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ABSTRACT  |  Modern system-on-chip (SoC) designs include a wide 

variety of highly sensitive assets which must be protected from 

unauthorized access. A significant aspect of SoC design involves 

exploration, analysis, and evaluation of resiliency mechanisms 

against attacks to such assets. These attacks may arise from a 

number of sources, including malicious intellectual property blocks 

(IPs) in the hardware, malicious or vulnerable firmware and software, 

insecure communication of the system with other devices, and side-

channel vulnerabilities through power and performance profiles. 

Countermeasures for these attacks are equally diverse, which 

include architecture, design, implementation, and validation-based 

protection. In this paper, we provide a comprehensive overview of 

the security infrastructure in modern SoC designs, including both 

resiliency techniques and their validation paradigms at presilicon 

and postsilicon stages. We identify gaps in current resiliency and 

analysis architectures and propose design and validation solutions 

to address them. Finally, we provide industry perspectives on the 

role and impact of current practices on SoC security, and discuss 

some emerging trends in this important area.

KEYWORDS  |  Security architecture; security policy; system-on-

chip (SoC) security; trusted SoC; untrusted IPs

I .   IN TRODUCTION

We are living in a world surrounded by billions of comput-
ing systems, identifying, tracking, and analyzing some of our 

Digital Object Identifier: 10.1109/JPROC.2017.2714641

intimate personal information, including health, sleep, 
location, and network of friends. The trend is toward even 
higher proliferation of such devices, with an estimated  
50 billion smart, connected devices by 2020, according to 
a recent report by Cisco. These devices generate, process, 
and exchange a large amount of sensitive information and 
data (often collectively referred to as “security assets” or 
simply “assets”). In addition to private end-user informa-
tion, assets include security-critical parameters introduced 
during the system architecture definition, e.g., fuses, cryp-
tographic, and digital rights management (DRM) keys, 
firmware execution flows, and on-chip debug modes. 
Malicious access to these assets can result in leakage of 
company trade secrets for device manufacturers or content 
providers, identity theft or privacy breach for end users, 
and even destruction of human life.

Security assurance of a modern computing device 
involves a number of challenges. One key challenge is the 
sheer complexity of the design. Most modern computing 
systems are architected via a system-on-chip (SoC) para-
digm, viz., through a composition of predesigned hardware 
or software blocks [referred to as intellectual properties 
(IPs)] that interact through a network of on-chip commu-
nication fabrics. The IPs themselves are highly complex 
artifacts optimized for performance, power, and silicon 
overhead. Adding to the complexity are the communication 
protocols used in implementing complex system-level use 
cases. Finally, security assets are sprinkled at different IPs 
across the design, and access to the assets is governed by 
complex security policies. The policies are defined by system 
architects as well as different IP and SoC integration teams, 
and undergo refinement and modification throughout the 
system development. This makes it challenging to validate 
a system, develop architectures to provide built-in resilience 
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against unauthorized access, or update security requirements, 
e.g., in response to changing customer needs.

Another source of challenge is the supply chain 
involved in the development of a modern comput-
ing device. There is a large number of players involved, 
including IP providers, SoC design house, and foundry. 
With the increasing globalization of the semiconduc-
tor design and fabrication process, each of these players  
often involves large number of organizations—often across 
geography—coordinating to create a complex supply-chain 
pipeline. Every component of the pipeline is vulnerable to 
malicious design alterations, subversions, piracy, and other 
security threats. Even in cases where a component is designed  
without intended malice, aggressive time-to-market require-
ments and high optimization needs often result in errors and 
vulnerabilities inadvertently left in the design, which can be 
exploited by a malicious adversary in the field. 

Given the broad spectrum of vulnerabilities and corre-
sponding mitigation strategies, the subject of SoC security 
today is highly fragmented. Different research groups focus 
on different aspects of the problem, without full under-
standing of the tradeoffs and synergies. For example, there 
has been little work on integrating techniques for supply-
chain security with architectural resiliency initiatives for 
design-level security implementation. Consequently, secu-
rity research in different communities runs into the danger 
of reinventing the “wheel” that already exists in another 
context, or creating a solution for one problem that breaks 
fundamental requirements of another.

The goal of this paper is to provide a comprehensive over-
view of security assurance requirements and practices in 
modern SoC designs. Existing literature notably lacks such 
a coverage on SoC security, specifically in materials related 
to industrial practices. We discuss the SoC design lifecycle, 
identify the security concerns tackled at each stage, and the 
challenges involved in addressing them, which include tech-
nical obstacles (e.g., scalability of analysis), as well as gaps in 
methodology and supply chain (e.g., unavailability of specifi-
cation, interface, and adversary models, untrusted or buggy 
third-party IP blocks). We discuss current industrial prac-
tices, point out their inadequacies, and present results from 
some emergent research that provide promising directions.

