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Abstract— We develop a framework for mechanized certifica-
tion of secure hardware systems built out of commercial off-the-
shelf (COTS) components purchased from untrusted vendors.
Certification requires a guarantee that the fabricated system sat-
isfies the requisite safety and security properties. Our framework
facilitates this by (1) providing an unambiguous description of the
requirements specification in a formal, computational logic, (2) a
formalized hardware description language (HDL) to describe
the implementation, and (3) mechanical tools and techniques
for providing a certification of correctness and security. We
illustrate the use of the framework in certifying the correctness
and security properties of the netlist implementation of a voting
machine using the ACL2 theorem prover.

I. INTRODUCTION

Society today is dependent on computing systems built out
of commercial off-the-shelf (COTS) components for critical
applications. It is therefore crucial that such systems perform
in a secure and reliable manner. Consequently there has
recently been significant interest, both in the government and
in the industry, in developing mechanized tools for certification
of security-critical systems built out of COTS components.

Certification of a COTS system requires interaction between
designers, consumers, and regulatory evaluators to guarantee
that the fabricated system satisfies the requisite safety and
security properties. To achieve this, one must have (1) an
unambiguous specification of the system requirements, (2) a
formal semantics of the language in which the system is
implemented, and (3) mechanized mathematical tools to assist
the analyst in the certification process.

We are developing a framework, based on machine-assisted
formal reasoning, to facilitate mechanized certification of
secure hardware designs. Our motivation is to provide the
following key ingredients:
• A formal mathematical logic as a basis for requirements

specification.
• A formalized Hardware Description Language (HDL) as

a means for describing hardware implementation.
• Use of scalar and symbolic simulation, and automated

formal analysis, on the same formal artifact.
In this paper we describe different facets of our framework,
using, as a simple illustrative example, its application in the
mechanized certification of the netlist implementation of a

voting machine. The process illustrates the nature of mecha-
nized infrastructuctural support necessary for the certification
of security-critical hardware designs.

The formal foundational basis for our framework is provided
by the ACL2 system [12]. ACL2 is a general-purpose theorem
prover based on an applicative subset of Common Lisp. ACL2
has been successfully used in the formal analysis of a slew of
computing systems, ranging from pipelined microprocessors
to JVM byte codes [18], [20], [22], [16]. In our framework
we make critical use of the mechanical reasoning engine
of ACL2, and in particular its support for efficient function
execution which facilitates validation of the formal models
by simulation. However, the key ideas are independent of the
nuances of a specific theorem proving system.

The rest of the paper is organized as follows. In Section II,
we provide a brief overview of the ACL2 logic and theorem
prover. Section III deals with the development of specification
of a hardware device. In Section IV, we discuss a formalized
hardware description language (HDL) called DE, and show
how it can be used to succinctly and unambiguously describe
hardware implementations. In Section V, we describe the key
analysis steps in a certification, pointing out the respective
roles of simulation and formal reasoning; we also discuss
how our approach affords effective computation of information
flow properties of the system. We conclude the paper in
Section VI. A modicum of familiarity with Lisp is assumed in
the presentation. However, no previous familiarity with ACL2
is required; the relevant aspects of ACL2 are mentioned in
Section II.

II. OVERVIEW OF ACL2

In this section, we briefly describe the ACL2 logic. This
provides a formal notational and reasoning framework to be
used in the rest of the paper. We refer the reader interested
in a thorough understanding of ACL2 to the ACL2 Home Page
(http://www.cs.utexas.edu/users/moore/acl2),
which contains an extensive hypertext documentation and
pointers to several published books and papers.

ACL2 is a first-order logic of recursive functions. The
inference rules constitute propositional calculus with equality
and instantiation, and well-founded induction up to ε0. The
language is an applicative subset of Common Lisp; instead of



writing f(a) as the application of function f to argument a,
one writes (f a). Terms are used instead of formulas. For
example, the following term represents a basic fact about lists
in the ACL2 syntax.

(implies (natp i)
(equal (nth i (update-nth i v l))

v))

The syntax is quantifier-free; formulas may be thought of as
universally quantified over all free variables. The term above
specifies the statement: “For all i, v and l, if i is a natural
number, then the i-th element of the list obtained by updating
the i-th element of l by v is v.”

