
Challenges and Opportunities with Concolic Testing
Raghudeep Kannavara1, Christopher J Havlicek1, Bo Chen2, Mark R Tuttle1, Kai Cong1, Sandip Ray1, Fei Xie2

1Intel Corporation, 2111 NE 25th Ave, Hillsboro, OR, USA 97124
2Portland State University, 1825 SW Broadway, Portland, OR, USA 97201

Abstract—Although concolic testing is increasingly being
explored as a viable software verification technique, its adoption
in mainstream software development and testing in the industry
is not yet extensive. In this paper, we discuss challenges to
widespread adoption of concolic testing in an industrial setting
and highlight further opportunities where concolic testing can
find renewed applicability.

Keywords – concolic testing; security testing; dynamic analysis;
pre-silicon validation; malware analysis; firmware testing;

I. INTRODUCTION
The growing complexity of today’s software demands

sophisticated software analysis tools and techniques to enable
the development of robust, reliable and secure software.
Moreover, increasing usage of third party libraries or plugins
where source code is not readily available presents additional
challenges to effective software testing [11]. The cost to fix
bugs prior to releasing the software is often much lower than
the cost to fix bugs post release, especially in the case of
security bugs. A number of automated software testing tools
and techniques are commonly used in the industry. While
automation significantly reduces the overhead of manual
testing, finding deeply embedded security defects is not always
automatable. Furthermore, automated software testing is prone
to false positives or false negatives. Hence, there is a
burgeoning need to advance the state of the art in software
testing. In this context, concolic testing is starting to emerge as
a promising technique to enable better software verification.
However, the adoption of concolic testing in mainstream
software development and testing activities in the industry is
not yet widespread due to multifold reasons, as explained in
this paper. On the other hand, we also find that there are further
opportunities where concolic testing can be successfully
applicable.

II. PRELIMINARIES
The goal of software verification is to assure that software

fully satisfies all the expected requirements. The fundamental
approaches to software verification are static analysis and
dynamic analysis.

A. Static Analysis
Static program analysis is the analysis of computer software

that is performed without actually executing programs [3]. In
most cases the analysis is performed on some version of the
source code and in the other cases some form of the object
code. The term is usually applied to the analysis performed by
an automated tool, with human analysis being called program
understanding, program comprehension or code review. On the

contrary, automated static analysis tools do not support all
programming languages, produce numerous false positives or
false negatives and are only as good as the rules they use to
scan with. Moreover, vulnerabilities introduced during runtime
are not detected.

B. Dynamic Analysis
Dynamic program analysis is the analysis of computer

software that is performed by executing programs on a real or
virtual processor. For dynamic program analysis to be
effective, the target program must be executed with sufficient
test inputs to produce interesting behavior. Fuzz testing or
fuzzing is a dynamic analysis technique, often automated or
semi-automated, that involves providing invalid, unexpected,
or random data to the inputs of a computer program. The
program is then monitored for exceptions such as crashes, or
failing built-in code assertions or for finding potential memory
leaks. Fuzzing is commonly used to test for security problems
in software or computer systems. Unfortunately, fuzzing offers
fairly shallow coverage, because many of the inputs needed to
reach new code paths are exceedingly unlikely to be generated
purely by chance. Hence, the difficult corner cases that can be
exploited to subvert system security may be left undiscovered.

III. CONCOLIC TESTING
Automated test case generation is essential to reduce the

laborious task of generating test cases manually. A
promising alternative to fuzzing is concolic testing. Concolic
testing is a hybrid software verification technique that
interleaves concrete execution, i.e., testing on particular inputs,
with symbolic execution, a classical technique that treats
program variables as symbolic variables [20]. While formal
verification techniques can be helpful in proving the
correctness of systems, the main focus of concolic testing
techniques are rather to find defects in real-world software.

A high-level overview of a concolic testing scheme is as
shown in figure 1. The software under test is executed
concretely to obtain the execution trace consisting of the
branches taken along with any other pertinent information. The
execution trace is then fed to a symbolic execution engine
(SEE) for symbolic execution. The SEE re-executes the
concrete trace symbolically. It treats certain variables as
having symbolic or unknown values, and it keeps track of the
expressions involving these symbolic values that are built up as
it executes the sequence of operations in the trace. Those
branches in the trace with conditionals involving symbolic
values are branches whose outcomes could be changed with an
appropriate choice of concrete values for the symbolic values.
A constraint solver can find these concrete values, and produce

a new test case exercising a new path through the program.
These new test cases are then, in turn, concretely executed. The
process repeats until all possible paths through the software
have been explored or a user specified constraint is satisfied.

IV. CHALLENGES WITH CONCOLIC TESTING
The promise of concolic testing is not without challenges

that have hindered the adoption of concolic testing by broader
software testing community. In this section, we attempt to
enumerate these concerns and explain the potential tradeoffs to
address them.

