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Abstract—Although concolic testing is increasingly being 
explored as a viable software verification technique, its adoption 
in mainstream software development and testing in the industry 
is not yet extensive. In this paper, we discuss challenges to 
widespread adoption of concolic testing in an industrial setting 
and highlight further opportunities where concolic testing can 
find renewed applicability.  
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I. INTRODUCTION 
The growing complexity of today’s software demands 

sophisticated software analysis tools and techniques to enable 
the development of robust, reliable and secure software. 
Moreover, increasing usage of third party libraries or plugins 
where source code is not readily available presents additional 
challenges to effective software testing [11]. The cost to fix 
bugs prior to releasing the software is often much lower than 
the cost to fix bugs post release, especially in the case of 
security bugs. A number of automated software testing tools 
and techniques are commonly used in the industry. While 
automation significantly reduces the overhead of manual 
testing, finding deeply embedded security defects is not always 
automatable. Furthermore, automated software testing is prone 
to false positives or false negatives. Hence, there is a 
burgeoning need to advance the state of the art in software 
testing. In this context, concolic testing is starting to emerge as 
a promising technique to enable better software verification. 
However, the adoption of concolic testing in mainstream 
software development and testing activities in the industry is 
not yet widespread due to multifold reasons, as explained in 
this paper. On the other hand, we also find that there are further 
opportunities where concolic testing can be successfully 
applicable.  

II. PRELIMINARIES 
The goal of software verification is to assure that software 

fully satisfies all the expected requirements. The fundamental 
approaches to software verification are static analysis and 
dynamic analysis.  

A. Static Analysis 
Static program analysis is the analysis of computer software 

that is performed without actually executing programs [3]. In 
most cases the analysis is performed on some version of the 
source code and in the other cases some form of the object 
code. The term is usually applied to the analysis performed by 
an automated tool, with human analysis being called program 
understanding, program comprehension or code review. On the 

contrary, automated static analysis tools do not support all 
programming languages, produce numerous false positives or 
false negatives and are only as good as the rules they use to 
scan with. Moreover, vulnerabilities introduced during runtime 
are not detected. 

B. Dynamic Analysis 
Dynamic program analysis is the analysis of computer 

software that is performed by executing programs on a real or 
virtual processor. For dynamic program analysis to be 
effective, the target program must be executed with sufficient 
test inputs to produce interesting behavior. Fuzz testing or 
fuzzing is a dynamic analysis technique, often automated or 
semi-automated, that involves providing invalid, unexpected, 
or random data to the inputs of a computer program. The 
program is then monitored for exceptions such as crashes, or 
failing built-in code assertions or for finding potential memory 
leaks. Fuzzing is commonly used to test for security problems 
in software or computer systems. Unfortunately, fuzzing offers 
fairly shallow coverage, because many of the inputs needed to 
reach new code paths are exceedingly unlikely to be generated 
purely by chance. Hence, the difficult corner cases that can be 
exploited to subvert system security may be left undiscovered. 

III. CONCOLIC TESTING 
Automated  test  case  generation  is essential to  reduce  the  

laborious  task  of  generating  test  cases manually. A 
promising alternative to fuzzing is concolic testing. Concolic 
testing is a hybrid software verification technique that 
interleaves concrete execution, i.e., testing on particular inputs, 
with symbolic execution, a classical technique that treats 
program variables as symbolic variables [20]. While formal 
verification techniques can be helpful in proving the 
correctness of systems, the main focus of concolic testing 
techniques are rather to find defects in real-world software. 

A high-level overview of a concolic testing scheme is as 
shown in figure 1. The software under test is executed 
concretely to obtain the execution trace consisting of the 
branches taken along with any other pertinent information. The 
execution trace is then fed to a symbolic execution engine 
(SEE) for symbolic execution. The SEE re-executes the 
concrete trace symbolically.  It treats certain variables as 
having symbolic or unknown values, and it keeps track of the 
expressions involving these symbolic values that are built up as 
it executes the sequence of operations in the trace. Those 
branches in the trace with conditionals involving symbolic 
values are branches whose outcomes could be changed with an 
appropriate choice of concrete values for the symbolic values.  
A constraint solver can find these concrete values, and produce 



a new test case exercising a new path through the program. 
These new test cases are then, in turn, concretely executed. The 
process repeats until all possible paths through the software 
have been explored or a user specified constraint is satisfied. 

IV. CHALLENGES WITH CONCOLIC TESTING 
The promise of concolic testing is not without challenges 

that have hindered the adoption of concolic testing by broader 
software testing community. In this section, we attempt to 
enumerate these concerns and explain the potential tradeoffs to 
address them.  