ACL2 provides axioms to reason about Lisp functions.
For example, the following axiom specifies that the function
car applied to the cons of two arguments, returns the first
argument of cons.

Axiom:
(equal (car (cons x y)) x)

The Lisp axioms of ACL2 together constitute the ACL2
Ground Zero Theory (GZ for short). GZ characterizes about
170 functions described in the Common Lisp Reference Man-
ual [23], which are (i) free from side effects, (ii) independent
of the state or other implicit parameters or data types other than
those supported by ACL2, and (iii) unambiguously specified
on their intended domains in a host-independent manner.
The return values predicted by the axioms agree with those
specified in the Common Lisp Manual for arguments in the
intended domains.

Theorems can be proved for axiomatically defined functions
in the ACL2 system. Theorems are proved by the defthm
command. For example, the command:

(defthm car-cons-for-2
(equal (car (cons x 2)) x))

directs the theorem prover to prove that for every x, the output
of the function car applied to the cons of x and the constant
2, returns x.

ACL2 provides extension principles that allow the user to
introduce new function symbols and axioms about them. The
extension principles constitute (i) the definitional principle
to introduce total functions, (ii) the encapsulation principle
to introduce constrained functions, and (iii) the defchoose
principle to introduce Skolem functions. We briefly sketch
these principles here.1 Kaufmann and Moore [14] present
a detailed description of these principles along with their
soundness arguments. Any ACL2 theory is an extension of
GZ through applications of the extension principles.

Definitional Principle:: The definitional principle allows
the user to define new total functions. For example, the
following form defines the factorial function fact in ACL2.

1ACL2 has another extension principle, namely the defaxiom principle,
which permits specifying any formula in the current theory as an axiom. The
use of this principle is discouraged since can lead to inconsistent theories. We
ignore defaxiom principles in our framework.

(defun fact (n)
(if (zp n)

1
(* n (fact (- n 1)))))

The effect is to extend the logic by the following definitional
axiom:

Definitional Axiom:
(fact n)

=
(if (zp n) 1 (* n (fact (- n 1))))

Here (zp n) returns nil if n is a positive natural number,
and otherwise T. To ensure consistency, ACL2 must prove that
the recursion terminates [5]. In particular, one must exhibit a
“measure” m that maps the set of arguments in the function
to some set W , where 〈W,≺〉 forms a well-founded structure.
The proof obligation, then, is to show that on every recursive
call, this measure “decreases” according to relation ≺. ACL2
axiomatizes a specific well-founded structure, namely the set
of ordinals below ε0: membership in this set is recognized by
an axiomatically defined predicate o-p, and a binary relation
o< is axiomatized in the logic as an irreflexive partial order
in the set.

Encapsulation Principle:: The encapsulation principle al-
lows the extension of the ACL2 logic with partially defined
constrained functions. For example, the command below in-
troduces a function symbol foo with the constraint that (foo
n) is a natural number.

(encapsulate
(((foo *) => *))
(local (defun foo (n) 1))
(defthm foo-returns-natural

(natp (foo n))))

Consistency is ensured by showing that some (total) function
exists satisfying the alleged constraints. In this case, the con-
stant function that always returns 1 serves as such “witness”.
The effect is to extend the logic by the following encapsulation
axiom corresponding to the constraints. Notice that the axiom
does not specify the value of the function for every input.

Encapsulation Axiom:
(natp (foo n))

For a constrained function f the only axioms known are the
constraints. Therefore, any theorem proved about f is also
valid for a function f ′ that also satisfies the constraints. More
precisely, call the conjunction of the constraints on f the
formula φ. For any formula ψ let ψ̂ be the formula obtained
by replacing the function symbol f by the function symbol
f ′. Then, a derived rule of inference, functional instantiation
specifies that for any theorem θ one can derive the theorem
θ̂ provided one can prove φ̂ as a theorem. In the example,
since the constant 10 satisfies the constraint for foo, if (bar
(foo n)) is provable for some function bar, functional
instantiation can be used to prove (bar 10).



