
0018-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  21

ABSTRACT  |  Modern system-on-chip (SoC) designs include a wide

variety of highly sensitive assets which must be protected from

unauthorized access. A significant aspect of SoC design involves

exploration, analysis, and evaluation of resiliency mechanisms

against attacks to such assets. These attacks may arise from a

number of sources, including malicious intellectual property blocks

(IPs) in the hardware, malicious or vulnerable firmware and software,

insecure communication of the system with other devices, and side-

channel vulnerabilities through power and performance profiles.

Countermeasures for these attacks are equally diverse, which

include architecture, design, implementation, and validation-based

protection. In this paper, we provide a comprehensive overview of

the security infrastructure in modern SoC designs, including both

resiliency techniques and their validation paradigms at presilicon

and postsilicon stages. We identify gaps in current resiliency and

analysis architectures and propose design and validation solutions

to address them. Finally, we provide industry perspectives on the

role and impact of current practices on SoC security, and discuss

some emerging trends in this important area.

KEYWORDS  |  Security architecture; security policy; system-on-

chip (SoC) security; trusted SoC; untrusted IPs

I .   IN TRODUCTION

We are living in a world surrounded by billions of comput-
ing systems, identifying, tracking, and analyzing some of our

Digital Object Identifier: 10.1109/JPROC.2017.2714641

intimate personal information, including health, sleep,
location, and network of friends. The trend is toward even
higher proliferation of such devices, with an estimated
50 billion smart, connected devices by 2020, according to
a recent report by Cisco. These devices generate, process,
and exchange a large amount of sensitive information and
data (often collectively referred to as “security assets” or
simply “assets”). In addition to private end-user informa-
tion, assets include security-critical parameters introduced
during the system architecture definition, e.g., fuses, cryp-
tographic, and digital rights management (DRM) keys,
firmware execution flows, and on-chip debug modes.
Malicious access to these assets can result in leakage of
company trade secrets for device manufacturers or content
providers, identity theft or privacy breach for end users,
and even destruction of human life.

Security assurance of a modern computing device
involves a number of challenges. One key challenge is the
sheer complexity of the design. Most modern computing
systems are architected via a system-on-chip (SoC) para-
digm, viz., through a composition of predesigned hardware
or software blocks [referred to as intellectual properties
(IPs)] that interact through a network of on-chip commu-
nication fabrics. The IPs themselves are highly complex
artifacts optimized for performance, power, and silicon
overhead. Adding to the complexity are the communication
protocols used in implementing complex system-level use
cases. Finally, security assets are sprinkled at different IPs
across the design, and access to the assets is governed by
complex security policies. The policies are defined by system
architects as well as different IP and SoC integration teams,
and undergo refinement and modification throughout the
system development. This makes it challenging to validate
a system, develop architectures to provide built-in resilience

Manuscript received October 3, 2016; revised May 12, 2017; accepted June 1, 2017.
Date of publication July 21, 2017; date of current version December 20, 2017. The work
presented here is supported in part by National Science Foundation (NSF) and
Semiconductor Research Corporation (SRC). (Corresponding author: Sandip Ray.)
S. Ray is with NXP Semiconductors, Austin, TX 78735 USA (e-mail:
sandip.r.ray@gmail.com).
E. Peeters is with Texas Instruments Inc., Dallas, TX, USA.
M. M. Tehranipoor and S. Bhunia are with the University of Florida, Gainesville,
FL 32611 USA.

System-on-Chip Platform
Security Assurance:
Architecture and Validation
This paper surveys the security of VLSI systems-on-chip, identifies potential
concerns, and proposes new approaches.

By Sa ndip R ay, Senior Member IEEE, Er ic Peeters , Ma r k M. Tehr a nipoor,
Senior Member IEEE, a nd Swa ru p Bh u ni a, Senior Member IEEE

Ray et al . : System-on-Chip Platform Security Assurance

22  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

against unauthorized access, or update security requirements,
e.g., in response to changing customer needs.

Another source of challenge is the supply chain
involved in the development of a modern comput-
ing device. There is a large number of players involved,
including IP providers, SoC design house, and foundry.
With the increasing globalization of the semiconduc-
tor design and fabrication process, each of these players
often involves large number of organizations—often across
geography—coordinating to create a complex supply-chain
pipeline. Every component of the pipeline is vulnerable to
malicious design alterations, subversions, piracy, and other
security threats. Even in cases where a component is designed
without intended malice, aggressive time-to-market require-
ments and high optimization needs often result in errors and
vulnerabilities inadvertently left in the design, which can be
exploited by a malicious adversary in the field.

Given the broad spectrum of vulnerabilities and corre-
sponding mitigation strategies, the subject of SoC security
today is highly fragmented. Different research groups focus
on different aspects of the problem, without full under-
standing of the tradeoffs and synergies. For example, there
has been little work on integrating techniques for supply-
chain security with architectural resiliency initiatives for
design-level security implementation. Consequently, secu-
rity research in different communities runs into the danger
of reinventing the “wheel” that already exists in another
context, or creating a solution for one problem that breaks
fundamental requirements of another.

The goal of this paper is to provide a comprehensive over-
view of security assurance requirements and practices in
modern SoC designs. Existing literature notably lacks such
a coverage on SoC security, specifically in materials related
to industrial practices. We discuss the SoC design lifecycle,
identify the security concerns tackled at each stage, and the
challenges involved in addressing them, which include tech-
nical obstacles (e.g., scalability of analysis), as well as gaps in
methodology and supply chain (e.g., unavailability of specifi-
cation, interface, and adversary models, untrusted or buggy
third-party IP blocks). We discuss current industrial prac-
tices, point out their inadequacies, and present results from
some emergent research that provide promising directions.

The remainder of the paper is organized as follows.
Section II provides a basic overview of SoC security chal-
lenges, identifying the design, architecture, and supply-
chain roots. Section III discusses the overall spectrum of
security solutions employed in different phases of the SoC
design lifecycle. Sections IV–VIII go into more detail in the
different components of secure SoC design, viz., assess-
ment, specification, architecture, and validation. For each
of the activities discussed, we describe the current practices
and point out their limitations. Section X discusses security
challenges coming from other aspects of design, in particu-
lar, interoperability with validation. We discuss a few emer-
gent approaches in Section XI, and conclude in Section XII.

II .   OV ERV IE W OF S o C SECU R IT Y
CH A LLENGES

Before getting into the current practice of security assurance,
it is sobering to understand the scale and complexity of secu-
rity threats to which our computing systems are exposed. The
security literature over the years is replete with instances of
security attacks, and the number of attack instances has been
growing over the years. As an example, Forbes Magazine
recently reported results from Cansecwest 2015 [1], where
four different attacks were presented [2]–[5] exploiting secu-
rity vulnerabilities related to the system management mode
on the Intel processor architecture running BIOS. Each
attack could “hijack” millions of BIOS from diverse system
vendors. Perhaps more disturbingly, these attacks represent
only a very small segment of the attack surface of a comput-
ing device, e.g., exploiting vulnerabilities of a specific feature
present in the architecture of the CPU, which is only one IP of
a modern SoC design. To give an idea of the scale of the attack
surface, Fig. 1 illustrates some of the potential security attacks
in a smartphone. Note that each category of attack represents
a rich body of literature, with several documented instances.

Unfortunately, the situation is exacerbated with increas-
ing proliferation of smart computing devices and platforms
in the IoT regime. First, the diversity of these devices pro-
vides newer unanticipated avenues for attacks (see below).
Second, the devices do not operate in isolation, but are in
continuous communication with billions of other smart
devices through the network of cloud and data centers. Con-
sequently, it has become possible for an adversary to exploit
the vulnerability of one (or a few) systems to infect a large
number of connected devices. Furthermore, the ramifica-
tions of the attacks are staggering. A decade back, smart-
phones represented the limits of the imagination of many
people in sophistication of computing applications; now, we
have realized applications in the scale of smart cities, homes,
and multiplexes. A security vulnerability in a single device
in this ecosystem can have a ripple effect affecting the entire

Fig. 1. Some potential attacks on a modern smartphone.

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  23

application, with potentially catastrophic consequences to
national security, economy, and human life.

Computer security is, of course, a mature area of
research with significant results going back to at least four
decades, resulting in a large body or results on adversary
models, resilience techniques, and validation approaches for
various computing models. To understand the challenge of
security assurance on modern computing platforms, it is worth
understanding the inadequacy of these technologies. In the rest
of the section, we explain this issue and discuss how the chang-
ing computing paradigm from desktops to handheld affects and
constrains the applicable security solutions. We then discuss
the scope of SoC security assurance in greater detail.

A.  Design Challenges to Security

There are four key factors that contribute to design
challenges in ensuring the security of modern computing
platforms: 1) high complexity of devices; 2) aggressive time-
to-market requirements that do not provide adequate valida-
tion time; 3) high diversity; and 4) continuous connectivity,
particularly of devices that were not originally meant to be
connected [6], [7].

