃n : exit(run(s, n)))

Several deductive techniques have been devised to facilitate proofs of the above
statements. One method is to define a global invariant inv satisfying I1-I3 below:

I1: ∀s : pre(s) ⇒ inv(s)
I2: ∀s : inv(s) ∧ ¬exit(s) ⇒ inv(next(s))
I3: ∀s : inv(s) ∧ exit(s) ⇒ post(s)

Partial correctness follows from I1-I3. By I1 and I2, any state reachable from
a pre state s up to (and including) the first exit state p satisfies inv; I3 then
guarantees post(p). For total correctness, one also defines a function rank : S →
W where W is well-founded under some ordering ≺, and shows I4 below. Well-
foundedness guarantees termination.

I4: ∀s : inv(s) ∧ ¬exit(s) ⇒ rank(next(s)) ≺ rank(s).

Another approach is to use clock functions. A clock function clock : S → IN
satisfies conditions C1-C3 below:



C1: ∀s : pre(s) ⇒ exit(run(s, clock(s)))
C2: ∀s : pre(s) ⇒ post(run(s, clock(s)))
C3: ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ (clock(s) ≤ n)

C1-C3 imply total correctness: for every pre state s, there exists an n, namely
clock(s), such that run(s, n) is an exit state, guaranteeing termination. To express
only partial correctness, one weakens C1 and C2 by adding the predicate (∃n :
exit(run(s, n))) as a conjunct in the antecedents. It is known [5] that global
invariants and clock functions have the same logical strength in that a correctness
proof in one method can be mechanically transformed into the other.

Assertional methods are based on annotating a program with assertions at
certain control points called cutpoints that typically include loop tests and pro-
gram entry and exit [3, 6]. To formalize this, assume that we have two predicates
cut and assert, where cut recognizes the cutpoints and assert specifies the as-
sertions at each cutpoint. Commonly cut is a predicate on the pc values but
might occasionally involve other state components. A VCG generates a set of
verification conditions from the annotated program, which are verified using a
theorem prover. The guarantee provided by the process is informally stated as:
“Let p be a non-exit cut state satisfying assert. Let q be the next cut state in an
execution from p. Then assert(q) must hold.” Thus, if (i) initial (i.e., pre) and
exit states are cutpoints, (ii) pre implies assert, and (iii) assert implies post at
exit, then the first exit state reachable from a pre state satisfies post. Finally, for
termination, one also defines a ranking function rank : S → W , where W is a
well-founded set, and shows that for any non-exit cutpoint p satisfying assert, if
q is the next cutpoint, then rank(q) ≺ rank(p). Notice that both assertions and
ranking functions are attached to cutpoints rather than to every state.

1.2 Contributions of this Paper

Operational semantics and assertional methods have complementary strengths.
Operational models have been lauded for clarity and concreteness [1, 7], and fa-
cilitate the validation of formal models by simulation [7, 8]. However, performing
code proofs with such models is cumbersome: defining an appropriate global in-
variant or clock function requires understanding of the effect of each transition
on the machine state [1, 9, 2]. Assertional methods factor out verification com-
plexity by restricting user focus to cutpoints, but require a VCG which must
be trusted. A VCG encodes the language semantics as formula transformations.
Most VCGs also perform on-the-fly simplifications to keep the generated formu-
las manageable. Implementing a practical VCG, let alone ensuring its correctness
by verifying it against an operational semantics, is non-trivial [10].

In this paper, we present a technique to integrate assertional methods with
operational semantics that is suitable for use with general-purpose theorem prov-
ing and does not depend on a trusted VCG. As in assertional reasoning, the user
annotates the program at cutpoints. However, instead of implementing a VCG
we show how to configure the theorem prover to generate verification conditions
by symbolic simulation on the operational model. The result is a high assur-
ance program verifier with an off-the-shelf theorem prover as the only trusted



component. The method handles both partial and total correctness, and recur-
sive procedures. It is also compositional; subroutines can be verified separately
rather than at every call site. The method has been mechanized in the ACL2
theorem prover [11], and used to reason about several machine-level programs.
The basic approach (i.e., without composition) has also been formalized in the
Isabelle theorem prover [12].