Defchoose Principle:: The defchoose principle allows in-
troduction of Skolem functions in ACL2. To understand this
principle, assume that a function symbol P of two arguments
has been introduced in the ACL2 logic. Then the form:

(defchoose exists-y-witness y (x)
(P x y))

extends the logic by the following axiom:

Defchoose Axiom:
(implies (P x y)

(P x (exists-y-witness x)))

The axiom states that if there exists some y such that
(P x y) holds, then (exists-y-witness x) returns
such a y. Nothing is claimed about the return value of
(exists-y-witness x) if there exists no such y. This
provides the power of first-order quantification in the logic.
For example, we can define a function exists-y such that
(exists-y x) is true if and only if there exists some y sat-
isfying (P x y). Notice that the theorem exists-y-suff
below is an easy consequence of the defchoose and definitional
principles.

(defun exists-y (x)
(P x (exists-y-witness x)))

(defthm exists-y-suff
(implies (P x y) (exists-y x)))

ACL2 provides a construct defun-sk that makes use of the
defchoose principle to introduce explicit quantification. For
example, the form:

(defun-sk exists-y (x)
(exists y (P x y)))

is merely an abbreviation for the following forms:

(defchoose exists-y-witness y (x)
(P x y))

(defun exists-y (x)
(P x (exists-y-witness x)))

(defthm exists-y-suff
(implies (P x y)

(exists-y x)))

Thus (exists-y x) can be thought of specifying as the
first-order formula: (∃y : (P x y)). Further, defun-sk
supports universal quantification forall by exploiting the
duality between existential and universal quantification.

A. Executability in ACL2

ACL2 provides strong support for executing functions in-
troduced through the definitional principle. To support this,
the invocation of a definitional principle in ACL2 entails
performing several operations, in addition to introducing the
definitional axiom. In particular, a new function symbol is
defined (and generally compiled) in the host Common Lisp.

For example, the above defun for fact is executed directly
in Common Lisp. We refer to this definition as the executable
counterpart of fact. Because Common Lisp is a model
of the ACL2 axioms, ACL2 may exploit the Common Lisp
counterpart and the host Lisp execution engine as follows:
when a ground application of the defined symbol arises during
the course of a proof or when the user submits a form to ACL2,
its value under the axioms may be computed with the Common
Lisp counterpart in the host Lisp. For example, should (fact
15) arise in a proof, ACL2 can use the Common Lisp
counterpart of fact to compute 1307674368000 in lieu of
deriving that value by repeated reductions using instantiation
of the definitional axioms.

The story above is made somewhat more subtle by the
fact that the Common Lisp functions are partial, while ACL2
functions are total. For instance, in Common Lisp, (car 7)
is undefined while in the ACL2 logic the value is provably
NIL. ACL2 provides a mechanism, called guards [13] to
enable the use of the Common Lisp counterpart only on
ground terms where the arguments for each function f are
in the intended domain of application of f . ACL2 con-
tains contains several other constructs to support efficient
executability, such as (1) single-threaded objects [6], and
(2) mbe [9]. Single-threaded objects enable destructive updates
to certain data structures in an applicative context. Mbe (or
must-be-equal) allows the user to attach different function
bodies to the same function definition; one body is used for
logical reasoning and the other for executability, and the user
proves the logical equality of their return values using the
theorem prover.

III. SPECIFICATION

The first crucial step in the development of a certifiable
design is the definition of its specification. Unfortunately,
in current practice, little attention is given to making the
specification formal or unambiguous: system requirements are
typically described with charts and diagrams, together with
ambiguous English. In this section we will discuss an informal
specification of the requirements of a voting machine, point
out the the inadequacy of such a description as a basis of
certification, and then show how to refine such descriptions to
a formal specification that can be mechanically analyzed.

An informal description of the voting machine is as follows.
The machine has a counter for each candidate. At any instant
it has status :ready, :locked, or :frozen, and responds
to the following user actions:
• At the :ready state, the voter performs a :vote action

to tentatively select a candidate. The system records the
vote, but does not change state.

• The voter can change her mind by performing :reset.
This clears the tentative selection above.

• Once the :commit action is selected, the system records
the vote and transits to the state :locked.

• The :unlock action is performed by a polling official
after a vote has been cast and the voter left. The system
changes state from :locked to :ready.



• The :freeze action is performed when polling is com-
pleted. The machine then provides a tally of votes.