To understand the critical role of complexity, recall that
even a decade back one could clearly demarcate computing
systems in two categories: general-purpose systems (e.g.,
desktops, laptops, etc.) and embedded systems (e.g., medical
equipment, personal organizer, automotive infotainment,
etc.). The general-purpose systems were characterized by
high programmability to support diverse use-case scenarios,
resulting in a complex hardware architecture; nevertheless,
they also provided a reasonably clean interface (e.g., at the
instruction-set architecture) to enable software develop-
ment at a level of abstraction without significant concern on
hardware or power/performance constraints for most appli-
cation or even system-level software development. On the
other end, embedded systems were targeted for unique use
cases. Each use case induced unique constraints on form fac-
tor, power, performance, security, reliability, etc., and drove
the design, architecture, and optimization of the whole sys-
tem. Consequently, the systems were typically characterized
by tight coupling of hardware and software modules opti-
mized for the metrics of interest as dictated by the target use
case. Research in security assurance and verification conse-
quently looked at 1) embedded systems security [8] where
potential vulnerabilities were limited by the narrowness of
target use-cases; or 2) general-purpose computing system
security, where the decoupling of hardware and software
permitted exploration of the two components separately.
Furthermore, since for general-purpose systems the hard-
ware architecture was fairly standard and the supply-chain
reasonably trustworthy, one could trust them to be free of
malicious instrumentation. Consequently, the hardware
was taken as the root of trust and the primary security focus
was on software components. However, with the advent
of modern “embedded devices” like smartphones, tablets,

smart watches, and wearables, the demarcation between
embedded and general-purpose systems has become murky;
these devices inherit the complexity of embedded systems,
including the tight hardware/software integration and
aggressive optimizations to address form factor, power/
performance, and usage-specific constraints. However, they
also inherit the complexity of general-purpose systems,
including a diversity and complexity of use cases (e.g., the
number of use cases of a smartphone or tablet is compatible
with those in a laptop or desktop). Consequently, one must
rethink architecture and validation from the ground up to
ensure that we can encompass systems of such complexity.

Furthermore, these devices must conform to aggressive
time-to-market requirements. The system lifecycle from
conception to production ranges from three to four years
for a desktop or a laptop; this is shrunk to less than a year for
a mobile device. The shrinking is driven by market econom-
ics, e.g., the consumer device refresh cycle. Furthermore, the
launch schedule is governed by seasonal demand cycles, e.g.,
back-to-school and holiday seasons; the success in launch-
ing a product within a specific short time-window may
mean the difference between high market share and com-
plete failure [9], [10]. This severely constrains the amount
of system-level functional validation performed, resulting in
vulnerability escapes to silicon or in-field.

Finally, exacerbating the situation are two additional fac-
tors in the modern computing environment, large system
diversity and their continuous connectivity. The high diver-
sity of consumer computing devices, coupled with aggressive
time-to-market requirements, implies an urgent need for reuse
of design blocks. However, security requirements vary signifi-
cantly depending on the product, and cannot be “preverified”
at the IP level, e.g., security requirements from the display IP
may vary significantly depending on whether it is used for a
mobile phone or a gaming system. On the other hand, the lack
of system-level hardware/software security validation technol-
ogy, together with the inadequate system-level validation time
and lack of sufficient documentation of system-level security
objectives (see below), implies that requirements for security
validation—and sometimes even security architecture—are
not thought through and often reused from an earlier (some-
times different) product. This can lead to significant security
holes which are only identified in-field. Furthermore, since
many of these devices target relatively naïve consumers, it is
difficult to ensure software/firmware patching or other meas-
ure to mitigate vulnerabilities discovered in-field are applied.

B.  Supply Chain Challenges

The security picture is further complicated for SoC
designs due to increasing reliance on hardware IPs gath-
ered from untrusted third party vendors. Fig. 2 shows the
SoC lifecycle and the security threats that span the entire
lifecycle. These threats are increasing with the rapid glo-
balization of the SoC design, fabrication, validation, and
distribution steps. Statistics show that the global market for

Ray et al . : System-on-Chip Platform Security Assurance

24  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

third party semiconductor IPs reached more than 2.1 bil-
lion in late 2012 [11]. The design, fabrication, and supply
chain for these IP cores are generally distributed across the
globe (cf., Fig. 3). Due to growing complexity of the IPs as
well as the SoC integration process, SoC designers increas-
ingly tend to treat these IPs as black box and rely on the IP
vendors on the structural/functional integrity of these IPs.
However, such design practices greatly increase the num-
ber of untrusted components in a SoC design and make the
overall system security a pressing concern.

Hardware IPs acquired from untrusted third party
vendors can have diverse security and integrity issues.
An adversary inside an IP design house involved in the IP
design process can insert a malicious implant or design
modification to incorporate hidden/undesired functional-
ity. In addition, since many of the IP providers are small
vendors working under highly aggressive schedules, it is
difficult to ensure a stringent IP validation requirement
in this ecosystem. Design features may also introduce vul-
nerabilities, e.g., information leakage through hidden test/
debug interfaces or side channels through power/timing
profiles [12].

Computer-aided design (CAD) tools pose similar trust
issues to the SoC designers. Such tools are designed to
optimize a design for power, performance, and area. These
optimizations can introduce new vulnerabilities [13].
Rogue designers in an untrusted design facility, e.g., in
case of a design outsourced to an untrusted facility for

design-for-test (DFT) or design-for-debug (DFD) insertion,
can compromise the integrity of a SoC design through inser-
tion of stealthy hardware Trojan. These Trojans can act as a
backdoor or compromise the functional/parametric proper-
ties of a system in various ways.

Finally, many SoC manufacturers today are fabless and
rely upon external untrusted foundries for fabrication ser-
vice. An untrusted foundry has access to the entire design
and thus brings in several serious security concerns, which
include reverse engineering and piracy of the entire SoC
design or the IP blocks as well as tampering in the form of
malicious alterations or Trojan attacks. During distribution
of fabricated SoC designs through a typically long distribu-
tion supply chain, consisting of multiple layers of distribu-
tors, wholesalers, and retailers, the threat of counterfeits is
a growing one. These counterfeits can be low-quality clones,
overproduced chips in untrusted foundry, or recycled ones.
Even after deployment, the systems are vulnerable to physical
attacks, e.g., side-channel attacks which target information
leakage, and magnetic field attacks that aim at corrupting
memory content to cause denial-of-service attacks.

C.  Scope of SoC Security

Given the complex roots of security assurance in mod-
ern computing devices, it is unsurprising that security assur-
ance itself is a problem of very broad scope. The problem is
classified into the following three groups.

1) Hardware security: This refers to security issues aris-
ing from problems in the underlying hardware. Current
approaches to hardware security primarily focus on hard-
ware supply-chain vulnerabilities, e.g., Trojan attacks, and
counterfeit IPs.

2) System or platform security: This refers to vulner-
abilities resulting from functional or performance bugs
in the system that can be exploited by a malicious third
party during execution. Examples of such vulnerabili-
ties include functional bugs in security-critical IPs (e.g.,
cryptographic engine), information leakage due to unan-
ticipated behavior when the system encounters inputs
of unexpected types, information leakage from system
power profile, etc.

3) Cloud security or cybersecurity: This refers to vulner-
abilities arising from the communication of an embedded
computing system or IoT either with other embedded sys-
tems in the Internet or with servers and data centers in the
cloud. It includes eavesdropping or “man-in-the-middle”
attacks, breach of confidentiality of the stored data in the
cloud, corruption of the integrity of collected data, etc.

The remainder of the paper focuses primarily on platform
security assurance, although we refer to the other components
in the context of their influence on platform security. Note
that while both hardware security and cybersecurity have

Fig. 2. Effects of globally distributed supply chain on SoC security.

Fig. 3. SoCs would typically integrate IP blocks from entities
distributed across the globe.

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  25

received significant attention with several mature research
programs [14], [15], there has been a dearth of a compre-
hensive treatment of platform security. On the other hand,
platform security in fact is a large and complicated topic. The
notion of “platform” itself includes all hardware, firmware,
and software components of the system, typically also includ-
ing the essential system and application services. To achieve
security assurance at that level, one must identify all potential
vulnerabilities (e.g., software, hardware, physical access, etc.),
and motivations for an attack (e.g., data theft, jailbreaking,
DRM bypass, etc.). Even identifying the security objectives is
non-trivial; they include design features, architecture param-
eters, security requirements of the operating system and
applications, and even the user’s security expectations (even
if undocumented). Finally, given aggressive time-to-market
constraints, security assurance must only cover architecture
and validation components not covered already by other activ-
ities; thus the security architect and validator is faced with
the daunting task of understanding different designs, archi-
tectures, and validation flows, and identifying gaps in them
which can undermine security objectives of the system.

III .   SECU R IT Y A LONG S o C DESIGN
LIFEC YCLE

Fig. 4 provides a high-level overview of the SoC design life-
cycle. Each component of the lifecycle, of course, involves a
large number of design, development, and validation activi-
ties. Here we summarize the key activities involved along
the lifecycle that pertain to security. Subsequent sections
will elaborate on the individual activities.

A.  Risk Assessment

Security requirements definition is a key part of prod-
uct planning, and happens concurrently with (and in close
collaboration with) the definition of architectural features
of the product. This process involves identifying the secu-
rity assets in the system, their ownership, and protection

requirements, collectively defined as security policies (see
below). The result of this process is typically the generation
of a set of documents, often referred to as product security
specification (PSS), which provides the requirements for
downstream architecture, design, and validation activities.

B.  Security Architecture

The goal of a security architecture is to design mecha-
nisms for protection of system assets. It includes several
components: 1) identifying and classifying potential adver-
sary for each asset; 2) determining attacker entry points,
also referred to as threat modeling; and 3) developing pro-
tection and mitigation strategies. The process can identify
additional security policies—typically at a lower level than
those identified during risk assessment (see below)—which
are added to the PSS. The security definition typically pro-
ceeds in collaboration with architecture and design of other
system features, including speed, power management, ther-
mal characteristics, etc.

C.  Security Validation

Security validation represents one of the most critical
parts of security assurance, spanning the architecture, design,
and postsilicon components of the system lifecycle. The
actual validation target and properties validated at any phase
depend on the collateral available in that phase, e.g., the
validators target, respectively, architecture, design, imple-
mentation, and silicon artifacts as the design matures. One
key activity is to subvert the advertised security requirements
in PSS, and identify mitigation measures. Mitigation meas-
ures for architecture and early system design often include
significant refinement of the security architecture itself.
At later stages of the system lifecycle, when architectural
changes are no longer feasible, mitigation measures can
include software or firmware patches, product defeature, etc.