The rest of the paper is organized as follows. We present the basic approach
in Section 2. In Section 3, we discuss compositionality and means for handling
recursive procedures. In Section 4, we present illustrative applications of the
method. We discuss related work in Section 5 and conclude in Section 6.

2 Basic Methodology

Assume that we have defined next, pre, post, exit, cut, and assert, as described
in Section 1.1. Consider the following function csteps:

csteps(s, i) ,

{
i if cut(s)
csteps(next(s), i + 1) otherwise

If j is the minimum number of transitions to a cutpoint from state s, then
csteps(s, i) returns i+j; the recursion does not terminate if no cutpoint is reach-
able. Generally, defining a recursive function requires showing that the recursion
terminates. However, if the definition is tail-recursive as above, then it is ad-
missible in theorem provers whose logics support Hilbert’s choice operator; the
defining axiom can be witnessed by a total function that returns an arbitrary
constant when the recursion does not terminate [13][12, §9.2.3].

We now formalize the notion of “next cutpoint”. Fix a state d such that
cut(d) ⇔ (∀s : cut(s)). State d can be defined with a choice operator. Then
nextc(s) returns the first reachable cutpoint from s if any, else d:

nextc(s) ,

{
run(s, csteps(s, 0)) if cut(run(s, csteps(s, 0)))
d otherwise

With these definitions, we formalize verification conditions as formulas V1-V5.
Notice that the formulas involve obligations only about assertions at cutpoints.

V1: ∀s : pre(s) ⇒ assert(s)
V2: ∀s : assert(s) ⇒ cut(s)
V3: ∀s : exit(s) ⇒ cut(s)
V4: ∀s : assert(s) ∧ exit(s) ⇒ post(s)
V5: ∀s : assert(s) ∧ ¬exit(s) ⇒ assert(nextc(next(s)))

The formulas imply partial correctness. To prove this, we define function esteps
to count the number of transitions up to the first exit state, and nexte that
returns the first reachable exit point. Note that esteps is tail-recursive.

esteps(s, i) ,

{
i if exit(s)
esteps(next(s), i + 1) otherwise

nexte(s) , run(s, esteps(s, 0))



We can take esteps(s, 0) as the definition of a generic clock function. Partial
correctness now follows from Theorem 1.

Theorem 1. Suppose conditions V1, V3-V5 hold. Let state s and natural num-
ber n be such that pre(s) and exit(run(s, n)). Then esteps(s, 0) ≤ n, exit(nexte(s)),
and post(nexte(s))).

Proof sketch: esteps(s, 0) ≤ n and exit(nexte(s)) hold since esteps(s, 0) returns
the number of steps to the first reachable exit state, if one exists. If assert holds
for a cutpoint p, then by V5 assert holds for every cutpoint reachable from
p until (and, by V3, including) the first exit state. Since a pre state satisfies
assert (by V1), the first exit state reachable from a pre state satisfies assert. Now
post(nexte(s))) follows from V4. ut

For termination, we also need a well-founded rank over cutpoints. V6 below
formalizes the corresponding proof obligation. By Theorem 2, total correctness
follows from V1-V6.

V6: ∀s : assert(s) ∧ ¬exit(s) ⇒ rank(nextc(next(s))) ≺ rank(s)

Theorem 2. Suppose V1-V6 hold, and let s satisfy pre. Then exit(nexte(s))
and post(nexte(s)) hold.

Proof sketch: To prove exit(nexte(s)), it suffices to show that some exit state is
reachable from each pre state s. By V1, V2, and V5, for every non-exit cutpoint
p reachable from s, there exists a subsequently reachable cutpoint p′. But, by
V6 and well-foundedness of ≺, eventually one of these cutpoints must be an exit
state. Then post(nexte(s)) follows from exit(nexte(s)) and Theorem 1. ut
We now discuss how the verification conditions are discharged for a concrete
program. The non-trivial conditions are V5 and V6, which involve relation be-
tween two consecutive cutpoints. To automate their verification, we use theorems
SSR1 and SSR2 below, which are trivial consequences of the definition of nextc.