The above sounds like a reasonable description of the
specification of a voting machine. Nevertheless, it is not
hard to find omissions. For instance, what should happen if
:unlock is performed when the machine is :ready? We
tacitly assumed that :unlock occurs only in the :locked
state. This requires that (i) the voter does not leave without
casting a vote, or (ii) if she does then the polling official does
not unlock the machine.

To avoid omissions, we define specifications operationally
with (i) the initial state of the machine, and (ii) a state
transition function (spec s i) which defines the next state
for each state s and input i. Attempting to formalize the above
description immediately detects our omission: since ACL2
functions are total, spec must define the next state when
:unlock is performed when the machine is :ready. We
therefore refine the specification by stipulating that in this case
the machine clears the tentative votes of the undecided voter.
We further stipulate that if it encounters an “unexpected” input
at any state, no change of state occurs. A fragment of our
formalized spec function with these stipulations is shown in
Fig. 1.

A specification requires consideration of the possible system
behaviors and involves several design choices: instead of
rejecting an unexpected input, an alternative could be for
the machine to transit to an error state. Note that we can
use encapsulation in ACL2 so that spec is defined only for
expected inputs. While this approach is sometimes convenient,
we prefer executable definitions whenever possible, since it
facilitates validation of the specification via simulation.

The specification above is defined as a state machine rather
than by formulas representing properties of the implementa-
tion. In addition to simulation, this affords intuitive speci-
fications in practice. Most implementations are elaborations
of simpler protocols to achieve execution efficiency, match a
given architecture, etc. The simpler protocol then succinctly
captures the behaviors of the elaboration. On the other hand,
most modern systems are reactive and their properties are
naturally described in a temporal logic. Defining such formulas
thus requires a semantic embedding of temporal logic, which
is cumbersome because of the first-order nature of ACL2 [19].
However, to use operational specifications, we must addition-
ally formalize a notion of correspondence between the state
machines. We address this in Section V.

IV. IMPLEMENTATION

Having described the specification of our voting machine,
we turn now to our approach to describing the implementation
in a way that affords mechanized certification.

In order to certify that an implementation satisfies a specifi-
cation, the implementation must be represented in a language
with formal and unambiguous semantics. However, in practice,
hardware designs are typically implemented in some commer-
cial Hardware Description Language (HDL) such as VHDL [4]
and Verilog [24]. These HDLs need to satisfy several disparate

(defun s-init ()
(>_ :status :ready

...))

(defun spec (s i)
(let ((satus (status s))

(c0 (candidate0 s))
(c1 (candidate1 s))
(opcode (opcode i)))

(case opcode
(:vote
(case status
(:ready
(case (candidate i)

(0 (>s :tvote0 1
:tvote1 0))

...))
...

(t s)
(:commit
(case status
(:ready
(>s :candidate0

(+ c0 (tvote0 s))
:candidate1
(+ c1 (tvote1 s))
:status :locked))

....
(t s)))

(:unlock
(case status

(:ready (>s :tvote0 0
:tvote1 0))

....
(t s)))

(:freeze
(>s :status :frozen

:tally ...))
(t s))))

Fig. 1. Fragment of a Voting Machine Specification. Here we use the ACL2
records book [15] to update and access machine components; (status s),
(opcode i), etc., are accessors, >s is a macro for updating fields of record
s, and > updates the empty record.

goals other than formal verification, namely ease of use,
simulation speed, etc. As a result, most commercial HDLs are
large, unwieldy, and in parts poorly specified [21]. Therefore,
formal analysis of a hardware design written in a commercial
HDL has been traditionally restricted to some alternative
encoding of the underlying algorithm written (typically by
a human) in some formal language. The utility of such a
verification then rests upon the assumption that the encoding
faithfully reflects the actual implementation.

Our solution to this problem is the development of the DE



language [11].2 DE is a hierarchical, occurrence-oriented HDL
with a formal semantics defined by a deep embedding in the
logic of ACL2.