I V.   IN TRODUCTION TO SECU R IT Y
POLICIES

SoC security is driven by the requirement to protect sys-
tem assets against unauthorized access. Such access control
can be defined by confidentiality, integrity, and availability
requirements [16]. The goal of a security policy is to map
the requirements to “actionable” design constraints that can
be used by IP implementers or SoC integrators to develop
protection mechanisms.

• � Example 1: During boot time, data transmitted by the
crypto engine cannot be observed by any IP in the SoC
other than its intended target.

• � Example 2: A programmable fuse containing a secure
key can be updated during manufacturing but not
after production.Fig. 4. Lifecycle of a typical SoC from exploration to production.

Ray et al . : System-on-Chip Platform Security Assurance

26  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

Example 1 is a confidentiality requirement while
Example 2 is an integrity constraint; however, the policies
provide concrete conditions to be checked by the design for
accessing an asset. Furthermore, access to an asset may vary
depending on the state of execution (e.g., boot time, nor-
mal execution, etc.), or position in the development lifecy-
cle. Following are some representative policy classes. They
are not exhaustive, but illustrate the diversity of policies
employed.

1) Access control: This is the most common class of
policies, and specifies how different agents can access an
asset at different points of the execution. Here an “agent”
can be a hardware or software component in any IP of the
SoC. Examples 1 and 2 above are examples of such pol-
icy. Furthermore, access control forms the basis of many
other policies, including information flow, integrity, and
secure boot.

2) Information flow: Values of secure assets can some-
times be inferred without direct access, through indirect
observation or “snooping” of intermediate computation or
communications of IPs. Information flow policies restrict
such indirect inference. An example information flow pol-
icy is given below.

• � Key obliviousness: A low-security IP cannot infer the
cryptographic keys by snooping the data from crypto
engine on a low-security communication fabric.

Information flow policies are difficult to analyze. They
often require highly sophisticated protection mechanisms
and advanced mathematical arguments for correctness, typ-
ically involving hardness or complexity results from infor-
mation security. Consequently, they are employed only on
critical assets with very high confidentiality requirements.

3) Liveness: These policies ensure that the system performs
its functionality without “stagnation” throughout its execu-
tion. A typical liveness policy is that a request for a resource by
an IP is followed by an eventual response or grant. Deviation
from such a policy can result in system deadlock or livelock,
consequently compromising system availability requirements.

4) Time of check versus time of use (TOCTOU): This
refers to the requirement that any agent accessing a resource
requiring authorization is indeed the agent that has been
authorized. A critical example of TOCTOU requirement
is firmware update; the policy requires firmware eventu-
ally installed on update is the same firmware that has been
authenticated as legitimate by the security or crypto engine.

5) Secure boot: Booting a system entails communication
of significant security assets, e.g., fuse configurations, access
control priorities, cryptographic keys, firmware updates,
postsilicon observability information, etc. Consequently,
boot imposes stringent security requirements on IPs and
communications. Individual policies during boot can be

access control, information flow, and TOCTOU require-
ments; however, it is often convenient to coalesce them into
a unified set of boot policies.

Most system-level policies are defined at the risk assess-
ment phase by system architects. However, they continue
to be refined along different phases of the architecture and
even early design and implementation activities, as new
knowledge and constraints come to light. For example, dur-
ing architecture definition of a specific product one may
realize that the “Key Obliviousness” policy cannot be imple-
mented as stated for that product since several IPs need to
be connected on the same network on chip (NoC) as the
cryptographic engine due to resource constraints; this may
lead to a refinement in the policy definition by marking
some IPs to be “safe” for observing some of the keys. Policies
may also need to be refined or updated in response to chang-
ing customer or product needs. Such refinements may make
it highly challenging to develop a validation methodology,
or even a disciplined security architecture. To exacerbate
the issue, security policies are rarely specified in any formal,
analyzable form. Some policies are described in natural lan-
guage in different PSS or other architecture documents, and
many (particularly refinements identified later in the sys-
tem lifecycle) remain undocumented.

In addition to the system-level policies, there are “lower
level” policies, e.g., communication among IPs is speci-
fied by fabric policies. Following are some obvious fabric
policies.

6) Message immutability: If IP ​​ sends a message ​m​ to IP ​
​ then the message received by ​​ must be exactly message ​m​.

7) Redirection and masquerade prevention: If ​​ sends a
message ​m​ to ​​, then the message must be delivered to ​​. In
particular, it should be impossible for a (potentially rogue)
IP ​C​ to masquerade as ​​, or for the message to be redirected
to a different IP ​D​ in addition to, or instead of ​​.

8) Nonobservability: A private message from ​​ to ​​ must
not be accessible to another IP during transit.

The above descriptions perhaps belie the complexity
involved in implementing policies. Consider the SoC configu-
ration shown in Fig. 5. Suppose that IP0 needs to send a mes-
sage to the DRAM. Ordinarily, the message would be routed
through Router3, Router0, Router1, and Router2. However,
such a route permits message redirection via software. Each
router includes a base address register (BAR) which is used
to route messages for specific destinations. One of the rout-
ers in the proposed path, Router0 is connected to the CPU;
the BARs in this router are subject to potential overwrite by
the host operating system, which can redirect a message pass-
ing through Router0 to a different destination. Consequently,
a secure message cannot be sent through this route unless
the host operating system is trusted. Note that understand-
ing the potential of redirection requires knowledge of fabric

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  27

operation, routers design (e.g., the use of BARs), as well as the
capabilities of the software in an adversarial role.

In addition to the above generic policies, SoC designs
include asset-specific communication constraints. A poten-
tial fabric policy relevant to secure boot is listed below. This
policy ensures that a key generated by the fuse controller
cannot be sniffed during propagation to the crypto engine
for storage.

•  �Boot-time key nonobservability: During the boot pro-
cess, a key from the fuse controller to the crypto engine
cannot be transmitted through a router to which any
IP with user-level output interface is connected.

V.  A TA XONOMY OF A DV ER SA R IES

To ensure that an asset is protected, the designer needs,
in addition to the security policy, a comprehension of the
power of the adversary. Effectiveness of virtually all protec-
tion mechanisms is critically dependent on how realistic the
model of the adversary is. Conversely, most security attacks
rely on breaking some of the assumptions made regarding
constraints on the adversary. The notion of adversary can
vary depending on the asset being considered: for protecting
DRM keys, the end user would be an adversary, while the
content provider (and even the system manufacturer) may
be included among adversaries in the context of protecting
the private information of the end user. Rather than focus-
ing on a specific class of users as adversaries, it is more con-
venient to model adversaries corresponding to each policy
and define protection and mitigation strategies with respect
to that model.

Defining and classifying the potential adversary is a
creative process. It needs considerations such as whether
the adversary has physical access, which components they
can observe, control, modify, or reverse engineer, etc.
Recently, there has been some attempts at developing a dis-
ciplined categorization of adversarial powers. One potential

categorization, based on the interfaces through which the
adversary can gain access to the system assets, can be used
to classify them into the following six broad categories (in
order of increasing sophistication). Note that this classi-
fication is one of the several potential ones, e.g., another
orthogonal classification could be done by categorizing the
different potential attacks on system or application features
as shown in Fig. 1. However, we discuss the design-based
characterization since this is particularly useful in the con-
text of SoC security architecture and validation.

1) Unprivileged software adversary: This form of adversary
models the most common type of attack on SoC designs.
Here the adversary is assumed to not have access to any
privileged information about the design or architecture
beyond what is available for the end user, but can identify
or “reverse engineer” possible hardware and software bugs
from observed anomalies. The underlying hardware is also
assumed to be trustworthy, and the user is assumed to have
no physical access to the underlying IPs. The importance of
this naïve adversarial model is that any attack possible by
such an adversary can be potentially executed by any user,
and can therefore be easily and quickly replicated in the
field on a large number of system instances. For this type of
attacks, the common “entry point” of the attack is user-level
application software which can be installed or run on the sys-
tem without additional privilege. The attacks rely on design
errors (both in hardware and software) to bypass protection
mechanisms and typically get a higher privilege access to the
system. Examples of these attacks include buffer overflow,
code injection, BIOS infection, return-oriented program-
ming attacks, etc. [17], [18].

2) System software adversary: This provides the next level
of sophistication to the adversarial model. Here we assume
that in addition to the applications, potentially the operat-
ing system itself may be malicious. Note that the difference
between the system software adversary and unprivileged
software adversary can be blurred, in the presence of bugs
in the operating system leading to security vulnerabilities:
such vulnerabilities can be seen as unprivileged software
adversaries exploiting an operating system bug, or a mali-
cious operating system itself. Nevertheless, the distinction
facilitates defining the root of trust for protecting system
assets. If the operating system is assumed untrusted, then
protection and mitigation mechanisms must rely on lower
level (typically hardware) primitives to ensure policy adher-
ence. Note that system software adversary model can have
subtle and complex impact on policy implementation, e.g.,
recall from the masquerade prevention example above that
it can affect the definition of communication fabric archi-
tecture, communication protocol among IPs, etc.

3) Software covert channel adversary: In this model, in
addition to system and application software, a side-channel
or covert-channel adversary is assumed to have access to
nonfunctional characteristics of the system, e.g., power

Fig. 5. An illustrative simple SoC configuration. SoC designs include
several on-chip communication fabrics with differing speed and
power profiles. This configuration has a high-speed fabric with
three routers connected linearly, and a low-speed fabric with two
routers also connected linearly.

Ray et al . : System-on-Chip Platform Security Assurance

28  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

consumption, wall-clock time taken to service a specific
user request, processor performance counters, etc., which
can be used in subtle ways to identify how assets are stored,
accessed, and communicated by IPs (and consequently sub-
vert protection mechanisms) [19], [20].