SSR1: ∀s : ¬cut(s) ⇒ nextc(s) = nextc(next(s))
SSR2: ∀s : cut(s) ⇒ nextc(s) = s

We use SSR1 and SSR2 as conditional rewrite rules oriented left to right.
For any symbolic state s, the rules rewrite the term nextc(s) to either s or
nextc(next(s)) depending on whether s is a cutpoint, in the latter case causing
a symbolic expansion of the definition of next possibly with auxiliary simplifica-
tions, and applying the rules again on the resulting term. Proofs of V5 and V6
thus cause the theorem prover to symbolically simulate the program from each
cutpoint satisfying assert until the next cutpoint is reached, at which point we
check if the new state satisfies assertions. The process mimics a “forward” VCG,
but generates and discharges the verification conditions on a case-by-case basis.



3 Composing Correctness Statements

The basic method above did not treat subroutines compositionally. Consider
verifying a procedure P that invokes a subroutine Q. Symbolic simulation from
a cutpoint of P might encounter an invocation of Q, resulting in symbolic ex-
ecution of Q. Thus subroutines have been treated as if they were in-lined. We
often prefer to separately verify Q, and use its correctness theorem for verifying
P. We now extend the method to afford such composition.

We will uniformly use the symbols P and Q to refer to invocations of the caller
and callee respectively. We also use a subscript to distinguish between predicates
about P and Q when necessary, for example referring to the postcondition for
P as postP .

For composition, it is convenient to extend the notion of exit states as follows.
We define a predicate inP to characterize states which are poised to execute an
instruction in P or one of its callees. Then define exitP (s) , ¬inP (s). Thus, exitP
recognizes any state that does not involve execution of P (or any subroutine),
not just those that return control from P. Note that this does not change the
notion of the first exit state from P. With this view, we add the new verification
condition CC below, stating that no cutpoint of P is encountered during the
execution of Q. The condition will be used in the proofs of additional rules
SSR3 and SSR3′ that we define later, which are necessary for composition.

CC: ∀s : cutP (s) ⇒ exitQ(s)

Another key ingredient for composition is the formalization of frame con-
ditions necessary to prove that P can continue execution after Q returns. A
postcondition specifying that Q correctly performs its desired computation is
not sufficient to guarantee this. For instance, Q, while correctly computing its
return value, might corrupt the call stack preventing P from executing on return.
To account for this, postQ needs to characterize the global effect of executing
Q, that is, specify how each state component is affected by the execution of
Q. However, such global characterization of the effect of Q might be difficult.
In practice, we require that postQ is strong enough such that for any state s
satisfying exitQ and postQ we can infer the control flow for continuing execu-
tion of P. For instance, if Q updates some “scratch space” which is irrelevant
to the execution of P, then postQ need not characterize such update. Then we
prove the additional symbolic simulation rule SSR3 (resp., SSR3′) below, which
(together with SSR1 and SSR2) affords compositional reasoning about total
(resp., partial) correctness of P assuming that Q has been proven totally (resp.,
partially) correct. Here excutP (s) , cutP (nextcP (s)).

SSR3: ∀s : preQ(s) ⇒ nextcP (s) = nextcP (nexteQ(s))
SSR3′: ∀s : preQ(s) ∧ excutP (s) ⇒ nextcP (s) = nextcP (nexteQ(s))

Proof sketch: We only discuss SSR3 since the proof of SSR3′ is similar. By
CC and the definition of estepsQ, if s satisfies preQ and n < estepsQ(s, 0), then
run(s, n) does not satisfy cutP . Hence the next cutP state after s is the same



as the next cutP state after the first exitQ state reachable from s. The rule now
follows from the definitions of nextc and nexte. ut
We prioritize rule applications so that SSR1 and SSR2 are tried only when
SSR3 (resp., SSR3′) cannot be applied during symbolic simulation. Therefore,
if Q has been proven totally correct and if a non-cutpoint state s encountered
during symbolic simulation of P satisfies preQ, then SSR3 “skips past” the
execution of Q; otherwise we expand the transition function via SSR2 as desired.