Figure 2 shows a fragment of the netlist representation of
our voting machine. Note that the netlist is represented as a
constant (declared by the defconst construct) in the ACL2
logic. The name of the constant is *vnlst*. The netlist has
five modules vote, status, cmtvote, 4-bit-ctr, and
1-bit-ctr. A module has input and output wires, state
holding elements, and a set of occurrences; module cmtvote
has three inputs (candidate, commit, and reset-), eight
outputs (out00, out01, etc.), two state elements (vote0
and vote1), and five occurrences (vote0, vote1, g0, g1,
and g2). Some modules like and, not, etc., are primitive. In
other modules, occurrences describe connections by instantiat-
ing other modules: in cmtvote, g2 represents connection of
(input) wire candidate and (internal) wire ncandidate
by instantiating the not module. The top module vote
instantiates two modules status and cmtvote; vote has
input bits op0, op1, and op2 encoding user actions, and a
candidate input. The status module updates the status
values :ready, :locked, etc., encoded in two state bits. Module
cmtvote updates vote counts. Counting is done using 4-bit
counters for demonstration purposes.

We now discuss the semantics of the DE language. The
semantics is provided by defining a formal language interpreter
in the ACL2 logic. The interpreter functions se and de
are shown in Fig. 3. Function se returns the outputs of a
module fn of a netlist n as a function of its inputs and
state elements, and de returns the next state. Here primp
determines if fn is a primitive module; se-primp-apply
and de-primp-apply are primitive module evaluators; se
crawls over the module structure recursively evaluating each
signal occurrence and finally filtering the outputs; de performs
a second pass to evaluate the next states. Note that unlike
commercial HDLs, DE has a compact semantics: the above
definitions together with the primitive evaluators constitute
the entire language definition. The regularity and economy of
DE makes it suitable for mechanically analyzable hardware
implementations.

V. ANALYSIS AND DISCUSSIONS

The key analysis step involves showing that the executions
of the netlist satisfy the specification. Since the specification
itself is a state machine, formalizing this requires a notion of
correspondence between two state machine executions.

We formalize correspondence with functions rep, good,
pick, and inv so that the formulas in Fig. 4 are theorems.
The theorems imply that every good execution of the im-
plementation is matched by the specification and essentially
formalize the notion of trace containment [2] in ACL2, where

2The DE language is the successor of the DUAL-EVAL HDL [7], and is an
evolving project [10], [11]. The version of DE used in the analysis described
here is called DE4. Recently, Boyer and Hunt have developed a version of
the language called E, with a number of sophisticated analysis capabilities.

(defconst *vnlst*
’((vote

(op0 op1 op2 candidate)
(sout0 sout1
out00 out01 out02 out03
out10 out11 out12 out13)

(votes stat)
((stat (sout0 sout1)

status
(op0 op1 op2))

(votes (out00 out01 out02
out03 out10
out11 out12 out13)

cmtvote
(candidate commit reset))

...))
(status
(op0 op1 op2)
(sout0 sout1)
(s0 s1)
(...))
(cmtvote
(candidate commit reset-)
(out00 out01 out02 out03
out10 out11 out12 out13)

(vote0 vote1)
((vote0 (out00 out01 out02 out03)

4-bit-ctr
(commit0 reset-))

(vote1 (out10 out11 out12 out13)
4-bit-ctr

(commit1 reset-))
(g2 (ncandidate)

not
(candidate))

(g0 (commit0)
and
(commit ncandidate))

(g1 (commit1)
and
(commit candidate))))

(4-bit-ctr
(incr reset-)
(out0 out1 out2 out3)
(h0 h1 h2 h3)
((h0 (out0 carry0)

1-bit-ctr
(incr reset-))

(h1 (out1 carry1)
1-bit-ctr

(carry0 reset-))
(h2 (out2 carry2) ...)
(h3 ...)))

(1-bit-ctr ...)))

Fig. 2. Fragment of the netlist representation of a voting machine.



(mutual-recursion
(defun se (fn ins sts n)
(if (primp fn)

(se-primp-apply fn ins sts)
(let ((m (assoc-eq fn n)))
(if (atom m) nil

(assoc-eq-values
(md-outs m)
(se-occ (md-occs m)

(pairlis$ md-ins ins)
(pairlis$ md-sts sts)
(delete-eq-module
fn n)))))))

(defun se-occ (occs w-alst s-alst n)
(if (endp occs) w-alst
(let* ((occ (car occs))

(ins (assoc-eq-values
(occ-ins occ)
w-alst))

(sts (assoc-eq-value
(occ-name occ)
s-alst)))

(se-occ (cdr occs)
(append
(pairlis$ (occ-outs occ)

(se (occ-fn occ)
ins sts n)

w-alst)
sts n)))))