4) Naïve hardware adversary: This refers to the attack-
ers who may gain access to the hardware devices. While the
attackers may not have advanced reverse engineering tools,
they may be equipped with basic testing tools. Targets for
this type of attacks include exposed debug interfaces and
glitching of control or data lines [21]. Embedded systems are
often equipped with multiple debugging ports for quick pro-
totype validation. These ports also provide potential weak-
ness which can be exploited for violating security policies.

5) Hardware reverse-engineering adversary: This adversary
can reverse engineer the silicon implementation for on-chip
secrets identification. In addition to sniffing interfaces, they
can depend on advanced techniques such as laser-assisted
device alteration and chip-probing. Hardware reverse
engineering can be further divided into two categories:
1) chip-level reverse engineering; and 2) IP functionality
reconstruction. Both attack vectors bring in security threats
to the hardware systems, and permit extraction of secret
information (e.g., cryptographic and DRM keys coded into
hardware), which cannot be otherwise accessed through
software or debugging interfaces.

6) Malicious hardware intrusion adversary: A hardware
intrusion adversary (or hardware Trojan adversary) is a mali-
cious hardware inside the design. This category of adversar-
ies encapsulates potential threats arising from the SoC supply
chain. It is different from a hardware reverse-engineering
adversary in that instead of “passively” observing and reverse-
engineering functionality, it has the ability to communicate
with them (and “fool” them into violating requisite policies).
Protection policies against such adversaries are complex,
since it is unclear a priori which IPs to trust under this model.
The typical approach taken for security in the presence of
intruding adversaries is to ensure that a rogue IP  cannot
subvert a trusted IP  into deviating from a policy.

V I.   ELEMEN TS OF SECU R IT Y
A RCHITECT U R E

Given a plethora of complex policies and protection require-
ments under different classes of potential adversaries, how
would we go about designing authentication mechanisms
to ensure policy enforcement? Unfortunately, the state of
the practice today depends heavily on human creativity. The
typical approach today is to develop a baseline architecture
definition which is then repeatedly refined through the fol-
lowing two steps:

• � use threat modeling to identify potential threats to the
current architecture definition (see below);

• � refine the architecture with mitigation strategies cov-
ering the threats identified.

The baseline architecture is typically derived from
legacy architectures for previous products, adapted to
account for the policies defined for the system under
exploration. In particular, for each asset, the architect
must identify 1) who can access the asset; 2) what kind of
access is permitted by the policies; and 3) at what points
in the system execution or product development lifecycle
such access requests can be granted or denied. The pro-
cess can be complex and tedious for several reasons. A
SoC design may have a significant number of assets, often
in the order of thousands if not more. Furthermore, not
all assets are statically defined; many assets are created
at different IPs during the system execution. For exam-
ple, a fuse or an e-wallet may have a statically defined
asset such as key configuration modes. During system
execution, these modes are passed to the cryptographic
engine, which generates the cryptographic keys for dif-
ferent IPs and transmits them through the system NoC
to the respective IPs. Each participant in this process has
sensitive assets (either static or created) during different
phases of the system execution, and the security architec-
ture must account for any potential access to these assets
at any point, possibly under the relevant adversary model.

There has been significant work toward standardiz-
ing architecture to implement access control for differ-
ent assets. Most of the relevant work has taken the form
of developing a trusted execution environment (TEE),
viz., a mechanism for guaranteeing isolation between
code and sensitive data at different points of the system
execution. TEEs, of course, have been a part of computer
security for a long time, with a large number of mecha-
nisms and architectures. One of the most common TEE
architectures is the trusted platform module (TPM),
which is an international standard for a secure crypto-
processor designed to secure the hardware by integrating
cryptographic keys into devices [22]. It covers methods
for secure generation of cryptographic keys and limita-
tion of their use, the requirements from random number
generator, as well as capabilities such as remote attesta-
tion and sealed storage. In addition to TPM, there has
been significant work on architecting other TEEs, both
in the industrial platform and in academic research [23],
[24]. Below we discuss three TEE frameworks specifi-
cally developed for SoC designs: Samsung KNOX, Intel®
Software Guard Extension (SGX), and ARM Trustzone®.
Note that in spite of differences motivated by the isola-
tion and separation targets, the underlying architectural
plans for these TEEs are similar, viz., a combination of
hardware support (e.g., secure operating modes, virtual-
ization), and software mechanisms (e.g., context switch
agents, integrity check).

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  29

A.  Samsung KNOX [25]

This architecture is specifically targeted toward smart-
phones and provides secure separation features to enable
information partition between business and personal con-
tent coexisting on the same system. In particular, it permits
hot swap between these two content worlds (e.g., without
requiring system restart). The key ingredient of this tech-
nology is a separation kernel that implements information
isolation. This architecture permits several system-level ser-
vices, including the following:

• � trusted boot, i.e., preventing unauthorized OS and
software from being loaded onto the device at startup;

• � trust-zone based integrity measurement architecture
(TIMA), which continually monitors kernel integrity;

• � security enhancement (SE) for Android, an enforce-
ment mechanism providing protection of system/user
data based on confidentiality and integrity require-
ments through separation;

• � KNOX container, which offers a secure environment
in which protected business applications can run with
guaranteed information separation from the rest of
the device.

B.  ARM Trustzone [26]

TrustZone technology is a system-wide approach to
security on high-performance computing platforms. The
TrustZone implementation relies on partitioning the SoC’s
hardware and software resources so that they exist in two
worlds: secure and non-secure. Hardware supports access
control and permissions for the handling of secure/non-
secure applications and the interaction and communica-
tion among them. The software supports secure system calls
and interrupts for secure runtime execution in a multitask-
ing environment. These two aspects ensure that no secure
world resources can be accessed by the normal world com-
ponents, except through secure channels, enabling an effec-
tive wall-of-security to be built between the two domains.
This protection extends to input/output (I/O) connected to
the system bus via the TrustZone enabled AMBA3 AXI bus
fabric, which also manages memory compartmentalization.

C.  Intel SGX

SGX [27] is an architecture for providing a trusted exe-
cution environment provided by the underlying hardware
to protect sensitive application and user programs or data
against potentially malicious operating systems. SGX permits
applications to initiate secure enclaves or containers which
serve as so-called “islands of trust.” It is implemented as a set
of new CPU instructions that can be used by applications to
set aside such secure enclaves of code and data. This enables
1) applications to preserve the confidentiality and integrity of
sensitive data without disrupting the ability of legitimate sys-
tem software to manage the platform resources; and 2) end

users to retain control of their platforms, applications, and
services even in the presence of malicious system software.

The TEEs provide a foundation (i.e., a mechanism of isola-
tion) for implementing security policies. However, they are a
far cry from a standardized approach for implementing poli-
cies themselves. To provide such approaches, it is necessary
to 1) develop a language for succinctly and formally express-
ing security policies; 2) architecting a parameterized “skel-
eton” design that can be easily instantiated to diverse policy
implementations; and 3) developing techniques for synthe-
sizing policy implementation from high-level descriptions.
Recent academic and industrial research has attempted to
address some of these issues. Li et al. [28] provide a language
and synthesis framework for certain security policies. Basak
et al. [29] provide a microcontrol-based flexible framework
for implementing diverse security policies. There have been
optimized architectural support for specific classes of poli-
cies, e.g., control-flow integrity [30], Trojan resistance [31].
However, in spite of such work on pieces of the problem, we
are still far away from a robust, configurable security archi-
tecture as necessary for robust system design. Some key defi-
ciencies include interplay of secure access control with on-
chip instrumentation, definition of security architectures that
are configurable for different phases of system lifecycle, and
lack of a centralized IP for policy implementation in the SoC
design, which makes it difficult to evaluate policy compliance.

V II.   THR E AT MODELING

Threat modeling is the activity for optimizing SoC security
by identifying objectives and vulnerabilities, and defin-
ing countermeasures to prevent, or mitigate the effects of,
threats to the system. As noted above, it is a vital part of
the security architecture definition. It is also a key part
of the security validation, in particular in negative testing
and white-box hacking activities. Threat modeling roughly
involves the following five steps, which are iterated until
completion.

1)  Asset definition: Identify the system assets governing
protection. This requires identification of IPs and the point
of system execution where the assets originate. As discussed
above, this includes statically defined assets as well as those
generated during system execution.

2)  Policy specification: For each asset, identify the poli-
cies that involve it. Note that a policy may “involve” an asset
without specifying direct access control for it. For example,
a policy may specify how a secure key ​K​ can be accessed by
a specific IP. This, in turn, may imply how the controller
of the fuse where ​K​ is programmed can communicate with
other IPs during the boot process for key distribution.

3)  Attack surface identification: For each asset, iden-
tify potential adversarial actions that can subvert policies
governing the asset. This requires identification, analy-
sis, and documentation of each potential “entry point,”

Ray et al . : System-on-Chip Platform Security Assurance

30  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

i.e., any interface that transfers data relevant to the asset to
an untrusted region. The entry point depends on the cate-
gory of the potential adversary considered in the attack, e.g.,
a covert-channel adversary can make use of nonfunctional
design characteristics such as power consumption or tem-
perature to infer the ongoing computation.

4)  Risk assessment: The potential for an adversary to sub-
vert a security objective does not, in and of itself, warrant miti-
gation strategies. The risk assessment and analysis are defined
in terms of the so-called DREAD paradigm, composed of the
following five components: a) damage potential; b) reproduc-
ibility; c) exploitability, i.e., the skill, and resource required
by the adversary to perform the attack; d) affected systems,
e.g., whether the attack can affect a single system or tens or
millions; and e) discoverability. In addition to the attack itself
one needs to analyze the likelihood that the attack can occur
on-field, motives of the adversary, etc.

5)  Threat mitigation: Once the risk is considered sub-
stantial given the likelihood of the attack, protection mecha-
nisms are defined and the analysis must be performed again
on the modified system.