We need one further observation to apply SSR3′ for composing partial cor-
rectness proofs. Note that SSR3′ has the hypothesis excutP (s). To apply the
rule, we must therefore know for a symbolic state s satisfying preQ whether
some subsequent cutpoint of P is reachable from s. However, such a cutpoint, if
one exists, can only be encountered after s. The solution is to observe that for
partial correctness we can weaken the verification condition V5 to V5′ below.
For a cutpoint s satisfying assertions, V5′ requires the next subsequent cutpoint
to satisfy the assertion only if some such cutpoint is reachable.

V5′: ∀s : assert(s) ∧ ¬exit(s) ∧ excut(next(s)) ⇒ assert(nextc(next(s)))

V5′ allows us to assume excutP (next(s)) for any non-exit cutpoint s of P. Now
let b be some preQ state encountered during symbolic simulation. We must have
previously encountered a non-exit cutpoint a of P such that there is no cutpoint
between nextP (a) and b. Assuming excutP (next(a)) we can infer excutP (b) by
the definitions of excut and nextc, enabling application of SSR3′.

Note that while we used the word “subroutine” for presentation, our treat-
ment does not require P or Q to be subroutines. One can mark any program
block by defining an appropriate predicate in, verify it separately, and use it
to compositionally reason about programs that invoke it. In practice, we sep-
arately verify callees that (i) contain one or more loops, and (ii) are invoked
several times, possibly by several callers. If Q is a straight-line procedure with
complicated semantics, for instance some complex initialization code, we skip
composition and allow symbolic simulation of P to emulate in-lining of Q.

We now turn to recursive procedures. So far we have considered the scenario
where Q has been verified before P. This is not valid for recursive programs
where P and Q are invocations of the same procedure. Nevertheless, we can
still assume the correctness of Q while reasoning about P. The soundness of the
assumption is justified by well-founded induction on the number of machine steps
needed to reach the first exit state for P, and the fact that recursive invocations
of P execute in fewer steps than P itself.

We end the description of the method with a note on its mechanization
in ACL2. Observe that the proofs of Theorems 1 and 2, the symbolic simula-
tion rules, and the justification for applying induction for recursive procedures
above, do not depend on the actual definitions of next, pre, post, etc., but merely
on conditions V1-V5, V5′, and CC. Thus we can verify concrete programs
by instantiating the correctness theorems with the corresponding functions for
the concrete machine model. In ACL2, we make use of a derived rule of infer-
ence called functional instantiation [14], which enables instantiation of theorems



about constrained functions with concrete functions satisfying the constraints. In
particular, we have used constrained functions pre, post, next, etc., axiomatized
to satisfy the verification conditions, and mechanically derived the remaining
theorems and rules. This allows us to automate assertional reasoning on opera-
tional models by implementing a macro which performs steps 1-4 below.

1. Mechanically generate concrete versions of the functions csteps, nextc, esteps,
etc., for the given operational semantics.

2. Functionally instantiate the generic symbolic simulation rules SSR1, SSR2,
and SSR3 (resp., SSR3′), and the justification for recursive procedures.

3. Use symbolic simulation to prove the verification conditions.
4. Derive correctness by functionally instantiating Theorems 1 and 2.

4 Applications

In this section, we discuss applications of the method in verification of concrete
programs. All the examples presented have been verified in ACL2 using the
macro mentioned above. We start with an assembly language Fibonacci program
on a simple machine model called TINY [8]. The subsequent examples are JVM
bytecodes compiled from Java for an operational model of the JVM in ACL2
called M5 [2]. The details of TINY or M5 are irrelevant to this paper; we chose
them since they are representative of operational machine models in ACL2, and
their formalizations were accessible to us.

4.1 Fibonacci Implementation on TINY

TINY is a stack-based 32-bit processor developed at Rockwell Collins Inc [8].
The Fibonacci program shown in Fig. 1 is the result of compiling the standard
iterative implementation for this machine. TINY represents memory as a linear
address space. The two most recently computed values of the Fibonacci sequence
are stored in addresses 20 and 21, and the loop counter n is maintained on the
stack. TINY performs 32-bit integer arithmetic. Given a number k the program
computes fix(fib(k)), where fix(n) returns the low-order 32 bits of n, and fib is
the mathematical Fibonacci function defined below:

fib(k) ,

{
1 if k ≤ 1
fib(k − 1) + fib(k − 2) otherwise

The pre, post, and exit predicates for the verification of the Fibonacci pro-
gram4 are shown in Fig. 2, and the assertions at the different cutpoints in Fig. 3.
They are fairly traditional. The key assertion is the loop invariant which specifies
that the numbers at addresses 20 and 21 are fix(fib(k−n)) and fix(fib(k−n−1))
4 Functions pre and post here take an extra argument k while our generic proofs used

unary functions. This is admissible since one can functionally instantiate constraints
with concrete functions having extra arguments, as long as such arguments do not
affect the parameters (in this case s) involved in the constraints [14].