A. Expensive constraint solving
A constraint solver is a program that computes solutions to

logic formulas in a given logic and is an integral part of
symbolic execution. The performance of the constraint solver
used by a symbolic execution technique considerably affects
the overall performance. Programs that generate very large
symbolic representations that cannot be solved in practice
cannot be tested effectively. To address this problem, Erete et
al. propose to use domain and contextual information to
optimize the performance of constraint solvers during symbolic
execution [8]. While such approaches can improve the
constraint solver performance for a specific use-case, they are
not applicable across the board. Moreover, the expertise
required to optimize constraint solvers is not generic and
requires a much better understanding of the structure or

properties of the software under test to inform and improve
constraint solvers.

B. Issues with symbolic representations
Qu et al. highlight the limitations of concolic testing in

handling float/double data types and pointers [1]. Most
constraint solvers do not support float or double data types, and
some solvers are unable to handle non-linear arithmetic
constraints. When the constraint is beyond the ability of the
solver, symbolic execution is unable to proceed farther along
that path and switches to explore different paths. Moreover,
while analyzing programs written in C/C++, making a pointer
or a memory model as symbolic can lead to rapid state
explosion. While hybridizing concolic testing can overcome
this limitation by substituting symbolic inputs with concrete
values to allow continued exploration of a stalled path, the
technique devolves to a form of random testing and loses the
advantage of exploring new behaviors [4].

C. Handling multithreaded programs
Real-world programs are often large, complex, concurrent

or multithreaded and interrupt driven resulting in inherent non-
determinism of such programs. This represents a key
bottleneck in symbolic execution. In order to use concolic
testing for multithreaded programs, Sen et al. determine the
partial order relation or the exact race conditions between the
various events in the execution path, for a given concrete
execution at runtime [9]. Subsequently, they systematically re-

Figure 1. Concolic Testing Overview

order or permute the events involved in these races by
generating new thread schedules as well as generate new test
inputs thus exploring one representative from each partial
order. While this is a feasible testing algorithm for concurrent
programs, some potential bugs can be missed.

D. Scalability issues
Concolic testing suffers from scalability concerns.

Industrial or enterprise software is usually complex, composed
of multiple components with independent functionalities and
specific dependencies. Testing such complex software as a
single unit is not feasible. To address such limitations, Kim et
al. develop Scalable COncolic testing for REliable software
(SCORE) framework [2]. The SCORE framework employs a
distributed concolic algorithm that can utilize a large number of
computing nodes in a scalable manner so as to achieve a linear
increase in the speed of test case generation as the number of
distributed nodes increases while having a low communication
overhead among distributed nodes. But such distributed
systems unusually introduce an overhead in terms of additional
time, cost, hardware and labor resources required to use and
maintain them.

E. Path explosion
Another key challenge of symbolic execution is the huge

number of programs paths resulting in a huge search space.
This causes failure to search the most fruitful portion of a large
or exponential path tree leading to poor coverage. Hence, given
a fixed time budget, it is critical to explore the most relevant
paths first. Numerous solutions have been explored to constrain
path explosion. Jaffar et al. propose a method based on
interpolation to mitigate path explosion [5]. Whenever an
unsatisfiable path condition is fed to the solver, an interpolant
is generated at each program point along the path. The
interpolant at a given program point can be seen as a formula
that captures the reason of infeasibility of paths at the program
point. As a result, if the program point is encountered again
through a different path such that the interpolant is implied, the
new path can be subsumed. Other approaches include pruning
redundant paths by tracking the memory locations read and
written by the checked code, in order to determine when the
remainder of a particular execution is capable of exploring new
behaviors [10]. On the flip side, such optimizations could
reduce path coverage.

F. Handling native calls or system calls
Calls to standard libraries, third party libraries or system

calls that are not really in scope for automated testing represent
a unique challenge. Limiting the scope of concolic testing to
precisely the software under test is often times not possible due
to interrupt handling and runtime dependencies that can lead
program execution and trace generation beyond the software
under test where the constraint solver has limited visibility.
Dinges et al. mitigate this risk by developing a Concolic Walk
technique which splits the path condition into linear and non-
linear constraints, finds a point in the polytope induced by the
linear constraints with an off-the-shelf solver, and then, starting
from this point, uses adaptive search within the polytope,
guided by the constraint fitness functions, to find a solution to
the whole path condition [7]. Although this approach constrains

the software under test within the polytope to limit testing, it
can generalize poorly and may not scale easily.