A.  Implementation Example

Consider protecting a system against code injection
attacks by malicious or rogue IPs by overwriting code seg-
ments through direct memory access (DMA) access. The
assets being considered here are appropriate regions of mem-
ory hierarchy (including cache, SRAM, secondary storage),
and the governing policy may be to define DMA-protected
regions where DMA access is disallowed. The security archi-
tect needs to go through all memory access points in the
system execution, identify memory access requests to DMA-
protected regions, and set up mechanisms so that DMA
requests to all protected accesses will fail. Once this is done,
the enhanced system must be evaluated for additional poten-
tial attacks, including attacks that can potentially exploit
the newly set-up protection mechanisms themselves. Such
checks are performed typically via negative testing, i.e., look-
ing beyond what is specified to identify if the underlying
security requirements can be subverted. For our example,
such testing may involve looking for ways to access the DMA-
protected memory regions, other than directly performing
a DMA access. The process is iterative and highly creative,
resulting in a collection of increasingly complex lineup of
protection mechanisms, until the mitigation is considered
sufficient with respect to the risk assessment.

In current industrial practice, performing the above
activities manually over the range of system assets and poli-
cies is a daunting manual task. Admittedly, there are avail-
able tools to assist in the different steps, e.g., documenting
steps in threat modeling and severity identification [32],
[33]. Nevertheless, the key architectural decisions and anal-
ysis still depend highly on human insights.

V III.   SECU R IT Y VA LIDATION
OV ERV IE W

Designing resilience into designs is one aspect of secu-
rity assurance. The other critical aspect is validating that
the security objectives of the product are indeed satisfied.
Security validation is different from most other kinds of
validation (such as functional or power or timing) since the
requirements are typically less precise. The goal of security
validation is to “validate conditions related to security and
privacy of the system that are not covered by other valida-
tion activities.” The requirement that security validation
focuses on targets not covered by other validation is impor-
tant given strict time-to-market constraints, which preclude
duplication of resources for the same (or similar) valida-
tion tasks; however, it puts onus on the security validation
organization to understand activities performed across the
spectrum of the SoC design validation and identify holes
that pertain to security. In practice, validation plan includes
diverse activities that range from the science to the art and
sometimes even “black magic.”

A.  Functional Validation of Security-Sensitive
Design Features

This is essentially an extension to functional validation,
but pertain to design elements involved in critical security
feature implementations. An example is the cryptographic
engine IP. A critical functional requirement for the cryp-
tographic engine is that it encrypts and decrypts data cor-
rectly for all modes. As with any other design block, the
cryptographic engine is also a target of functional valida-
tion. However, given that it is a critical component of a
number of security-critical design features, cryptographic
functionality may be crucial enough to justify further vali-
dation beyond the coverage provided by vanilla functional
validation activities. Consequently, such an IP may undergo
more rigorous testing, or even formal analysis. Other such
critical IPs may include IPs involved in secure boot, and
in-field firmware patching.

B.  Validation of Deterministic Security
Requirements

Deterministic security requirements are validation
objectives that can be directly derived from security poli-
cies. They include access control restrictions, address
translations, etc. Consider an access control restriction
that specifies a certain range of memory to be protected
from DMA access; this may be done to ensure protection
against code-injection attacks, or protect a key that is stored
in such location. An obvious derived validation objective is
to ensure that all DMA calls for access to a memory whose
address translates to an address in the protected range must
be aborted. Note that validation of such properties may not
be included in functional validation, since DMA access

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  31

requests for DMA-protected addresses are unlikely to arise
for “normal” test cases or usage scenarios.

C.  Negative Testing

Negative testing looks beyond the functional specifica-
tion to identify if security objectives can be subverted or
are underspecified. Continuing with the DMA-protection
example above, negative testing may extend the determin-
istic security requirement (i.e., abortion of DMA-access for
protected memory ranges) to identify if there are any other
paths to protected memory in addition to address transla-
tion activated by a DMA access request, and potential input
stimulus to activate such paths.

D.  Hackathons

Hackathons, also referred to as white box hacking fall
in the “black magic” end of the security validation spec-
trum. The idea is for expert hackers to perform goal-ori-
ented attempts at breaking security objectives. This activ-
ity depends primarily on human creativity, although some
guidelines exist on how to approach them (see discussion
on penetration testing in the next section). Because of their
cost and the need for high human expertise, they are per-
formed for attacking complex security objectives, typically
at hardware/firmware/software interfaces.

I X .   VA LIDATION TECHNOLOGIES

Recall that focused functional validation of security-
critical design components forms a key constituent of
security validation. Consequently, security validation
includes all functional validation tools and methodolo-
gies. Functional validation of SoC designs is a mature and
established area, with a number of comprehensive sur-
veys covering different aspects [34], [35]. In this section,
we instead consider validation technologies to support
other validation activities, e.g., negative testing, white-
box hacking, etc. These activities inherently depend on
human creativity; tools and infrastructures primarily act
as assistants, filling in gaps in human reasoning and pro-
viding recommendations.

A.  Fuzzing

Fuzzing, or fuzz testing [36], is a testing technique for
hardware or software that involves providing invalid, unex-
pected, or random inputs and monitoring the result for
exceptions such as crashes, or failing built-in code assertions
or memory leaks. Fig. 6 demonstrates a standard fuzzing
framework. It was developed as a software testing approach,
and has since been adapted to hardware/software systems. In
the context of security, it is effective for exposing a number
of potential attacker entry points, including through buffer

or integer overflows, unhandled exceptions, race condi-
tions, access violations, and denial of service. Traditionally,
fuzzing uses either random inputs or random mutations of
valid inputs. A key attraction to this approach is its high
automation compared to other validation technologies such
as penetration testing and formal analysis. Nevertheless,
since it relies on randomness, fuzzing may miss security vio-
lations that rely on unique corner-case scenarios. To address
that deficiency, there has been recent work on “smart” input
generation for fuzzing, based on domain-specific knowledge
of the target system. Smart fuzzing may provide a greater
coverage of security attack entry points, at the cost of more
upfront investment in design understanding.

B.  Penetration Testing

A penetration test, or intrusion test, is an attack on a
system with the intention to find security weakness. It is
performed by expert hackers often with deep knowledge of
system architecture, design, and implementation. Roughly,
penetration testing involves iterative application of the fol-
lowing three phases.

1)  Attack surface enumeration: The first task is to identify
the features or aspects of the system that are vulnerable to
attack. This is typically a creative process involving num-
ber of activities, including documentation review, network
service scanning, and even fuzzing or random testing (see
below).

2)  Vulnerability exploitation: Once the potential
attacker entry points are discovered, applicable attacks
and exploits are attempted against target areas. This may
require research into known vulnerabilities, looking up
applicable vulnerability class attacks, engaging in vulner-
ability research specific to the target, and writing/creating
the necessary exploits.

3)  Result analysis: If the attack is successful, then in this
phase the resulting state of the target is compared against
security objectives and policy definitions to determine if

Fig. 6. Illustration of the fuzzing framework used in post-silicon
security validation of SoC.

Ray et al . : System-on-Chip Platform Security Assurance

32  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

the system was indeed compromised. Note that even if a
security objective is not directly compromised, a success-
ful attack may identify additional attack surface which must
then be accounted for with further penetration testing.

While there are commonalities between penetration test-
ing and testing for functional validation, there are important
differences. In particular, the goal of functional testing is to
simulate benign user behavior and (perhaps) accidental fail-
ures under normal environmental conditions of operation of
the design as defined by its specification; penetration testing
goes outside the specification to the limits set by the security
objective, and simulates deliberate attacker behavior.

The efficacy of penetration testing critically depends on
the ability to identify the attack surface in the first phase
above. Unfortunately, rigorous methodologies for achieving
this are lacking. Following are some of the typical activities
in current industrial practice to identify attacks and vulner-
abilities. We classify them below as “easy,” “medium,” and
“hard” depending on the creativity necessary. Note that
there are tools to assist the human in many of the activities
below [37], [38]. However, determining the relevance of the
activity, identifying the degree to which each activity should
be explored, and inferring a potential attack from the result
of the activity involve significant creativity.

• � Easy approaches: These include review of available doc-
umentation (e.g., specification, architectural materials,
etc.), known vulnerabilities or misconfigurations of IPs,
software, or integration tools, missing patches, use of
obsolete or out-of-date software versions, etc.

• � Medium-complexity approaches: These include inferring
potential vulnerabilities in the target of interest from
information about misconfigurations, vulnerabilities, and
attacks in related or analogous products, e.g., a competitor
product, a previous software version, etc. Other activities of
similar complexity involve executing relevant public secu-
rity tools or published attack scenarios against the target.

•  �Hard approaches: This includes full security evalua-
tion of any utilized third-party components, integra-
tion testing of the whole platform, and identification
of vulnerabilities involving communications among
multiple IPs or design components. Finally, vulnera-
bility research involves identifying new classes of vul-
nerabilities for the target which have never been seen
before. The latter is particularly relevant for new IPs
or SoC designs for completely new market segments.

C.  Static or Formal Reasoning

This involves making use of mathematical logic to either
derive a security assurance requirement formally, or iden-
tifying flaws in the target system (architecture, design, or
implementation). Application of formal methods typi-
cally involve significant effort, either in the manual exer-
cise of performing deductive reasoning or in developing

abstractions of the security objective which are amenable to
analysis by automated formal tools. In spite of the cost, the
effort is justified for highly critical security objectives, e.g.,
cryptographic algorithm implementation. Furthermore, for
some critical properties, automated formal methods can
be used in a lightweight manner as effective state explo-
ration tools. For example, TOCTOU property violations
often involve scenarios of overlapping execution of differ-
ent instances of the same protocol, which are effectively
exposed by formal methods [39]. Finally, formal proofs have
also been used as certification mechanisms for third party IP
vendors to convey security assurance to SoC system integra-
tion teams [40].

