Abstracting and Verifying Flash Memories

Sandip Ray
University of Texas at Austin
sandip@cs.utexas.edu

Abstract—We present a framework for formal verification of
flash cores. Flash memories cannot be verified by traditional
switch-level abstractions, due to capacitive coupling induced by
the presence of floating gates. We discuss a new approach to
abstracting transistor networks that is agnostic to the type of
transistor used in the implementation. We show how to use this
abstraction to model flash memory designs. The abstractions are
used for functional verification of memory cores, and can be
validated through analog simulation. We have used the approach
in the verification of representative NOR and a NAND flash
memory cores.

I. INTRODUCTION

This paper is about a framework for formal functional
verification of flash memory arrays. Verification of a memory
array entails checking that its implementation as a network of
transistors implements the high-level view of a state machine
storing and retrieving data at addressed locations. Memory
arrays account for more than 50% of the real estate and
transistor count of a modern microprocessor. Furthermore,
custom memories are complex analog artifacts with subtle
and intricate behavior and aggressively optimized to satisfy
performance, area, and power metrics. These two factors
contribute to making memory verification a crucial component
of the functional verification of a modern microprocessor or
SoC design. However, given the size and complexity of a
custom memory core, it is impossible to validate the entire
core by analog simulation. Thus, a key challenge is to derive an
effective abstraction which can be formally compared against
the high-level specification.

For traditional SRAM arrays, this abstraction has been
provided by a switch-level model of the transistor network. A
switch-level model is a graph of nodes connected by transistor
viewed as switches. A node has state 0, 1, or X; a switch has
state “open”, “closed”, or “indeterminate”; state transitions are
specified by switch equations. Modern switch-level analyzers
such as ANAMOS and its variants [1], [2], [3], [4] operate by
partitioning a transistor network into a collection of channel-
connected components, and analyzing these components to
construct the requisite switch equations.

However, switch-level models cannot be used for flash
memories, which contain both CMOS and Floating Gate (FG)
transistors, where the capacitive coupling between the Floating
Gate, Substrate, and Gate breaks the abstraction of a transistor
as a switch. Consequently, there is a “verification gap” in
current industrial practice for SoC designs containing flash
components: a high-level (C/C++) description is used to model
the interface of the flash with surrounding SoC blocks, but the

Jayanta Bhadra
Freescale Semiconductor Inc.
jayanta.bhadra@freescale.com

underlying transistor network is not guaranteed to implement
the description.

This paper bridges this gap with a new approach to ab-
stracting transistor networks. The approach, termed behavioral
abstraction, focuses on formalizing the behavior of analog
components of the design rather than extracting switch-level
models through structural analysis. This makes it agnostic
to the type of transistors used in the implementation of the
network. Furthermore, a key feature of the models is the
direct correspondence between them and components used for
analog simulation, which facilitates corroboration of models
with readily available simulation data. We discuss the efficacy
of the approach in the functional verification of representative
NAND and NOR flash configurations.

The remainder of the paper is organized as follows. In
Section II, we discuss the functional verification tool flow and
explain the verification gap for flash memory arrays alluded
to above. In Section III, we discuss the behavioral models and
the rationale behind such abstractions. We cover some aspects
of the verification in Section IV. We conclude in Section V.

II. FUNCTIONAL VERIFICATION OF MEMORY ARRAYS

Functional verification entails the use of simulation and
analysis tools to determine and expose design bugs. Since
a transistor network implementing a memory is a complex
analog artifact, functional verification of the array should
ideally involve analog SPICE simulations. Unfortunately, SPICE
simulations cannot be carried out at the level of an entire
memory array. Instead, the functional verification of the array
is broken down into the following two verification tasks that
seek to answer the following two questions:

1) Does a single bitcell and its associated logic block

operate according to the bitcell specification?

2) Does the entire memory array operate correctly inside a

larger SoC design?

The first question is answered by extensive SPICE simulation
(Fig. 1). Indeed, the bitcells are architected to operate over a
limited sequence of certified stimulus patterns, each of which
is validated by extensive analog SPICE simulation [5]. SPICE
simulations are extensive and detailed, and cover various pro-
cess corners and operating conditions. Any pattern that is not
simulated with SPICE is assumed to be illegal. Unfortunately,
such simulations are obviously too expensive to be carried out
on designs beyond the scale of single bitcells.