G. Integration
Even if every one of the technical challenges just described

is solved, concolic testing will remain little-used by the
industry until the problem of the test harness is addressed. In
simple applications of concolic testing, the test harness is a
simple piece of code that identifies the variables to be treated
symbolically, and invokes the software under test with these
symbolic values. This is particularly easy when the software
under test is a purely functional piece of code whose behavior
depends only on its inputs. But this never happens in practice,
including firmware, where the behavior of code depends on
values buried in enormous data structures built up over time or
by elaborate system initialization procedures. The test harness
must essentially become a model of the environment of the
software under test. Building such a test harness is an overhead
and may not be acceptable by development and validation
teams. On the other hand, there are exceptions, of course,
including companies like Microsoft where concolic testing has
been extraordinarily successful. But in those cases, the model
of the environment is sufficiently simple, e.g. an executable. In
general, the lack of automation for concolic testing stands in
stark contrast to static analysis tools like Klocwork [21] that
have been deeply integrated into overnight builds to produce
effective bug reports the next morning with little effort on the
part of developers. Without a comparable level of integration
into production development and testing environments,
concolic testing runs the risk of being left behind, even with its
ability to find high-quality bugs that may be undiscovered by
other tools.

V. FURTHER OPPORTUNITIES WITH CONCOLIC TESTING
Concolic testing has extensively been explored to enable

software verification. Several optimization techniques have
been proposed to address the concerns associated with concolic
testing to make it more practicable. There are numerous
opensource projects such as KLEE [12], CREST [13] and
proprietary solutions such as Microsoft SAGE [14] that are
specifically designed to harness the power of concolic testing
to aid software testing. But beyond verifying software, there
are further opportunities where concolic testing can find
renewed applicability while not being constrained by its
existing limitations. In this section, we highlight some of those
prominent opportunities.

A. Testing embedded software
Firmware is low-level software which can directly access

hardware and is often shipped with the hardware platform.
Firmware is continuing to increase in scale and importance in
contemporary electronic devices. Moreover, firmware based
security attacks are becoming prevalent and are difficult to
detect or fix in deployed products. Thus firmware validation is
a critical part of system validation. Ahn et al. present a
firmware validation approach based on automatically
generating a test-set for the firmware with the goal of complete
path coverage while considering its interactions with hardware
and other firmware threads [15]. They use a service-function
based Transaction Level Model (TLM) to harness concolic
testing to generate tests that are directly used for the firmware

transaction and account for the multi-threaded interactions.
Kim et al. follow a similar approach to firmware validation and
highlight the importance of modifying the firmware build
process to instrument the firmware and modelling the
specialized environment required for firmware execution in
order to harness concolic testing for firmware validation [16].

B. Pre-silicon validation
Pre-silicon validation refers to validation activities

performed on a simulation or emulation model that transpires
prior to fabricating actual silicon. Pre-silicon validation verifies
the correctness and sufficiency of the design. Pre-silicon
validation activities are critical to ensuring product quality.
Detecting and fixing issues early on in the hardware
development life cycle enables the manufacturer to stay
competitive while delivering reliable and high quality products,
especially in a high volume manufacturing industry like the
semiconductor industry [6]. Fei et al. present a concolic testing
approach to generate pre-silicon and post-silicon tests with
virtual prototypes [18]. They identify device states under test
from concrete executions of a virtual prototype based on the
concept of device transaction, symbolically execute the virtual
prototype from these device states to generate tests, and issue
the generated tests concretely to the silicon device. With this
approach, they observed significant coverage improvement
with generated test cases and detected inconsistencies between
virtual prototypes and silicon devices, exposing several virtual
prototype or silicon device defects. Such approaches help
validation engineers to easily and more precisely understand a
silicon device using its virtual prototype, identify defects in the
silicon device and detect bugs in the virtual prototype.

C. Analyzing malware
Existing signature based malware detection techniques are

defenseless against mutants or polymorphic variations.
Besides, modern malware is equipped with intelligent detour
techniques against Sandbox detection mechanisms to nullify
the defense system. To counter advancements in malware,
automated analysis tools are required to analyze programmatic
behavior of massive amounts of malicious codes. In order to
enable better malware analysis, Joo et al. propose the use of
concolic testing technique based event generator to trigger
malicious behavioral routines in suspicious programs, not
executed during normal conditions [17]. On the other hand,
while concolic testing has been proven powerful in security
analysis, it also provides a sharp scalpel for attacks like
software cracking and piracy [19]. To counter this, control flow
obfuscation techniques that aim to confuse the automated
analyzers by obfuscating the programs’ control flow structures
are used to defend against software cracking and piracy.

VI. CONCLUSIONS
The ever increasing software complexity warrants

continuous advancements in software testing methodologies.
Concolic testing is progressively moving beyond academic
research and gaining ground in the software industry as a viable
software testing methodology. While no single method is a
silver bullet to find all types of software defects, a combination
of tools and techniques is the most practicable approach to
software testing. Concolic testing is no more different in this
case. Software test engineers use an array of tools and

methodologies at their disposal to enable finding and fixing
software defects early in the software development lifecycle.
The choice of tools and techniques are driven by resource
constraints, time to market and engineer expertise. In general,
reducing the barriers to entry to concolic testing is one
direction to improving software quality.