(mutual-recursion
(defun de (fn ins sts n)
(if (primp fn)

(de-primp-apply fn ins sts)
(let ((m (assoc-eq fn netlist))

(n-n (delete-eq-module fn n)))
(if (atom m) nil

(assoc-eq-values md-sts
(de-occ (md-occs m)

(se-occ
(md-occs m)
(pairlis$ (md-ins m) ins)
(pairlis$ (md-sts m) sts)
n-n)

(pairlis$ (md-sts m) sts)
n-n)))))

(defun de-occ (occs w-alst s-alst n)
(if (endp occs) w-alst

(let* ((occ (car occs))
(ins (assoc-eq-values

(occ-ins occ)
w-alst))

(sts (assoc-eq-value
(occ-name occ)
s-alst)))

(de-occ (cdr occs)
(acons (occ-name occ)

(de (occ-fn occ)
ins sts n)

w-alst)
s-alst n)))))

Fig. 3. Definition of Semantics for DE Language

(defthm rep-matches
(and
(equal (rep *init*)

(s-init)))
(implies
(and (inv s)

(good s i))
(equal
(rep (de ’vote s i *vnlst*))
(spec (rep s) (pick i)))))

(defthm inv-invariant
(and
(inv *init*)
(implies
(and (inv s)

(good s i))
(inv (de ’vote s i *vnlst*)))))

Fig. 4. Theorems showing that the netlist implementation of the voting
machines is a refinement of spec. Here *init* is the valuation of the state
elements at the initial state, rep maps the design states to specification states,
pick is the input mapping, inv is an invariant on the design, and (good
s i) checks if i is a valid design input at state s.

containment is restricted to good traces.3

Note that the specification needs to match the implementa-
tion only for good transitions. Contrast this with our approach
of defining spec as a total function. While we could similarly
insist that the specification must match each implementation
step, this often complicates definitions. For instance, spec
uses unbounded additions above while *vnlst* uses 4-bit
counters. Modifying spec to use bounded arithmetic would
complicate its definition, and furthermore, the definition would
no longer be applicable if we re-design the netlist with (say)
64-bit counters. We prefer generic specifications and use good
to impose input constraints.

Proving the above theorems is a two-step process. The first
step is what is referred to as semantic simplification. In this
step, we define functions in ACL2 (called semantic functions)
that mimic the workings of each module, and prove theorems
relating the se and de expressions with these functions. Fig. 5
shows the theorems for the module 4-bit-ctr.

The theorems relating se and de expressions are proven
hierarchically. Since 4-bit-ctr instantiates 1-bit-ctr,
we first prove analogous theorems for the latter; the theorems
shown in Fig. 5 are then proven by symbolic expansion of se
and de functions and applying the 1-bit-ctr theorem for
the corresponding occurrence. The process can be automated
with Lisp macros [11].

In the second step we define rep, good, pick, and inv.
The first three definitions are typically easy; for instance,
rep maps the bit configurations of state elements stat and
votes to keyword-based status values and numerical vote

3It is sometimes more convenient to use trace containment under stuttering
to relate to machines at different abstractions [17]. We do not discuss stuttering
in this paper.



(defun 4btnt (n)
(and
(equal (assoc-eq ’4-bit-ctr n)

’(4-bit-ctr (incr reset-)
...))

(1btnt
(delete-eq-module ’4-bit-ctr n))))

(defthm 4-bit-ctr-se-eval
(implies

(4btnt n)
(equal (se ’4-bit-ctr ... n)

...)))
(defthm 4-bit-ctr-de-eval

(implies
(4btnt n)
(equal (de ’4-bit-ctr ... n)

...)))

Fig. 5. Semantic simplification of 4-bit-counter module. The “...”
at the right hand side of each equality contains an ACL2 semantic function
for the behavior of the module.

counts. Theorem rep-matches requires showing correspon-
dence between single steps of two machines; by virtue of
our having performed the first step, proving this does not
involve reasoning about the DE semantics. A harder problem
in practice is defining inv and proving inv-invariant;
the theorem shows that inv is an inductive invariant, and
allows us to assume inv in the proof of rep-matches.
The standard approach is to define a predicate suff that
is sufficient to prove rep-matches; we then incrementally
strengthen suff to an inductive invariant. However, since
netlists are finite state machines, decision procedures can be
used to derive such invariance, and recent work integrating
DE with SAT-solvers [11] provides substantial automation.