The remainder of the paper is organized as follows. 
Section II provides a basic overview of SoC security chal-
lenges, identifying the design, architecture, and supply-
chain roots. Section III discusses the overall spectrum of 
security solutions employed in different phases of the SoC 
design lifecycle. Sections IV–VIII go into more detail in the 
different components of secure SoC design, viz., assess-
ment, specification, architecture, and validation. For each 
of the activities discussed, we describe the current practices 
and point out their limitations. Section X discusses security 
challenges coming from other aspects of design, in particu-
lar, interoperability with validation. We discuss a few emer-
gent approaches in Section XI, and conclude in Section XII.

II .   OV ERV IE W OF S o C SECU R IT Y 
CH A LLENGES

Before getting into the current practice of security assurance, 
it is sobering to understand the scale and complexity of secu-
rity threats to which our computing systems are exposed. The 
security literature over the years is replete with instances of 
security attacks, and the number of attack instances has been 
growing over the years. As an example, Forbes Magazine 
recently reported results from Cansecwest 2015 [1], where 
four different attacks were presented [2]–[5] exploiting secu-
rity vulnerabilities related to the system management mode 
on the Intel processor architecture running BIOS. Each 
attack could “hijack” millions of BIOS from diverse system 
vendors. Perhaps more disturbingly, these attacks represent 
only a very small segment of the attack surface of a comput-
ing device, e.g., exploiting vulnerabilities of a specific feature 
present in the architecture of the CPU, which is only one IP of 
a modern SoC design. To give an idea of the scale of the attack 
surface, Fig. 1 illustrates some of the potential security attacks 
in a smartphone. Note that each category of attack represents 
a rich body of literature, with several documented instances.

Unfortunately, the situation is exacerbated with increas-
ing proliferation of smart computing devices and platforms 
in the IoT regime. First, the diversity of these devices pro-
vides newer unanticipated avenues for attacks (see below). 
Second, the devices do not operate in isolation, but are in 
continuous communication with billions of other smart 
devices through the network of cloud and data centers. Con-
sequently, it has become possible for an adversary to exploit 
the vulnerability of one (or a few) systems to infect a large 
number of connected devices. Furthermore, the ramifica-
tions of the attacks are staggering. A decade back, smart-
phones represented the limits of the imagination of many 
people in sophistication of computing applications; now, we 
have realized applications in the scale of smart cities, homes, 
and multiplexes. A security vulnerability in a single device 
in this ecosystem can have a ripple effect affecting the entire 

Fig. 1. Some potential attacks on a modern smartphone.
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application, with potentially catastrophic consequences to 
national security, economy, and human life.

Computer security is, of course, a mature area of 
research with significant results going back to at least four 
decades, resulting in a large body or results on adversary  
models, resilience techniques, and validation approaches for 
various computing models. To understand the challenge of 
security assurance on modern computing platforms, it is worth 
understanding the inadequacy of these technologies. In the rest 
of the section, we explain this issue and discuss how the chang-
ing computing paradigm from desktops to handheld affects and 
constrains the applicable security solutions. We then discuss 
the scope of SoC security assurance in greater detail.

A.  Design Challenges to Security

There are four key factors that contribute to design 
challenges in ensuring the security of modern computing 
platforms: 1) high complexity of devices; 2) aggressive time-
to-market requirements that do not provide adequate valida-
tion time; 3) high diversity; and 4) continuous connectivity, 
particularly of devices that were not originally meant to be 
connected [6], [7].

