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Abstract— We develop a formal tool for speed-path analysis
and debug. We encode speed-path requirements in a formal hard-
ware description language providing the semantics of both the
functional behavior and timing constraints, and the disciplined
use of an SMT solver to analyze speed-path requirements. We
are applying our framework for speed-path analysis of several
RTL designs from Opencores.

I. INTRODUCTION

A critical part of the chip design is to push higher the
clock frequency. The process is normally iterative, with each
iteration involving debug engineers to improve clock fre-
quency through speed-path debug. Unfortunately, the process
is heavily manual. Furthermore, extant speed-path debug and
diagnosis techniques are only applicable during post-silicon
verification. A major reason for the emphasis towards post-
silicon rather than pre-silicon is the availability of accurate
timing information at the latter phase. However, a consequence
of the emphasis is the postponing of this important facet of
design verification until the (preliminary) silicon is available.
Furthermore, post-silicon verification induces significant com-
plexity due to limited observability: only a few of the internal
signals are available during normal chip operation. Thus, cur-
rent speed-path analysis requires significant human expertise
to solve the complex problem of inferring possible timing
constraints from a partially observed execution trace, and
isolate them from functional bugs and manufacturing defects.
The problem is exacerbated in the context of asynchronous
SoC designs, where multiple components with different clock
domains are integrated in a single chip; the non-determinism
introduced by the difference in clock domains as well as
asynchronous communication makes it difficult to isolate a
speed-path error without full observability of the design.

In this paper, we develop a speed-path debug and analysis
framework as part of pre-silicon verification. We develop
a formal model of hardware that includes both functional
and timing behavior. To account for the fact that accurate
timing information is unavailable during pre-silicon analysis,
our timing model is parameterized on timing parameters.
Based on the model, we develop a tool that determines the
necessary timing relations among different circuit elements
for the appropriate functional behavior. Some of the timing
parameters introduced in our model are inspired by results
from static timing analysis [1]; however, through a unified
formal model for functionality and timing, we can make use of

functional invariants for speed-path analysis. Our framework is
compositional; individual modules can be separately analyzed
and their speed-path constraints accounted for while analyzing
modules that contain their invocations. To our knowledge, our
tool provides the first formal infrastructure for compositional,
parameterized, pre-silicon analysis for speed-path constraints.

II. TOOL OVERVIEW

Our tool has the following key ingredients.
• A formalized hardware description language (HDL)
• A formal, parameterized timing semantics
• A tool for reducing speed path constraints to SMT

formulas
• Connection to an external SMT solver to discharge the

above constraints

Hardware Description Language

The HDL used in the framework is EMOD [2], a hier-
archical, occurrence-oriented hardware description language
for expressing gate-level designs. The EMOD analysis frame-
work [3] includes a translator from synthesizable Verilog, and
a variety of reasoning techniques including symbolic simula-
tion, Boolean satisfiability solving, and theorem proving. The
language has a formal semantics, through a deep embedding in
the logic of the ACL2 theorem prover. The language has been
used in formal functional verification of industrial hardware
designs, e.g., in the verification of floating-point units of the
VIA NanoTM microprocessor [4].

Timing Semantics

We have developed a model and associated analysis tool-
suite for timing constraints on top of the EMOD analysis
infrastructure. Timing constraints in combinational circuits
arise from gate delay, which restricts the amount of time for
which a signal value persists at a wire. In order to extend
the EMOD infrastructure for speed-path analysis, we develop
a formal model of design gates, parameterized with both
functional behavior and timing constraints. More precisely, a
gate G is viewed as a pair (dG, opG), where dG is the gate
delay and opG is the type of operation computed by G. An
execution of a circuit is an assignment of a sequence of signals
to each gate of the design. A signal x at the input to gate G
is described by the 3-tuple x = (A,H, V ), where A and H
are non-negative integers representing arrival time and hold



time respectively, and V is a Boolean. Informally, the arrival
time of x at gate G is an integer that represents the time point
when the value of x is available at G. The hold time is the
number of time units that the signal must persist in order for
the output to be reliably computed, and V is the value of the
signal. The arrival time is an absolute time number, while the
hold time is in relative time units: informally, an arrival time
of 7 represents arrival of the signal x at 7 time units after the
start of execution, while a hold time of 5 indicates that the
value of the signal persists for 5 units after arrival.

There is a potential problem when dealing with sequential
circuits: The output value depends on the state, and the feed-
back poses some difficulties in how to calculate the intervals of
the signal. To address this operation, we formalize the latching
effect separately from signal propagation delays. In particular,
our formal model of latching has the following characteristics.

• There is a (parameterized) latch time.
• Let d be the latch time, and A be the arrival time of a

signal in the latch. The signal is available at the output
of the latch after (A+ d) time units.

• The output of the latch “holds” the value up to the end
of the current clock cycle.

We now pose the basic speed-path problem for a combina-
tional circuit as follows. Given a parameterized network of
gates, determine the arrival and hold times for input signals
so that the computation of each gate in the circuit is consistent
with the functional semantics of the circuit without timing.

Discharging Speed-path Constraints through SMT

To solve the speed-path problem, we note that the formula-
tion above reduces the problem to a collection of constraints
in the union of two theories: Boolean Algebra and integer
inequalities. Note that the solution of integer arithmetic is
intractable. However, the integers arising in the problem can
bounded by the number of units in the clock cycle; thus the
problem can be solved by an SMT solver for Boolean and
bit-vector arithmetic. In particular, we develop an interface to
turn the problem into a formula solved by the Yices solver [5].

III. RESULTS

We have implemented a tool to discharge speed-path con-
straints on Verilog circuits. The tool is implemented in Java,
and works by (1) translating the Verilog design to EMOD
(2) augmenting the EMOD design with the timing information,
and (3) generating the SMT problem for speed-path which is
then discharged by Yices. We have applied the tool on several
publicly available hardware design benchmarks available from
Opencores (http://opencores.org). At this writing,
our tool can handle designs shown in Fig. 1. Note that the
designs are taken from diverse applications. The analysis of
each design requires only a few seconds with our tool.

IV. CONCLUSION

We have developed a formal framework for analyzing speed-
path constraints together with functional behavior within the
same logical framework. The approach permits pre-silicon

Design LOC Load Time
Raggedstone PCI Spartan-3 Board 534 0.421
FPU Double VHDL 2066 9.716
Fast Hadamard Transforms 106 0.237
WC LCD Display Controller 1153 1.318
SPI Core 456 0.380

Fig. 1. Opencore designs used in Speed-path Analysis

speed-path analysis and debug, thereby providing early feed-
back on speed-path requirements for an upcoming design. Our
initial results suggest that the approach can scale to real-
world RTL designs. We are working on more subtle speed-
path issues, in particular constraints that require functional
invariants in their derivation. We are also extending the tool
by with support for compositional verification of speed-path
constraints. We are also looking for ways to integrate ATPG
techniques with our constraint generation framework to gen-
erate directed tests to cover specific speed-path conditions.
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