The second question is answered typically by RTL or high-
level simulations and analysis techniques that check for SoC-

wi

bitcell

pch

!

:
T
dout —+ @ld-data}—+

. ' s
bitcell T " new-data
data T T

T
'
' ' '
' read awrite
'

Fig. 1. Functional Verification Flow at Bitcell Level

Memory array
(abstracted)

Surrounding SoC Block

RTL Simulator Pass/Fail

f

RT-Level
Testbench

Fig. 2. Functional Verification Flow at SoC Level

level properties (Fig. 2). At this level, the memories in the
design are typically abstracted to a C/C++ or RTL model that
represents the interface of the memory core to the surrounding
SoC block; the internals of the memory core are not exposed
to the verification.

However, how do we know that the network of bitcells
indeed implements the high-level interface used in the RTL or
high-level verification? For SRAM memories this question has
been answered by the switch-level abstraction of the network.
However, there are two problems with switch-level models.
First, it is difficult to correspond switch-level models to the
SPICE models used in analog simulation; as a result, when
an error is detected in switch-level analysis it is difficult to
determine if the error is a real design bug or a consequence of
switch-level abstraction. The second, more relevant problem
from the point of view of this paper is that switch-level
abstractions are broken by floating gate transistors used in flash
memories. Since this problem is crucial to the arguments of
this paper, we explain this problem in somewhat more detail
below. For a detailed treatment of flash operations, the reader
is referred to the book by Cappelletti et al. [6].

select
gate (G)

floating

Vi

9 gate (F)
Sio2

Vs vd

p substrate

(A)

Fig. 3. (A) Structure of an FG Transistor. The polysilicon layer between
the Gate G and Substrate provides the capacitive coupling. (B) Schematic
representation of an FG transistor in a larger design.

FG transistors (Fig. 3) have, in addition to the conventional
drain (D), gate (G) and source (S) terminals, a floating gate
(F) — a polysilicon layer inserted in the oxide between the
gate and the substrate that is physically disconnected from both
S and D. The key electrical effect is the capacitive coupling
between G, F, and the substrate. The capacitance is exploited
to design a bitcell with a single FG transistor as follows.
Controlling the stored charge in the capacitive coupling allows
dynamic regulation of the threshold voltage V;, (the minimum
voltage to turn on the device); a low threshold voltage (VtI;L)
represents logic 1 and high threshold voltage (V) represents
logic 0.!

Unfortunately, the capacitive coupling mentioned above
breaks the simple view of a transistor as an on/off switch, as
taken by ANAMOS-like analyzers, and makes it infeasible to
extract precise switch-level abstractions. Consequently, current
industry practice on flash validation amounts to (i) simulating
the high-level model along with the encompassing SoC, and
(ii) simulating individual FG bitcells through SPICE simula-
tions. In particular, no formal correspondence is guaranteed
between the transistor netlist and high-level specification.

III. BEHAVIORAL MODELS

How do we circumvent the above problem? Our solution
entails a new approach for abstracting memory designs. In-
stead of extracting switch-level models by structural analysis,
we model the behavior of the network. The viability is based
on the observation that a custom memory is designed by
interconnecting cohesive, logical units such as bitcells, sense
amplifiers, etc. As explained in the preceding section, these
units are architected to operate over a limited sequence of
certified stimulus patterns, each validated by extensive analog
simulation across process corners and operating conditions.
It therefore makes sense to model the behavior of each unit
under operating condition is formalized as a parameterized
state machine, using guarded transitions to encode its operating
constraints. The behavior of a complete memory core is then
modeled as an interacting state machine composition.

! Additionally, some flash designs make use of multiple V;j, levels to store
2 or 3 bits in one FG transistor; we do not consider multi-level flash in this

paper.