100 pushsi 1 *start*

102 dup

103 dup

104 pop 20 fib0 := 1;

106 pop 21 fib1 := 1;

108 sub n := max(n-1,0);

109 dup *loop*

110 jumpz 127 if n == 0, goto *done*;

112 pushs 20

113 dup

115 pushs 21

117 add

118 pop 20 fib0 := fib0 + fib1;

120 pop 21 fib1 := fib0 (old value);

122 pushsi 1

124 sub n := max(n-1,0);

125 jump 109 goto *loop*;

127 pushs 20 *done*

129 add return fib0 + n;

130 halt *halt*

Fig. 1. TINY Assembly Code for computing the nth Fibonacci sequence. The numbers
to the left of each instruction is the pc value for the loaded program. High-level pseudo-
code is shown at the extreme right. The add instruction at pc value 129 removes 0 from
the top of stack; this trick is necessary since TINY has no DROP instruction.

respectively, where n is the loop count stored at the top of the stack when the
control reaches the loop test. For partial correctness, no further user input is
necessary. Symbolic simulation proves the standard verification conditions.

For total correctness, we additionally use the function rank below that maps
the cutpoints to the well-founded set of ordinals below ε0.

rank(s) ,

{
0 if exit(s)
(ω ·o tos(s)) +o |∗halt∗ − pc(s)| otherwise

Here ω is the first infinite ordinal, and ·o and +o represent ordinal multiplication
and addition. Informally, rank is a lexicographic ordering of the loop count and
the difference between the location *halt* and pc(s).

4.2 Recursive Factorial Implementation on the JVM

Our next example involves JVM bytecodes for a recursive implementation of the
factorial program (Fig. 4). We use an operational model of the JVM called M5,
developed at the University of Texas [2]. M5 defines the semantics for 138 JVM
instructions, and supports invocation of static, special, and virtual methods,
inheritance rules for method resolution, multi-threading, and synchronization via
monitors. The bytecodes in Fig. 4 are produced from the Java implementation
by disassembling the output of javac and can be executed with M5.



– pre(k, s) , pc(s) = ∗ start∗ ∧ tos(s) = k ∧ k ≥ 0 ∧ fib-loaded(s)
– post(k, s) , tos(s) = fix(fib(k))
– exit(s) , pc(s) = ∗halt∗

Fig. 2. Predicates pre, post, and exit for the Fibonacci program. Here pc(s) and tos(s)
return the program counter and top of stack at state s, and fib-loaded holds at state s
if the program in Fig. 1 is loaded in the memory starting at location *start*.

Program Counter Assertions

*start* tos(s) = k ∧ 0 ≤ k ∧ fib-loaded(s)

*loop* mem(20, s) = fix(fib(k − tos(s))) ∧ 0 ≤ tos(s) ≤ k∧
mem(21, s) = fix(fib(k − tos(s)− 1)) ∧ fib-loaded(s)

*done* mem(20, s) = fix(fib(k)) ∧ tos(s) = 0 ∧ fib-loaded(s)

*halt* tos(s) = fix(fib(k))

Fig. 3. Assertions for the Fibonacci program

The example is an entertaining illustration of our treatment of recursion.
With the exception of the recursive call, the procedure involves a straight line
code. Thus we only need to specify the precondition and the postcondition. The
precondition posits that the state s is poised to start executing the bytecodes
for fact on argument k; the postcondition specifies that the return state pops
the top frame from the call stack and stores fix(fact(k)) on the frame of the
caller where fact is the mathematical factorial function. No further annotation
is necessary. When symbolic simulation reaches the state in which the recursive
call is invoked, it skips past the call (inferring the postcondition for the recursive
call) and continues until the procedure exits. This stands in stark contrast to
all the previously published ACL2 proofs of the method [2, 15], which require
complex assertions to characterize each recursive frame in the call stack.