A. Expensive constraint solving 
A constraint solver is a program that computes solutions to 

logic formulas in a given logic and is an integral part of 
symbolic execution. The performance of the constraint solver 
used by a symbolic execution technique considerably affects 
the overall performance. Programs that generate very large 
symbolic representations that cannot be solved in practice 
cannot be tested effectively.  To address this problem, Erete et 
al. propose to use domain and contextual information to 
optimize the performance of constraint solvers during symbolic 
execution [8]. While such approaches can improve the 
constraint solver performance for a specific use-case, they are 
not applicable across the board. Moreover, the expertise 
required to optimize constraint solvers is not generic and 
requires a much better understanding of the structure or 

properties of the software under test to inform and improve 
constraint solvers. 

B. Issues with symbolic representations 
Qu et al. highlight the limitations of concolic testing in 

handling float/double data types and pointers [1]. Most 
constraint solvers do not support float or double data types, and 
some solvers are unable to handle non-linear arithmetic 
constraints. When the constraint is beyond the ability of the 
solver, symbolic execution is unable to proceed farther along 
that path and switches to explore different paths. Moreover, 
while analyzing programs written in C/C++, making a pointer 
or a memory model as symbolic can lead to rapid state 
explosion. While hybridizing concolic testing can overcome 
this limitation by substituting symbolic inputs with concrete 
values to allow continued exploration of a stalled path, the 
technique devolves to a form of random testing and loses the 
advantage of exploring new behaviors [4]. 

C. Handling multithreaded programs 
Real-world programs are often large, complex, concurrent 

or multithreaded and interrupt driven resulting in inherent non-
determinism of such programs. This represents a key 
bottleneck in symbolic execution. In order to use concolic 
testing for multithreaded programs, Sen et al. determine the 
partial order relation or the exact race conditions between the 
various events in the execution path, for a given concrete 
execution at runtime [9]. Subsequently, they systematically re-

Figure 1. Concolic Testing Overview 



order or permute the events involved in these races by 
generating new thread schedules as well as generate new test 
inputs thus exploring one representative from each partial 
order. While this is a feasible testing algorithm for concurrent 
programs, some potential bugs can be missed. 

D. Scalability issues 
Concolic testing suffers from scalability concerns. 

Industrial or enterprise software is usually complex, composed 
of multiple components with independent functionalities and 
specific dependencies. Testing such complex software as a 
single unit is not feasible. To address such limitations, Kim et 
al. develop Scalable COncolic testing for REliable software 
(SCORE) framework [2]. The SCORE framework employs a 
distributed concolic algorithm that can utilize a large number of 
computing nodes in a scalable manner so as to achieve a linear 
increase in the speed of test case generation as the number of 
distributed nodes increases while having a low communication 
overhead among distributed nodes. But such distributed 
systems unusually introduce an overhead in terms of additional 
time, cost, hardware and labor resources required to use and 
maintain them.  

E. Path explosion 
Another key challenge of symbolic execution is the huge 

number of programs paths resulting in a huge search space.  
This causes failure to search the most fruitful portion of a large 
or exponential path tree leading to poor coverage. Hence, given 
a fixed time budget, it is critical to explore the most relevant 
paths first. Numerous solutions have been explored to constrain 
path explosion.  Jaffar et al. propose a method based on 
interpolation to mitigate path explosion [5]. Whenever an 
unsatisfiable path condition is fed to the solver, an interpolant 
is generated at each program point along the path. The 
interpolant at a given program point can be seen as a formula 
that captures the reason of infeasibility of paths at the program 
point. As a result, if the program point is encountered again 
through a different path such that the interpolant is implied, the 
new path can be subsumed. Other approaches include pruning 
redundant paths by tracking the memory locations read and 
written by the checked code, in order to determine when the 
remainder of a particular execution is capable of exploring new 
behaviors [10]. On the flip side, such optimizations could 
reduce path coverage. 

F. Handling native  calls or system calls 
Calls to standard libraries, third party libraries or system 

calls that are not really in scope for automated testing represent 
a unique challenge. Limiting the scope of concolic testing to 
precisely the software under test is often times not possible due 
to interrupt handling and runtime dependencies that can lead 
program execution and trace generation beyond the software 
under test where the constraint solver has limited visibility. 
Dinges et al. mitigate this risk by developing a Concolic Walk 
technique which splits the path condition into linear and non-
linear constraints, finds a point in the polytope induced by the 
linear constraints with an off-the-shelf solver, and then, starting 
from this point, uses adaptive search within the polytope, 
guided by the constraint fitness functions, to find a solution to 
the whole path condition [7]. Although this approach constrains 

the software under test within the polytope to limit testing, it 
can generalize poorly and may not scale easily. 