To understand how the behavioral models work, consider the
operations on a flash bitcell. Note that the operations involve
both the bitcell and the surrounding control logic.

o Read: For the selected bitcell, one applies a voltage v
(Vtﬁ <v < Vt{f) at G which is driven by the selected
wordline, while keeping other wordlines at ground. If the
cell has logic 0, the transistor does not turn on and no
current flows to the associated sense amplifier; otherwise
the bitcell turns on and current is detected, reading a 1.

o Program: The so-called Channel Hot-Electron Injection
procedure is performed to inject negative charge into the
FG, raising its Vi to th . Then there is a verification
phase to ensure that Vi, has been appreciably raised;
this is done by “reading” the cell with a gate voltage
v (> th,;[). A result of 0 for the read indicates successful
programming; otherwise programming is iterated until it
succeeds or a specified number of attempts have been
made, signalling failure in the latter case.

o Erase: Erasing is performed for an entire memory sector
rather than one bitcell, and is based on removal of stored
charge by a procedure called Fowler-Nordheim tunneling.
The operation involves (i) raising the Vi;s of the bitcells
in the sector to th by programming, (ii) charge removal
to lower all the Vs to V%, and finally, (iii) normaliza-
tion, which employs soft programming to increase the Vip,
of the cells that have fallen below Vtﬁ

The description underlines the complexity of the analog op-
erations in a flash memory, and points to the difficulty of
designing switch-level analyzers. Other factors to account for
in abstracting flash memories include (i) multiple voltage
levels, (ii) charge injection and removal, and (iii) complex
sense amplifier activity to compare various current values.
Nevertheless, the behaviors of the individual components are
still tractable (albeit perhaps more complex than SRAMs).
Nevertheless, the behavior of the signal pattern corresponding
to a flash operation can be viewed as discrete state transitions.
For instance, the response of the state machine for the FG
bitcell component to the electron injection phase of a program
sequence is formalized as a non-deterministic transition raising
the V};, by a bounded constant.

We have developed a library of such behavioral models cor-
responding to flash components. To make the library generic,
the state machines are parameterized to work over a range of
operating constraints. For instance, to model the time delay
between precharge (pch) and isolate (iso) signals, the bitcell
component contains parameters ng, 11, and ny (among others),
with constraints that on a read, (i) pch is 1 and iso is 0 for at
least ng units, (ii) both pch and iso are 0 for at least nq units
thereafter and the wordline wl becomes 1 in this interval, and
(iii) iso is 1 for at least no units subsequently.

Given such models for each constituent unit, how do
we model the behavior of the entire memory array? The
array consists of interconnection of these units according
to specified configuration. For example, Fig. 4 shows the
NOR flash configuration, and Fig. 5 shows a fragment of

blo bl1
wd0 ”:1—‘ _”q_ _HI:‘,—-
T
: g
S |uar 3
Dopebd] oAl |] | d
3 =]
< 3
] g] 4
COLUMN DECODER output
T enable
sense amplifier ‘;t‘fff’;l E:Jaut:

Fig. 4. Implementation of a NOR Flash Configuration with FG transistor.

| |

ssl i ’j |

1 |

Wo Ly |

wdj u I

I“:L, |

IIIj’ |

Wlis ||’\:[|

os! h; I

src Ssrc
bl0 bll
Fig. 5. Fragment of Implementation of a NAND Flash Configuration.

the NAND configuration. The configuration is produced by
interconnecting individual analog units whose behaviors are
formalized in our library. The behavior of the interconnection
is therefore naturally modeled as an interactive composition
of the individual state machines as follows. Suppose the
interconnection specifies that the component C receives a
sequence of stimuli from components &i,...E&;. Then the
behavioral model of the unit is the interactive composition
in which the output behaviors of the models corresponding to
&1, ...& are composed with the input behavior of the model
of C.

IV. VERIFICATION METHOD

Given the above behavioral models, the verification task is
to relate its execution with those of the high-level specification.
The specifications are abstract state machines representing the
core’s interface to an SoC design. The supports read, program,
and erase, together with core enable that controls operations
on the entire core, and write protect that regulates program-
ming bitcells in the core. Indeed, the specifications correspond
exactly with the C/C++ abstraction of the memory array used
for provided for the memory for functional verification of the
rest of the SoC design as discussed in Section II.

The final piece of the verification framework is the notion
of correspondence used to relate the implementation and

the specification. The notion we use is based on simulation
refinement [7], [8] of the specification up to stuttering, with
respect to a refinement map. A refinement map enables us
to appropriately view implementation states as specification
states [9], and in our case, maps the bitcell states in the
memory core to an association list that models the core at the
specification level. We require the notion of correspondence
to be stutter-insensitive to account for the timing mismatch
between the implementation and specification models.