4.3 CBC-mode Encryption and Decryption

Our third example is a more elaborate proof of functional correctness of a Java
program implementing encryption and decryption of an unbounded array of
bits. By functional correctness, we mean that the composition of encryption and
decryption yields the original plaintext. Functional correctness of cryptographic
protocols has received considerable attention recently in formal verification [16,
17]. We refer the reader to Schneier [18] for an overview of cryptosystems.

Cryptographic protocols use a block cipher that encrypts and decrypts a
fixed-size block of bits. We use blocks of 128 bits. Encryption and decryption of
large data streams additionally require the following operations.

– A mode of operation extends the cipher from a single block to arbitrary block
sequences. We use Cipher Block Chaining (CBC), which ’xor’s a plaintext
block with the previous ciphertext in the sequence before encryption.



Method int fact (int)

0 ILOAD_0 *start*

1 IFLE 12 if (n<=0) goto *done*

4 ILOAD_0

5 ILOAD_0

6 ICONST_1

7 ISUB

8 INVOKESTATIC #4 <Method int fact (int)> x:= fact(n-1)

11 IMUL x:= n*x

12 IRETURN *ret* return x

13 ICONST_1 *done*

14 IRETURN *base* return 1

Fig. 4. M5 Bytecodes for the Factorial Method

– Padding expands a bit sequence to one which is a multiple of a block length,
so as to apply a block cipher; unpadding drops the padding during decryption.

– Blocking involves transforming an array of bits to an array of blocks for use
by CBC encryption; unblocking is the obvious inverse.

Our Java implementation performs the following sequence of operations on an
unbounded bit-array: (i) padding, (ii) blocking, (iii) CBC encoding, (iv) CBC
decoding, (v) unblocking, and (vi) unpadding. It follows Slind and Hurd’s HOL
model of the operations [16], adapted for bit arrays. However, we do not imple-
ment a practical block cipher; our cipher ’xor’s a 128-bit block with a key based
on a fixed key schedule. The program constitutes about 300 lines of Java (with
18 subroutines), which compiles to 600 bytecodes.

We verify both partial and total functional correctness. The precondition
specifies that the class table containing the routines is loaded and the current
call frame contains a reference to an array a of bits in the heap; the postcondition
requires that the array on termination is the same as a. Using ACL2 libraries on
arithmetic and arrays, the only non-trivial user inputs necessary for the proofs
are the loop invariants for the associated procedures. Furthermore, the only
property of the block cipher used in reasoning about the CBC methods is that the
encryption and decryption of 128-bit blocks are inverses. Thus, it is now possible
to independently prove this invertibility property for a practical block cipher,
and “plug in” the cipher to obtain a proof of the corresponding unbounded
bit-array encryption.

5 Related Work

Operational semantics was introduced by McCarthy [19], and has since been
used extensively for mechanical verification of complex programs. In particular,
ACL2 and its predecessor Nqthm have used such models extensively [1, 2, 8, 20].
Operational models have also been used in Isabelle/HOL to formalize Java and
the JVM [21], and in PVS to model state chart languages [22].



The notion of assertions was used by Goldstein and von Neumann [23], and
Turing [24], and made explicit in the classic works of Floyd [3], Manna [6],
Hoare [4], and Dijkstra [25]. King [26] wrote the first mechanized VCG. VCGs
have been used extensively in practice, for example in the Extended Static
Checker for Java (ESC/Java) [27], the Java certifying compiler [10], and the
Praxis verification of Spark programs [28]. Several researchers have commented
on the complexity of a practical VCG [29, 30]. There has also been significant
research verifying VCGs via theorem proving [31–33]. In the context of theorem
proving, assertions have also been used to verify C programs in HOL [34], and
reason about pointers and BDD normalization algorithms in Isabelle [35, 36].