The definitions of rep, good, and pick are integral
parts of system specification. For purposes of certifying the
implementation, it is convenient to view them as “usage
instructions” supplied by a seller of a component to augment
the specification provided by the buyer. For instance rep
describes how the valuations of the netlist state elements
are viewed as abstract states. Certification then requires us
to (i) check the validity of the theorems above (possibly
with assistance from the seller), and (ii) validate that the
usage instructions do indeed correspond to the environments
in which the design is deployed. Note that it is possible to
have buggy implementations satisfying the theorems above,
under the wrong definitions of rep, good, etc. To illustrate
this, consider a machine that clears the votes of all candidates
when encountering the sequence :vote, :reset, :reset. If the
predicate good specifies that such a sequence does not occur
then it is possible to “verify” the implementation, although
the implementation is obviously buggy. The problem is that
the environmental assumptions used in the verification (in
particular the predicate good) are falsified in the deployment

environment. Checking such violations involves simulation of
both the usage functions (in this case the definition of input
constraint good) and the definition of spec.

We now consider regulatory checks. Regulatory checks are
different from functional correctness, for instance requiring
the guarantee of of privacy, absence of trapdoors, etc. One
can (and often does) apply theorem proving to prove such
properties. However, sometimes we can do automatic checks
of structural or information-flow properties by computation.

An information-flow property we prove using computation
is that the votes of one candidate do not affect those of the
other. To check this property, we need a cone-of-influence
analysis. DE facilitates such analysis by the following ob-
servation.4 Note from the definitions of se and de that the
core interpreter semantics is given by the primitive evaluation
functions se-primp-apply and de-primp-apply; the
remainder of the definitions involves recursive crawling over
the netlist. Thus we can define a different interpreter by
modifying the primitive evaluators. For cone-of-influence, we
modify them to return a list of the state bits necessary for
evaluation rather than the evaluation itself; the check then
involves recognizing that all state bits are included in the
evaluation of votes. The same function is used to show that
there is no “hidden state” in the netlist that does not pertain
to vote counts. This guarantees the absence of trapdoors.

VI. CONCLUSION

Developing COTS systems in current practice contain a
number of informal components, namely requirement descrip-
tion as text, graphs, and charts, implementations in languages
with incomplete or complicated semantics, and incomplete
testing as the primary validation procedure. This does not
afford a repeatable, mechanical means to verify the security
and correctness of a delivered design. Recently there has
been interest in a uniform formal framework to guarantee
high assurance in correct and secure system executions. The
Common Criteria [1] requires a uniform lingua franca for
communication of designers, consumers, and evaluators. Rock-
well Collins has used ACL2 to achieve the highest level of
assurance (EAL7) provided for by the Common Criteria in the
AAMP7TM processor design [8]. We have found that ACL2 is
well-suited to serve as a mechanized framework for designing
high-assurance systems for several reasons. The language
of ACL2 is a programming language, namely Applicative
Common Lisp, which facilitates implementation of different
analysis tools in the same formal framework; secondly, the
logic has high execution support; third, the theorem prover
has been extensively used in the verification of systems at
different levels of abstraction [3]. However, we believe that it
is possible to port the framework to any other theorem prover
that provides strong support to executability and symbolic
rewriting.

4Currently, in the E language, this observation has been used to develop
different built-in interpreters of the same module, including information-flow
interpreter discussed here.



We have illustrated an approach to mechanize the different
facets of mechanized certification of the implementation of
a security-critical artifact in ACL2. The formal language
provides a basis for unambiguous communication among the
different parties. Deep embedding enables the use of different
analysis tools to be applied to the same design artifact,
namely a netlist, within the same formal system. Executable
specifications and usage functions afford easy requirements
validation via simulation. Refinements facilitate compositional
proofs of correspondence via single-step theorems. Note that
all these individual steps have been extensively studied by
the formal methods community; our approach shows how to
effectively orchestrate the steps in increasing assurance in
correct executions of highly secure systems.

The definition of our framework is under development. In
future work, we plan to provide more automation in specifi-
cation design. We are also planning to apply the paradigm to
design integrity checks on binary code developed for practical
machine architectures.
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