We now discuss the proof obligations. Let rep be a refine-
ment map. We then define predicates inv and commit, and a
function pick such that (i) inv is an implementation invariant
and (ii) the following formulas are provable:

1. Vs, i : inv(s) A ~commit(s,i) =
rep(impl(s,i)) = rep(s)
2. Vs, i inv(s) A commit(s,i) =
rep(impl(s, 1)) = spec(rep(s), pick(s, 1))

Here impl and spec are the (non-deterministic) state transition
functions of the implementation and specification respectively;
commit governs for an implementation transition if the spec-
ification transits or stutters; pick provides the specification
stimulus in case of a matching transition. The formulas above
thus state that for each transition of the implementation, the
specification either has a matching transition or stutters. These
proof rules can be used to compare two systems modeled
at different abstraction levels; they have been adapted from
Manolios’ rules for stuttering simulations [10] with the re-
striction that stuttering is one-sided. The restriction is justified
since one step of the specification corresponds to several steps
of the implementation, but not vice versa.

We have used the approach to verify parameterized models
of both NOR and NAND flash configurations. Note that the
models in the implementation consist of a complex composi-
tion of a large number of state machines. To ameliorate veri-
fication complexity, we make use of two techniques, namely
parameterization and assume-guarantee reasoning. Note from
above that the individual behavioral models are parameterized.
Parameterization is done with respect to several dimensions,
including (1) relative timing, (2) transistor threshold voltages,
and (3) array size. This allows us to guarantee correctness of a
range of concrete implementations in one verification run. Pa-
rameterization also facilitates focus on the design factors that
are relevant to functional correctness while abstracting other
details. Furthermore, the complexity of this parameterized
verification problem can be effectively discharged by assume-
guarantee reasoning as follows. Since the implementation is
merely an interactive, hierarchical composition, the assumed
input constraints associated with a component C' must be
implied by the invariants (guarantees) associated with the state
machines for their environmental components. Furthermore,
using a theorem prover we can define invariants with generic,
expressive predicates. Since ACL2 supports full first order
logic, we define a predicate to express (by quantification)
that each state s is reached by transitions in which the input
sequences satisfy the associated constraints.

V. RELATED WORK AND CONCLUSION

We are aware of no related effort on formal functional veri-
fication of flash memories. Formalization of transistor circuits
has chiefly focused on developing switch-level analyzers such
as SLS [4], MOSSIM-II [3], and ANAMOS [1]. Switch-level
models have found extensive applications in academia and
industry [1], [11]. In addition, there has been work on equiv-
alence verification and conservative reachability analysis of
small analog circuits [12], [13], [14], [15]. Finally, the PROSYD
project (http://www.prosyd.org) aims to provide an
assertion-based run-time monitoring tool supporting STL or
PSL properties in analog circuits. This tool has been applied
on simulation traces from a flash memory [16].

We have presented a framework for formal functional veri-
fication of flash memory arrays. To our knowledge, our work
provides the first platform for formal functional verification
of flash designs. Since individual memory units are modeled
as state machines, traditional simulation and verification tool
flows can be easily adapted to handle these models. Further-
more, the specification is extracted from the flash interface
with its surrounding SoC blocks; functional verification of
digital components can be hierarchically composed with flash
models for full SoC verification. Finally, a key feature of
our framework is the direct correspondence between compo-
nents used for analog simulation and behavioral models for
individual units. This facilitates corroboration of models with
readily available simulation data. This correspondence makes
it viable to use learning techniques automate extraction of the
behavioral models from simulation patterns as follows. Traces
from SPICE simulation can be used to learn the parameters of
the state machines for each unit through iterative refinement
and the iterations can be seeded by the operating constraints
used in the SPICE simulation.