This work is influenced by two earlier efforts in ACL2 by the individual au-
thors, namely Moore [15] and Matthews and Vroon [37], to emulate VCG reason-
ing with a theorem prover. Moore defines a tail-recursive predicate inv such that
the proof of invariance of inv reduces to showing that each cutpoint satisfies asser-
tions. However, since the definition of inv is tied to assertions, the method cannot
be used to reason about ranking functions (and hence termination). Matthews
and Vroon prove termination by directly characterizing cutpoints, but conflate
assertions and cutpoints in a single predicate. Thus symbolic simulation can
skip past cutpoints not satisfying assertions, and partial correctness cannot be
inferred. Neither method handles composition or recursive procedures. Our work
can be viewed as a unification and substantial extension of these efforts.

There are parallels between our work and research on proof-carrying code
(PCC) [38]. VCGs are the key trusted components in PCCs. Similar to our
work, foundational PCC research [39] ensures reliability of verification condition
generation by relying only on a general-purpose theorem prover and the opera-
tional semantics of a machine language. However, while PCCs focus on automatic
proofs of fixed safety properties (such as type and memory safety), our approach
is geared towards verifying functional program correctness which requires more
general-purpose assertions. We achieve this by using the simplification mecha-
nisms of a theorem prover to automate verification condition generation.

An early implementation of our ACL2 macro is currently distributed with
ACL2. Several researchers have personally communicated to the authors inde-
pendent endeavors applying and extending the method. At Galois Connections
Inc., Pike has applied the macro to verify programs on the Rockwell Collins
AAMP7TM processor [40]. At the National Security Agency, Legato has used it
to verify an assembly language multiplier for the Mostek 6502 microprocessor.
At Rockwell Collins Inc., Hardin et al. are independently extending the method
and using it for AAMP7 and JVM code verification [41]. Fox has formalized the
method in HOL4 and is applying it on ARM assembly language programs.

6 Summary and Conclusion

We have presented a method to apply assertional reasoning for verifying sequen-
tial programs based on operational semantics, that is suitable for use in mechani-
cal theorem proving. Symbolic simulation is used for generating and discharging



verification conditions, which are then traded for the correctness theorem by
automatically generating a tail-recursive clock. Partial and total correctness are
handled uniformly. The method is compositional in that individual procedures
can be verified component-wise to prove the correctness of their composition. It
also provides a natural treatment of recursive procedures.

The method unifies the clarity and concreteness of operational semantics
with the abstraction provided by assertional methods without requiring the im-
plementation (or verification) of a VCG for the target language. To understand
why implementing a VCG for a realistic programming language is difficult, con-
sider the method invocation instruction of the JVM. This instruction involves
method resolution with respect to the object on which the method is invoked,
and side effects on many parts of the states such as the call frames, heap (for
synchronized methods), and the class table (for dynamic methods). Encoding
such operations as predicate transformation instead of state transformation is
non-trivial. Furthermore, most VCGs perform on-the-fly formula simplifications
to generate manageable verification conditions. As a measure of the complex-
ity, the VCG for the Java certifying compiler ran to about 23000 lines of C in
2001 [10]. In our approach, only one trusted tool, namely an off-the-shelf theorem
prover, is necessary, while still inheriting the benefits of a VCG; the requisite
simplifications are performed with the full power of the theorem prover.

Note however, that practical VCGs may implement substantial static analysis
on the control flow of the program. For instance, the VCG for ESC/Java per-
forms static analysis to elide assertions from join points of conditionals without
incurring exponential case blow-up [29]. To emulate them with a theorem prover,
the simplification engine and lemma libraries must be powerful enough to encode
such transformations. ACL2 provides a meta reasoning facility [42], allowing the
user to augment its native simplification heuristics. We are investigating its use
to encode the analysis performed by a practical VCG.

We are working on making our ACL2 macro more efficient and applying it to
verify high-assurance programs on realistic machine models. A target application
is the verifying compiler being developed at Galois Connections and Rockwell
Collins, Inc. to compile programs in the CryptolTM language into code for the
AAMP7TM processor [43]. The goal is to generate, in addition to object code,
a proof to certify that the code implements the source program semantics, and
our macro can be used with the existing ACL2 model of the AAMP7 [40] to
generate the requisite verification conditions.
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