X .  SECU R IT Y-VA LIDATION TR A DEOFFS

One key source of complexity in developing security assur-
ance solutions in modern computing systems is the number
of stakeholders involved. We have already seen the role of
architects, designers, and validators. However, the preced-
ing descriptions pitted them in a cooperative role, with the
common objective of improving security assurance. The
situation is more complex in practice because many stake-
holder interests conflict with that of security. A successful
SoC design needs to ensure security of the product in the
presence of such interoperability needs from a large number
of stakeholders. Here we consider one such interoperability
requirements, viz., validation itself [21], [41].

Validation occupies a unique position in the context
of interoperability. A significant component of validation
(including validation of security objectives) involves postsil-
icon debug. This uses a fabricated, preproduction silicon to
run tests and software to find errors that have been missed
in presilicon validation. The tests can include functional val-
idation tests, practical hardware/software usage scenarios,
deep penetration tests for security, circuit marginality tests,
etc. Since the silicon executes at target clock speed (about
a billion times faster than an RTL simulation), one can
explore deep design states and find errors and vulnerabilities
which could not have been possibly detected during presili-
con activities. However, it also requires instrumentation of
the design with a significant amount of additional circuitry,
often referred to as design-for-debug (DfD) circuitry, to pro-
vide requisite observability and control during silicon execu-
tion. Unfortunately, instrumentation can also account for
significant security vulnerabilities. In particular, it is tricky
to determine whether an innocuous instrumentation for
debug observability compromises some system-level policy.
Furthermore, some of the DfD circuitry must remain ena-
bled after postsilicon validation when the product is shipped
to customers, e.g., for debugging problems discovered in
the field. Many recent security hacks have made direct
use of these debug features [42], [43]. Note that a viable
solution to this problem is not to simply disable debug fea-
tures involving sensitive assets. Postsilicon validation itself

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  33

is also a highly critical activity performed under aggressive
schedule, and requires planning that spans across the sys-
tem lifecycle just like security does. Delays in postsilicon
validation also has significant consequences, including the
possibility of a company missing product release deadlines
or even having to cancel the production, with consequent
loss in revenues, reputation, and market share [9].

The tradeoff challenge between security and validation
is the following. For postsilicon validation, we must observe
design behavior during system execution; however, security
policies on certain assets may disallow their observability.
Put this way, the challenge may appear to be an instance of
inconsistency between requirements from availability and
confidentiality/integrity. The DfD architecture is, after all,
a collection of IPs that need access to some internal data
at different points of system execution; this need may be
viewed as an availability requirement. Unfortunately, sev-
eral factors make the tradeoff between security and debug
more challenging than a general conflict between confi-
dentiality and availability. Here we discuss some of the key
factors.

A.  Ambiguity

Observability requirements are rarely as clear cut as
requirements arising from functionality. A key reason is that it
is unclear a priori which component would exhibit a bug and
therefore should be a target for observability. Furthermore,
DfD decisions are made by validators and designers having
little familiarity with security policies. When security con-
straints are imposed, often late in the design, one of the fol-
lowing two situations is likely: 1) some critical observability
or control is inadvertently removed as a conservative meas-
ure; or 2) some subtle security flaw remains.

B.  Feed-Through

Security requirements may affect observability indi-
rectly. Consider a signal ​s​ in IP ​​ that we wish to observe
during postsilicon debug. Assume further that observing ​
s​ does not compromise any security policy. However, in
order for ​s​ to be observed, its value must be routed to an
observation point, e.g., an output pin or system memory.
If this route includes a high-security IP ​​ then confidenti-
ality requirement may cause ​​ to be unobservable during
system execution, thereby making ​s​ unobservable as well.
On the other hand, the placement of IPs ​​ and ​​ in the sys-
tem layout, and consequently, the route of signal ​s​, may only
be determined at an advanced stage of the design lifecycle
making it impossible to account for that consideration when
defining the signals to trace.

C.  Lack of Centralization

Both DfD and security components are sprinkled across
various IPs in the design. This, coupled with the lack of a

rigorous documentation or specification of DfD require-
ments (and security policies), implies that it is often unclear
what the purpose of a specific feature is, how it is excited,
and what vulnerabilities it exposes. This makes it hard to
determine security risks arising from DfDs.

In current industrial practice, the tradeoff is addressed
typically by progressively increasing security features (and
constraining DfD) as the design progresses along its life-
cycle, from design to manufacturing, and production.
Disabling DfD permanently is possible through blowing
fuses during manufacturing and production. The situation
is more complex for modern SoC designs, with the need to
keep DfD features available for patching the product in the
field. Nevertheless, the progressive increase is still a valid
principle with a few adjustments. The first adjustment is
that one cannot permanently disable DfD features because
of the need to address this principle. Second, when such
reversal is needed it is only for specific stakeholders with
special authentication (e.g., an entity authorized to patch a
design functionality). Finally, the reversal must be tempo-
rary, and once the activity needing the reversal (e.g., fixing
an in-field bug) is complete, the system reverts to its default
“higher security” state appropriate for the current phase of
its design lifecycle.

A key problem in developing a comprehensive solution
is that both security assurance and postsilicon validation
are complex and elaborate processes, involving significant
planning and a large number of stakeholders. Any solution
to their tradeoff problem must address a large number of
parameters. Below we highlight some of the key parameters.
Obviously, no solution exists in current industrial practice,
that addresses all of the following. In Section XI, we dis-
cuss one emergent architecture, which provides promise to
address some of these considerations.

D.  HVM Considerations

High-volume manufacturing test is the process of iden-
tifying manufacturing defects during production. This is
done by placing the fabricated silicon in a tester, where it
is exercised with a large number of tests. The test patterns
are generated by accounting for the functional definition of
the design, the target faults, a fault model, the fabrication
process technology, etc. The accuracy of coverage from the
results of these tests is highly sensitive to the test patterns
being applied and the fidelity of the silicon design with
respect to its presilicon netlist model. Consequently, irre-
spective of security constraints and access control restric-
tions, the test patterns must work the same way as much
as possible on silicon designs as expected from presilicon
models, and their results must be accurately observed.
Furthermore, it must be possible to have a simple access to
the IP being exercised with the test, without requiring too
many workarounds.

Ray et al . : System-on-Chip Platform Security Assurance

34  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

E.  Reusability

A key source of complexity in the current state of the prac-
tice discussed in Section VI is the need to manually identify
assets and accesses for different products and usage scenar-
ios. This job is highly tedious and error prone. Consequently,
solution to the problem must provide a reusable infrastruc-
ture for systematically identifying and classifying assets and
analyzing usage scenarios.

F.  Late Variability

DfD is notorious for late changes in requirements and
implementation. Indeed, DfD requirements can change during
IP design, SoC integration, or even after a silicon step;
the latter can happen on realization that observability or
control of certain signals is critical for a future stepping.
Consequently, any solution for addressing security chal-
lenges with DfD must be easy to adapt with such changing
requirements. In particular, it should be possible to quickly
validate an updated DfD architecture against a given set of
security policies and identify vulnerabilities.

G.  Self-Securability

It is obvious that any architecture introduced to address
the security-validation tradeoff must be self-securing and
must not introduce additional security backdoor (or com-
plexity with debug).

H.  Architecture

A decentralized architecture (both for security and DfD)
is difficult to follow and can accidentally break or introduce
vulnerability. To circumvent this possibility, it is critical that
the architecture can be viewed as a centralized IP which can
itself be effectively analyzed for possible violation of either
security or debug requirements.

X I.   EMERGEN T TECHNOLOGIES

Given the disturbing recent trend of increasing security attacks
on embedded, mobile, and IoT systems, there has been signifi-
cant research interest to develop technologies for streamlining
SoC security specification, architecture, and validation. There
are efforts to develop security architectures beyond TEE defi-
nitions, integrating them with protocols and creating methods
to identify access control at different points of the system
execution [44]. There are efforts to extend formal verifica-
tion technology for security validation, both among EDA
vendor tools and through academic and industrial research
[45]–[47]. There are also efforts on developing scalable, com-
positional theories for security assurance [48] and metrics for
defining quality of security assurance. It is beyond the scope
of this paper to review all the different approaches and the
innovative technologies involved. Instead, in this section, we

discuss two relatively extensive efforts undertaken by some of
the authors themselves, and outline our thinking toward the a
comprehensive solution. Note that the point is not to advocate
these specific solutions but to provide our own take on the kind
of thinking necessary to tame the complexity of security assur-
ance in modern SoC designs.

A.  A Centralized Policy Definition Architecture

Recent work [29], [49] has attempted to develop a cen-
tralized, flexible architecture called E-IIPS for implement-
ing security policies in a disciplined manner. The idea is to
provide an easy-to-integrate, scalable infrastructure IP that
serves as a centralized resource for SoC designs to protect
against diverse security threats at minimal design effort and
hardware overhead. Fig. 7 shows the overall architecture
of E-IIPS. It includes a microcontroller-based firmware-
upgradable module called security policy controller (SPC)
that realizes system-level security policies of various forms
and types using firmware code following existing security
policy languages. The SPC module interfaces with the con-
stituent IP blocks in a SoC using “security wrappers” inte-
grated with the IPs. These security wrappers extends the
existing test (e.g., IEEE 1500 boundary scan based wrapper
[50]) and debug wrapper (e.g., ARM’s CoreSight interface
[51]) of an IP. These security wrappers detect local events
relevant to the implemented policies and enable commu-
nication with the centralized SPC module. The result is a

Fig. 7. SoC security architecture based on E-IIPS for efficient
implementation of diverse security policies.

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  35

flexible architecture and approach for implementing highly
complex system-level security policies, including those
involving interoperability requirements and trade-offs with
debug, validation, and power management. The architec-
ture is realizable with modest area and power overhead [29].
Furthermore, more recent work has shown that the existing
design instrumentations, e.g., for DfD, could be exploited in
implementing the architecture [49].