G. Integration 
Even if every one of the technical challenges just described 

is solved, concolic testing will remain little-used by the 
industry until the problem of the test harness is addressed.  In 
simple applications of concolic testing, the test harness is a 
simple piece of code that identifies the variables to be treated 
symbolically, and invokes the software under test with these 
symbolic values.  This is particularly easy when the software 
under test is a purely functional piece of code whose behavior 
depends only on its inputs.   But this never happens in practice, 
including firmware, where the behavior of code depends on 
values buried in enormous data structures built up over time or 
by elaborate system initialization procedures.  The test harness 
must essentially become a model of the environment of the 
software under test.  Building such a test harness is an overhead 
and may not be acceptable by development and validation 
teams. On the other hand, there are exceptions, of course, 
including companies like Microsoft where concolic testing has 
been extraordinarily successful.  But in those cases, the model 
of the environment is sufficiently simple, e.g. an executable.  In 
general, the lack of automation for concolic testing stands in 
stark contrast to static analysis tools like Klocwork [21] that 
have been deeply integrated into overnight builds to produce 
effective bug reports the next morning with little effort on the 
part of developers.  Without a comparable level of integration 
into production development and testing environments, 
concolic testing runs the risk of being left behind, even with its 
ability to find high-quality bugs that may be undiscovered by 
other tools. 

V. FURTHER OPPORTUNITIES WITH CONCOLIC TESTING 
Concolic testing has extensively been explored to enable 

software verification. Several optimization techniques have 
been proposed to address the concerns associated with concolic 
testing to make it more practicable. There are numerous 
opensource projects such as KLEE [12], CREST [13] and 
proprietary solutions such as Microsoft SAGE [14] that are 
specifically designed to harness the power of concolic testing 
to aid software testing.  But beyond verifying software, there 
are further opportunities where concolic testing can find 
renewed applicability while not being constrained by its 
existing limitations. In this section, we highlight some of those 
prominent opportunities. 

A. Testing embedded software 
Firmware is low-level software which can directly access 

hardware and is often shipped with the hardware platform. 
Firmware is continuing to increase in scale and importance in 
contemporary electronic devices. Moreover, firmware based 
security attacks are becoming prevalent and are difficult to 
detect or fix in deployed products. Thus firmware validation is 
a critical part of system validation. Ahn et al. present a 
firmware validation approach based on automatically 
generating a test-set for the firmware with the goal of complete 
path coverage while considering its interactions with hardware 
and other firmware threads [15]. They use a service-function 
based Transaction Level Model (TLM) to harness concolic 
testing to generate tests that are directly used for the firmware 



transaction and account for the multi-threaded interactions. 
Kim et al. follow a similar approach to firmware validation and 
highlight the importance of modifying the firmware build 
process to instrument the firmware and modelling the 
specialized environment required for firmware execution in 
order to harness concolic testing for firmware validation [16].  

B. Pre-silicon validation 
Pre-silicon validation refers to validation activities 

performed on a simulation or emulation model that transpires 
prior to fabricating actual silicon. Pre-silicon validation verifies 
the correctness and sufficiency of the design. Pre-silicon 
validation activities are critical to ensuring product quality. 
Detecting and fixing issues early on in the hardware 
development life cycle enables the manufacturer to stay 
competitive while delivering reliable and high quality products, 
especially in a high volume manufacturing industry like the 
semiconductor industry [6]. Fei et al. present a concolic testing 
approach to generate pre-silicon and post-silicon tests with 
virtual prototypes [18]. They identify device states under test 
from concrete executions of a virtual prototype based on the 
concept of device transaction, symbolically execute the virtual 
prototype from these device states to generate tests, and issue 
the generated tests concretely to the silicon device. With this 
approach, they observed significant coverage improvement 
with generated test cases and detected inconsistencies between 
virtual prototypes and silicon devices, exposing several virtual 
prototype or silicon device defects. Such approaches help 
validation engineers to easily and more precisely understand a 
silicon device using its virtual prototype, identify defects in the 
silicon device and detect bugs in the virtual prototype. 

C. Analyzing malware 
Existing signature based malware detection techniques are 

defenseless against mutants or polymorphic variations. 
Besides, modern malware is equipped with intelligent detour 
techniques against Sandbox detection mechanisms to nullify 
the defense system. To counter advancements in malware, 
automated analysis tools are required to analyze programmatic 
behavior of massive amounts of malicious codes.  In order to 
enable better malware analysis, Joo et al. propose the use of 
concolic testing technique based event generator to trigger 
malicious behavioral routines in suspicious programs, not 
executed during normal conditions [17]. On the other hand, 
while concolic testing has been proven powerful in security 
analysis, it also provides a sharp scalpel for attacks like 
software cracking and piracy [19]. To counter this, control flow 
obfuscation techniques that aim to confuse the automated 
analyzers by obfuscating the programs’ control flow structures 
are used to defend against software cracking and piracy.  

VI. CONCLUSIONS 
The ever increasing software complexity warrants 

continuous advancements in software testing methodologies. 
Concolic testing is progressively moving beyond academic 
research and gaining ground in the software industry as a viable 
software testing methodology. While no single method is a 
silver bullet to find all types of software defects, a combination 
of tools and techniques is the most practicable approach to 
software testing. Concolic testing is no more different in this 
case. Software test engineers use an array of tools and 

methodologies at their disposal to enable finding and fixing 
software defects early in the software development lifecycle. 
The choice of tools and techniques are driven by resource 
constraints, time to market and engineer expertise. In general, 
reducing the barriers to entry to concolic testing is one 
direction to improving software quality. 
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