REFERENCES
[1] Xiao Qu, Brian Robinson, “A Case Study of Concolic Testing Tools and

their Limitations,” International Symposium on Empirical Software
Engineering and Measurement, Banff, Canada, September 22-23, 2011

[2] M.Kim, Y.Kim and G.Rothermel, “A Scalable Distributed Concolic
Testing Approach: An Empirical Evaluation,” IEEE International
Conference on Software Testing, Verification and Validation (ICST),
Montreal, Canada, April 17-21, 2012

[3] Raghudeep Kannavara, “Securing Opensource Code via Static
Analysis,” Fifth International Conference on Software Testing,
Verification & Validation, Montreal, Canada, April 17-21, 2012

[4] Rupak Majumdar, Koushik Sen, “Hybrid Concolic Testing,” 29th
International Conference on Software Engineering, Minneapolis, USA,
20-26 May 2007

[5] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, “Boosting
concolic testing via interpolation,” ESEC/FSE 2013, Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, Pages
48-58

[6] Raghudeep Kannavara, “Towards a Unified Framework for Pre-Silicon
Validation,” Fourth International Conference on Information,
Intelligence, Systems and Applications, Piraeus-Athens, Greece, July
10–12, 2013

[7] Peter Dinges, Gul Agha, “Solving complex path conditions through
heuristic search on induced polytopes,” 22nd ACM SIGSOFT
Symposium on Foundations of Software Engineering. Hong Kong,
November 16-21 2014

[8] Ikpeme Erete, Alessandro Orso, “Optimizing Constraint Solving to
Better Support Symbolic Execution,” ICSTW '11 Proceedings of the
2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, Pages 310-315

[9] Koushik Sen, Gul A Agha, “Concolic Testing of Multithreaded
Programs and Its Application to Testing Security Protocols,” Technical
Report, UIUCDCS-R-2006-2676, 2006-01

[10] Peter Boonstoppel, Cristian Cadar, Dawson Engler, “RWset: Attacking
Path Explosion in Constraint-Based Test Generation,” Tools and
Algorithms for the Construction and Analysis of Systems Lecture Notes
in Computer Science Volume 4963, 2008, pp 351-366

[11] Raghudeep Kannavara, “Assessing the Threat Landscape for Software
Libraries,” 25th IEEE International Symposium on Software Reliability
Engineering, Naples, Italy, November 3-6, 2014

[12] Cristian Cadar, Daniel Dunbar, Dawson Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” USENIX Symposium on Operating Systems Design and
Implementation, San Diego, CA, USA, December 8-10, 2008

[13] Jacob Burnim, Koushik Sen, “Heuristics for Scalable Dynamic Test
Generation,” 23rd IEEE/ACM International Conference on Automated
Software Engineering, Pages 443-446

[14] Patrice Godefroid, Michael Y. Levin, David Molnar, “SAGE: Whitebox
Fuzzing for Security Testing,” Magazine Queue - Networks, Volume 10
Issue 1, Pages 20, January 2012

[15] Sunha Ahn, Sharad Malik, “Automated Firmware Testing using
Firmware-Hardware Interaction Patterns,” 2014 International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), New Delhi, India, 12-17 Oct. 2014

[16] Moonzoo Kim, Yunho Kim, Yoonkyu Jang, “Industrial Application of
Concolic Testing on Embedded Software: Case Studies,” IEEE
International Conference on Software Testing, Verification and
Validation (ICST), Montreal, Canada, April 17-21, 2012

[17] Jung-Uk Joo, Incheol Shin, Minsoo Kim, “Efficient Methods to Trigger
Adversarial Behaviors from Malware during Virtual Execution in

SandBox,” International Journal of Security and Its Applications, Vol.9,
No.1 (2015), pp.369-376

[18] Kai Cong, Fei Xie, Li Lei, “Automatic Concolic Test Generation with
Virtual Prototypes for Post-silicon Validation” International Conference
on Computer-Aided Design, Austin, USA, November 2-6, 2015

[19] Haoyu Ma, Xinjie Ma, Weijie Liu, Zhipeng Huang, Debin GAO, Chunfu
Jia, “Control Flow Obfuscation using Neural Network to Fight Concolic
Testing,” 10th International ICST Conference on Security and Privacy in
Communication Networks (SecureComm 2014), Beijing, China,
September 24–26, 2014

[20] Koushik Sen, Darko Marinov, Gul Agha, “CUTE: A Concolic Unit
Testing Engine for C,” 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, Lisbon, Portugal, September 05-
09, 2005

[21] Rogue Wave Software, “The Business Case for Earlier Software Defect
Detection and Compliance,” QuinStreet, Inc. 2014