Of course, the architecture itself is only one component
of the policy definition. Several challenges remain, e.g.,
1) defining a language for security policy specification that
can be efficiently compiled to SPC microcode; 2) study of
bottlenecks related to routing and congestion across com-
munication fabrics in implementing the architecture;
3) implementing security policies involving potentially mali-
cious IPs (including malicious security wrappers or Trojans
in the SPC itself), etc. Nevertheless, the approach shows a
promising direction toward systematizing policy implemen-
tations. Furthermore, by enclosing the policy definitions to
a centralized IP, it enables security validation to focus on a
narrow component of the design, thereby potentially reduc-
ing validation time.

B.  A Framework for Security Rule Check

Another critical problem is to define security rules to
identify vulnerabilities. Recall that a significant cost in vali-
dation (e.g., penetration testing) comes from enumerating
vulnerabilities. The vulnerabilities depend on several fac-
tors, e.g., the target market segment, supply chain, design
and implementation technologies used, etc. Identifying
these vulnerabilities early is critical: cost of fixing (or even
finding) vulnerabilities at later stages of the lifecycle can be
staggering.

This problem is being addressed by an emerging frame-
work: design security rule check (DSeRC). The goal is to
analyze vulnerabilities of a design and assess its security
level at each design stage. The framework is shown in Fig. 8.
Similar to design rule check (DRC), DSeRC will read the
design files and user inputs, and check for vulnerabilities at
all levels of abstraction. Each vulnerability is tied with met-
rics and rules so that each design’s security can be quantita-
tively measured. At each level, the DSeRC framework will
quantitatively analyze vulnerabilities in a design and pro-
vide feedback to the designer.

The first critical thrust for the development of DSeRC
is to construct a comprehensive list of vulnerabilities pre-
sent in SoC design. These include design mistakes, unclear
or ambiguous specification, errors in CAD tools, design-
for-test (DfT) and DfD insertion, etc. The second thrust
is to incorporate each vulnerability with rules and met-
rics so that security of each design can be quantitatively
measured. A sample vulnerability table was developed to
present the list of vulnerabilities in SoC designs and their

corresponding metrics and rules as well as additional
vulnerabilities that needs to be addressed in the DSeRC
framework [52], [53].

Note again that in spite of this progress the framework
is still in its infancy. As we discussed earlier, system-level
policies are complex and the security vulnerability detec-
tion performed during penetration testing is highly creative.
Nevertheless, the direction shows promise and if successful,
can significantly ameliorate validation challenges.

X II.   CONCLUSION

We have presented, for the first time to our knowledge,
a comprehensive overview of platform security assur-
ance requirements, resilient architecture, and security
validation in modern SoC designs. The goal has been
to provide an understanding of the current state of the
practice, highlight the key challenges, and describe the
different pieces of a highly complex ecosystem that must
interact and cooperate to ensure trustworthiness of our
computing devices. The picture of the current practice in
SoC security assurance is scary. The complexity involved
is staggering and increasing at an alarming rate. On the
other hand, we depend on human creativity to identify
innovative attacks within a small time window before the
system goes to field (and is exposed to attacks from the
“bad guys”)—an approach that cannot scale over the com-
plexity we are encountering. While there are promising
emergent approaches, we are far from creating trustwor-
thy computing devices. There is a critical need to develop
a disciplined approach to security assurance from the
ground up. Perhaps more importantly, it may require a
cooperative research involving different participants, viz.,
architects, designers, validators, and cross-cutting stake-
holders such as power/performance architects and physi-
cal design engineers.� 

Fig. 8. Overall flow of DSeRC framework for design-time security
evaluation.

Ray et al . : System-on-Chip Platform Security Assurance

36  Proceedings of the IEEE | Vol. 106, No. 1, January 2018

REFERENCES
	 [1]	 T. Fox-Brewster. Voodoo Hackers: Stealing

Secrets from Snowden’s Favorite OS Is Easier
Than you Think. [Online]. Available: http://
www.forbes.com/sites/
thomasbrewster/2015/03/18/hacking-tails-
with-rootkits/

	 [2]	 C. Kallenberg and X. Kovah, “How many
million BIOSes would you like to infect?” in
Proc. 15th Annu. CanSecWest Conf.
(CanSecWest), 2015.

	 [3]	 J. Loucaides and A. Furtak, “A new class of
vulnerability in SMI handlers of BIOS/UEFI
firmware,” in Proc. 15th Annu. CanSecWest
Conf. (CanSecWest), 2015.

	 [4]	 R. Wojtczuk and C. Kallenberg, “Attacks on
UEFI security,” in Proc. 15th Annu.
CanSecWest Conf. (CanSecWest), 2015.

	 [5]	 V. Zimmer, “UEFI, open platforms and the
defender’s dilemma,” in Proc. 15th Annu.
CanSecWest Conf. (CanSecWest), 2015.

	 [6]	 S. Ray and J. Bhadra, “Security challenges
in mobile and IoT systems,” in Proc. 29th
IEEE Int. Syst. Chip Conf., Sep. 2016,
pp. 356–361.

	 [7]	 S. Ray, “System-on-chip security design for
the Internet of Things,” in Proc. IEEE Custom
Integr. Circuits Conf., 2017.

	 [8]	 D. Kleidermacher and M. Kleidermacher,
Embedded Systems Security: Practical Methods
for Safe and Secure Software and Systems
Development. Amsterdam, The Netherlands:
ELsevier, 2012.

	 [9]	 S. Yerramili, “Addressing Post-silicon
Validation Challenge: Leverage Validation
and Test Synergy,” in Proc. Int. Test Conf.
(ITC), 2006.

	[10]	 P. Patra, “On the cusp of a validation wall,”
IEEE Design Test Comput., vol. 24, no. 2,
pp. 193–196, Mar. 2007.

	[11]	 G. Ramamoorthy. (2012). Market Share
Analysis: Semiconductor Design Intellectual
Property, Worldwide. [Online]. Available:
https://www.gartner.com/doc/2403015/
market-share-analysis-semiconductor-
design

	[12]	 E. Messmer. (2014). RSA Security Attack
Demo Deep-Fries Apple Mac Components.
[Online]. Available: http://www.
networkworld.com/news/2014/022614-rsa-
apple-attack-279212.html

	[13]	 A. Nahiyan, K. Xiao, D. Forte, Y. Jin, and
M. Tehranipoor, “AVFSM: A framework for
identifying and mitigating vulnerabilities in
FSMs,” in Proc. Design Autom. Conf. (DAC),
2016, pp. 1–6.

	[14]	 M. Tehranipoor and F. Koushanfar,
“A survey of hardware trojan taxonomy and
detection,” IEEE Design Test Comput., vol. 27,
no. 1, pp. 8–9, Jan. 2010.

	[15]	 Y. Zhou, Y. Fang, and Y. Zhang, “Securing
wireless sensor networks: A survey,” IEEE
Commun. Surv. Tuts., vol. 10, no. 3, pp. 6–28,
3rd Quart., 2008.

	[16]	 S. J. Greenwald, “Discussion topic: What is
the old security paradigm,” in Proc. Workshop
New Secur. Paradigms, 1998, pp. 107–118.

	[17]	 L. Davi, A.-R. Sadeghi, and M. Winandy,
“Dynamic integrity measurement and
attestation: Towards defense against return-
oriented programming attacks,” in Proc.
ACM Workshop Scalable Trusted Comput.,
2009, pp. 49–54.

	[18]	 F. Schuster, T. Tendyck, C. Liebchen,
L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming:
On the difficulty of preventing code reuse
attacks in C++ applications,” in Proc. 36th
IEEE Symp. Security Privacy, May 2015,
pp. 745–762.

	[19]	 P. C. Kocher and B. J. J. Jaffe, “Differential
power analysis,” in Proc. 19th Annu. Int.
Cryptol. Conf., 1999, pp. 398–412.

	[20]	 P. C. Kocher, “Timing attacks on
implementations of diffie-hellman, RSA,
DSS, and other systems,” in Proc. 16th Annu.
Int. Cryptol. Conf., 1996, pp. 104–113.

	[21]	 S. Ray, J. Yang, A. Basak, and S. Bhunia,
“Correctness and security at odds: Post-
silicon validation of modern SoC designs,”
in Proc. 52nd Annu. Design Autom. Conf.,
2015, p. 146.

	[22]	 Trusted Computing Group. Trusted Platform
Module Specification. [Online]. Available:
http://www.trustedcomputinggroup.org/
tpm-main-specification/

	[23]	 A. Vasudevan, E. Owusu, Z. Zhou,
J. Newsome, and J. M. McCune, “Trustworthy
execution on mobile devices: What security
properties can my mobile platform give me?”
in Trust Trustworthy Computing (Lecture Notes
in Computer Science), vol. 7344. Springer-
Verlag, 2012, p. 150—178.

	[24]	 J. M. McCune, B. Parno, A. Perrig,
M. K. Reiter, and H. Isozaki, “Flicker: An
execution infrastructure for TCB
minimization,” in Proc. ACM EuroSys, 2008,
pp. 315–328.

	[25]	 Samsung. Samsung KNOX. [Online]. Available:
http://www.samsungknox.com

	[26]	 Building a Secure System Using Trustzone
Technology, ARM Holdings, Cambridge,
U.K., 2009.

	[27]	 Intel. Intel Software Guard Extensions
Programming Reference. [Online]. Available:
https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf

	[28]	 X. Li et al., “Sapper: A language for hardware-
level security policy enforcement,” in Proc.
Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2014, pp. 97–112.

	[29]	 A. Basak, S. Bhunia, and S. Ray, “A flexible
architecture for systematic implementation of
SoC security policies,” in Proc. 34th Int. Conf.
Comput.-Aided Design, Nov. 2015, pp. 536–543.