The approach also opens the door for application of machine
learning techniques to automatically construct behavioral ab-
stractions. Note that the behavioral abstractions for individ-
ual units are small state machines, but their construction is
delicate, involving careful characterization of different design
parameters. There has been some work on applying learning
techniques for estimation of trace machine models [17], [18].
We are exploring the possibility of applying such techniques
for learning behavioral abstractions. The viability of applying
learning techniques in our framework is based upon the fact
that behavioral abstractions are state machines with close
connection to models used for analog simulation; thus traces
from analog simulation can be used to learn such models
through iterative refinement and the iterations can be “seeded”
by the operating constraints used in the analog simulation.

Acknowledgements

Sandip Ray is funded in part by the Defense Advanced Re-
search Projects Agency and the National Science Foundation
under Grant No. CNS-0429591, and by the Semiconductor
Research Consortium under Grant No. 08-TJ-1849. We thank
our colleagues at Freescale Semiconductor Inc. for answering
our questions on the electrical behavior of flash memories.

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

(17]

(18]

REFERENCES

R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: A
Compiled Simulator for MOS Circuits,” in Proceedings of 24th Design
Automation Conference. ACM/IEEE, 1987, pp. 9-16.

P. Agrawal, “Automatic Modeling of Switch-Level Networks Using
Partial Orders,” IEEE Transactions on Computer-Aided Design, vol. 9,
no. 7, pp. 696707, July 1990.

R. E. Bryant, “A Switch-Level Model and Simulator for MOS Digital
Systems,” IEEE Trans. on Computers, vol. C-33, no. 2, pp. 160-177,
Feb. 1984.

Z. Barzilai, D. K. Beece, L. M. Hiusman, V. S. Iyegar, and G. M.
Silberman, “SLS — a Fast Switch Level Simulator for Verification and
Fault Coverage Analysis,” in Proceedings of 23rd Design Automation
Conference, 1986, pp. 164—170.

J. Bhadra, A. K. Martin, and J. A. Abraham, “A Formal Framework for
Verification of Embedded Custom Memories of the Motorola MPC7450
Microprocessor,” Formal Methods in Systems Design, vol. 27, no. 1-2,
pp. 67-112, 2005.

P. Cappalletti, C. Golla, P. Olivo, and E. Zanoni, Eds., Flash Memories.
Kluwer Academic Publishers, 1999.

R. Milner, Communication and Concurrency. Prentice-Hall, 1990.

D. Park, “Concurrency and Automata on Infinite Sequences,” in Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science,
ser. LNCS, vol. 104. Springer-Verlag, 1981, pp. 167-183.

M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253-284, May 1991.
P. Manolios, “Mechanical Verification of Reactive Systems,” Ph.D.
dissertation, Department of Computer Sciences, The University of Texas
at Austin, 2001.

N. Krishnamurthy, A. K. Martin, M. S. Abadir, and J. A. Abraham,
“Validating PowerPC™ Microprocessor Custom Memories,” IEEE
Design & Test of Computers, vol. 17, no. 4, pp. 61-76, 2000.

L. Hedrich and E. Barke, “A formal approach to nonlinear analog circuit
verification,” in ICCAD, 1995, pp. 123-127.

A. Salem, “Semi-formal verification of VHDL-AMS descriptions,” in
Intl. Symp. on Circuits and Systems, 2002, pp. 123-127.

A. Ghosh and R. Vemuri, “Formal Verification of Synthesized Analog
Designs,” in Intl. Conf. on Computer Design, 1999, pp. 40-45.

S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda, “Ver-
ification of Analog and Mixed-signal Circuits Using Timed hybrid
Petri Nets,” in Automated Technology for Verification and Analysis, ser.
LNCS, no. 3299, 2004, pp. 426—-440.

D. Nickovic, O. Maler, A. Fedeli, P. Daglio, and D. Lena, “Analog Case
Study, PROSYD Deliverable D3.4/2,” Jan. 2007.

A. Gupta and E. M. Clarke, “Reconsidering CEGAR: Learning Good
Abstractions without Refinement,” in Proceedings of 23rd Inernational
Conference on Computer Design (ICCD 2005). IEEE Computer
Society, 2005, pp. 591-598.

C. H. Wen, L. Wang, and J. Bhadra, “An Incremental Learning Frame-
work for Estimating Signal Controllability in Unit-level Verification,”
in Inernational Conference on Computer-Aided Design (ICCAD 2007),
G. G. E. Geilen, Ed. IEEE Computer Society, 2007, pp. 250-257.