	[30]	 L. Davi et al., “HAFIX: Hardware assisted
flow integrity extension,” in Proc. 52nd Annu.
Design Autom. Conf., 2015, p. 74.

	[31]	 L. Changlong, Z. Yiqiang, S. Yafeng, and
G. Xingbo, “A system-on-chip bus architecture
for hardware trojan protection in security
chips,” in Proc. EDSSC, Nov. 2011, pp. 1–2.

	[32]	 Microsoft Threat Modeling & Analysis Tool
Version 3.0, 2009.

	[33]	 J. Srivatanakul, J. A. Clark, and F. Polac,
“Effective security requirements analysis:
HAZOPs and use cases,” in Proc. 7th Int.
Conf. Inf. Secur., 2004, pp. 416–427.

	[34]	 J. Bhadra, M. S. Abadir, L. Wang, and S. Ray,
“A survey of hybrid technqiues for functional
verification,” IEEE Design Test Comput.,
vol. 24, no. 2, pp. 112–122, Feb. 2007.

	[35]	 A. Gupta, “Formal hardware verification
methods: A survey,” Formal Methods
Syst. Design, vol. 2, no. 3, pp. 151–238,
Oct. 1992.

	[36]	 A. Takanen, J. D. DeMott, and C. Mille,
Fuzzing for Software Security Testing and
Quality Assurance. Norwood, MA, USA:
Artech House, 2008.

	[37]	 M. Corporation. (2015). Microsoft Free
Security Tools—Microsoft Baseline Security
Analyzer. [Online]. Available: https://blogs.
microsoft.com/cybertrust/2012/10/22/
microsoft-free-security-tools-microsoft-
baseline-security-analyzer/

	[38]	 F. Software. (2012). [Online]. Available:
http://secunia.com

	[39]	 S. Krstic, J. Yang, D. W. Palmer,
R. B. Osborne, and E. Talmor, “Security of
SoC firmware load protocol,” in Proc. IEEE
HOST, 2014.

	[40]	 E. Love, Y. Jin, and Y. Makris, “Proof-
carrying hardware intellectual property:
A pathway to trusted module acquisition,”
IEEE Trans. Inf. Forensics Security, vol. 7,
no. 1, pp. 25–40, Feb. 2012.

	[41]	 W. Chen and J. Bhadra, “Striking a balance
between SoC security and debug
requirements,” in Proc. 29th IEEE Int. Syst.
Chip Conf., Sep. 2016, pp. 368–373.

	[42]	 Homebrew Development Wiki. JTAG-Hack.
[Online]. Available: http://dev360.wikia.
com/wiki/JTAG-Hack

	[43]	 L. Greenemeier, “iPhone hacks annoy AT&T
but are unlikely to bruise apple,” Sci. Amer.,
Sep. 2007.

	[44]	 M. R. Sastry, I. T. Schoinas, and
D. M. Cermak, “Method for enforcing
resource access control in computer system,”
U.S. Patent 20120079590 A1, Mar. 29,
2012.

	[45]	 E. W. Smith, “AXE: An automated formal
equivalence checking tool for programs,”
Ph.D. dissertation, Stanford Univ., Stanford,
CA, USA, 2011.

	[46]	 JasperGold Security Path Verification App.
[Online]. Available: https://www.cadence.
com/tools/system-design-and-verification/
formal-and-static-verification/jasper-gold-
verification-platform/security-path-
verification-app.html

	[47]	 R. Kannavara et al., “Challenges and
opportunities with concolic testing,” in Proc.
NAECON, Jun. 2015, pp. 374–378.

	[48]	 M. R. Clarkson and F. B. Schneider,
“Hyperproperties,” J. Comput. Secur., vol. 18,
no. 6, pp. 1157–1210, 2010.

	[49]	 A. Basak, S. Bhunia, and S. Ray, “Exploiting
design-for-debug for flexible SoC security
architecture,” in Proc. IEEE DAC, Jun. 2016,
pp. 1–6.

	[50]	 IEEE Standard Test Access Port and Boundary
Scan Architecture, IEEE Standards 11491,
2001.

	[51]	 E. Ashfield, I. Field, P. Harrod, S. Houlihane,
W. Orme, and S. Woodhouse, “Serial wire
debug and the CoreSight debug and trace
architecture,” 2006.

	[52]	 H. Salmani and M. Tehranipoor, “Analyzing
circuit vulnerability to hardware Trojan
insertion at the behavioral level,” in Proc. Int.
Symp. Defect Fault Tolerance VLSI Syst. (DFT),
2013, pp. 190–195.

	[53]	 J. Lee, M. Tehranipoor, and J. Plusquellic, “A
low-cost solution for protecting IPs against
scan-based side-channel attacks,” in Proc.
IEEE VLSI Test Symp., May 2006, p. 99.

Ray et al . : System-on-Chip Platform Security Assurance

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE  37

ABOUT THE AUTHORS
Sandip Ray (Senior Member, IEEE) received the

Ph.D. degree from The University of Texas at

Austin, Austin, TX, USA.

He was a Research Scientist with the Intel

Strategic CAD Laboratories, where he was

involved in the presilicon and postsilicon valida-

tion of security and functional correctness of SoC

designs, and design-for-security and design-for-

debug architectures. He is a Senior Principal Engi-

neer with NXP Semiconductors, where he leads

research and development on security validation for automotive and Inter-

net-of-Things applications. He is the author of three books (two upcoming)

and over 60 publications in international journals and conferences. His

research involves developing correct, dependable, secure, and trustworthy

computing through cooperation of specification, synthesis, architecture,

and validation technologies.

Dr. Ray has served as a Program Committee Member for over 40 inter-

national conferences, and as a Program Chair for the Formal Methods in

Computer-Aided Design. He currently serves as an Associate Editor of the

IEEE Transactions on Multi-Scale Computing Systems and Springer HaSS journals.

Eric Peeters received the M.E. degree in elec-

tromechanical engineering, the M.Sc. degree

in electrical engineering, and the Ph.D. degree

in electrical engineering from University of

Louvain-la-Neuve, Belgium, in 2002, 2004, and

2006, respectively.

In 2006, he joined the group Thales Alenia

Space ETCA in Belgium for one year. Then, in Sep-

tember 2007, he joined TI Germany in Freising

(Munich) to work on the development of security

products being evaluated through the difficult

common criteria process (aiming EAL5+). In September 2010, he moved to

TI headquarters in Dallas, TX, USA, where he has been heading the MCU

Embedded security group since October 2011 as Security Architect and

Manager.

Dr. Peeters has presented invited talks at VLSI Design Conference 2013

and he serves/has served on the technical program committees of various

leading security conferences (mainly CHES and CARDIS).

Mark M. Tehranipoor (Senior Member, IEEE)

received the Ph.D. degree from the University

of Texas at Dallas, Richardson, TX, USA, in 2004.

He is currently the Intel Charles E. Young

Preeminence Endowed Professor of Cyberse-

curity with the University of Florida, Gainesville,

FL, USA. His current research projects include

hardware security and trust, supply-chain secu-

rity, VLSI design, and test and reliability. He has

published over 300 journal articles and refereed

conference papers and has given more than 150 invited talks and keynote

addresses. He has published six books and 11 book chapters.

Dr. Tehranipoor is a Golden Core Member of the IEEE, and a member of

ACM and ACM SIGDA. He was a recipient of several best paper awards, the

2008 IEEE Computer Society (CS) Meritorious Service Award, the 2012 IEEE

CS Outstanding Contribution, the 2009 NSF CAREER Award, and the 2014

MURI Award. He serves on the program committee of more than a dozen

leading conferences and workshops. He served as the Program Chair of the

2007 IEEE Defect-Based Testing (DBT) Workshop and the 2008 IEEE Defect

and Data Driven Testing (D3T) Workshop, the Co-Program Chair of the 2008

International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFTS), the General Chair of D3T-2009 and DFTS-2009, and the Vice Gen-

eral Chair of NATW-2011. He cofounded the IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST), and served as the General

Chair of HOST-2008 and HOST-2009. He serves as an Associate Editor of

the Journal of Electronic Testing: Theory and Applications, the Journal of
Low Power Electronics, the IEEE Transactions on Very Large Scale Integration

Systems, and ACM Transactions on Design Automation of Electronic Systems.
He served as the Founding Director of CHASE and CSI centers with the Uni-

versity of Connecticut.

Swarup Bhunia (Senior Member, IEEE) received

the B.E. degree (honors) from Jadavpur Univer-

sity, Kolkata, India, the M.Tech. degree from the

IIT Kharagpur, Kharagpur, India, and the Ph.D.

degree from Purdue University, West Lafayette,

IN, USA.

He is currently a Professor with the Univer-

sity of Florida, Gainesville, FL, USA. Earlier, he was

appointed as the T. and A. Schroeder Associate

Professor of Electrical Engineering and Computer

Science with Case Western Reserve University, Cleveland, OH, USA. He has

over ten years of research and development experience with over 200 pub-

lications in peer-reviewed journals and premier conferences. His research

interests include hardware security and trust, adaptive nanocomputing,

and novel test methodologies.

Dr. Bhunia received the IBM Faculty Award (2013), the National Science

Foundation Career Development Award (2011), the Semiconductor Research

Corporation Inventor Recognition Award (2009), and the SRC Technical

Excellence Award (2005), and several best paper awards/nominations. He

has been serving as an Associate Editor of the IEEE Transactions on CAD, the

IEEE Transactions on Multi-Scale Computing Systems, and the ACM Journal of
Emerging Technologies, and the Journal of Low Power Electronics. He has

served as a Guest Editor of the IEEE Design Test of Computers (2010, 2013)

and IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2014).

He has served as a Co-Program Chair of IEEE IMS3TW 2011, IEEE NANOARCH

2013, IEEE VDAT 2014, and IEEE HOST 2015, and in the program committee

of many IEEE/ACM conferences.