To understand the critical role of complexity, recall that 
even a decade back one could clearly demarcate computing 
systems in two categories: general-purpose systems (e.g., 
desktops, laptops, etc.) and embedded systems (e.g., medical 
equipment, personal organizer, automotive infotainment, 
etc.). The general-purpose systems were characterized by 
high programmability to support diverse use-case scenarios, 
resulting in a complex hardware architecture; nevertheless, 
they also provided a reasonably clean interface (e.g., at the 
instruction-set architecture) to enable software develop-
ment at a level of abstraction without significant concern on 
hardware or power/performance constraints for most appli-
cation or even system-level software development. On the 
other end, embedded systems were targeted for unique use 
cases. Each use case induced unique constraints on form fac-
tor, power, performance, security, reliability, etc., and drove 
the design, architecture, and optimization of the whole sys-
tem. Consequently, the systems were typically characterized 
by tight coupling of hardware and software modules opti-
mized for the metrics of interest as dictated by the target use 
case. Research in security assurance and verification conse-
quently looked at 1) embedded systems security [8] where 
potential vulnerabilities were limited by the narrowness of 
target use-cases; or 2) general-purpose computing system 
security, where the decoupling of hardware and software 
permitted exploration of the two components separately. 
Furthermore, since for general-purpose systems the hard-
ware architecture was fairly standard and the supply-chain 
reasonably trustworthy, one could trust them to be free of 
malicious instrumentation. Consequently, the hardware 
was taken as the root of trust and the primary security focus 
was on software components. However, with the advent 
of modern “embedded devices” like smartphones, tablets, 

smart watches, and wearables, the demarcation between 
embedded and general-purpose systems has become murky; 
these devices inherit the complexity of embedded systems, 
including the tight hardware/software integration and 
aggressive optimizations to address form factor, power/
performance, and usage-specific constraints. However, they 
also inherit the complexity of general-purpose systems, 
including a diversity and complexity of use cases (e.g., the 
number of use cases of a smartphone or tablet is compatible 
with those in a laptop or desktop). Consequently, one must 
rethink architecture and validation from the ground up to 
ensure that we can encompass systems of such complexity.

Furthermore, these devices must conform to aggressive 
time-to-market requirements. The system lifecycle from 
conception to production ranges from three to four years  
for a desktop or a laptop; this is shrunk to less than a year for  
a mobile device. The shrinking is driven by market econom-
ics, e.g., the consumer device refresh cycle. Furthermore, the 
launch schedule is governed by seasonal demand cycles, e.g., 
back-to-school and holiday seasons; the success in launch-
ing a product within a specific short time-window may 
mean the difference between high market share and com-
plete failure [9], [10]. This severely constrains the amount 
of system-level functional validation performed, resulting in 
vulnerability escapes to silicon or in-field.

Finally, exacerbating the situation are two additional fac-
tors in the modern computing environment, large system 
diversity and their continuous connectivity. The high diver-
sity of consumer computing devices, coupled with aggressive 
time-to-market requirements, implies an urgent need for reuse 
of design blocks. However, security requirements vary signifi-
cantly depending on the product, and cannot be “preverified” 
at the IP level, e.g., security requirements from the display IP 
may vary significantly depending on whether it is used for a 
mobile phone or a gaming system. On the other hand, the lack 
of system-level hardware/software security validation technol-
ogy, together with the inadequate system-level validation time 
and lack of sufficient documentation of system-level security 
objectives (see below), implies that requirements for security 
validation—and sometimes even security architecture—are 
not thought through and often reused from an earlier (some-
times different) product. This can lead to significant security 
holes which are only identified in-field. Furthermore, since 
many of these devices target relatively naïve consumers, it is 
difficult to ensure software/firmware patching or other meas-
ure to mitigate vulnerabilities discovered in-field are applied.

B.  Supply Chain Challenges

The security picture is further complicated for SoC 
designs due to increasing reliance on hardware IPs gath-
ered from untrusted third party vendors. Fig. 2 shows the 
SoC lifecycle and the security threats that span the entire 
lifecycle. These threats are increasing with the rapid glo-
balization of the SoC design, fabrication, validation, and 
distribution steps. Statistics show that the global market for 
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third party semiconductor IPs reached more than 2.1 bil-
lion in late 2012 [11]. The design, fabrication, and supply 
chain for these IP cores are generally distributed across the 
globe (cf., Fig. 3). Due to growing complexity of the IPs as 
well as the SoC integration process, SoC designers increas-
ingly tend to treat these IPs as black box and rely on the IP 
vendors on the structural/functional integrity of these IPs. 
However, such design practices greatly increase the num-
ber of untrusted components in a SoC design and make the 
overall system security a pressing concern.

Hardware IPs acquired from untrusted third party 
vendors can have diverse security and integrity issues. 
An adversary inside an IP design house involved in the IP 
design process can insert a malicious implant or design 
modification to incorporate hidden/undesired functional-
ity. In addition, since many of the IP providers are small 
vendors working under highly aggressive schedules, it is 
difficult to ensure a stringent IP validation requirement 
in this ecosystem. Design features may also introduce vul-
nerabilities, e.g., information leakage through hidden test/
debug interfaces or side channels through power/timing 
profiles [12].

Computer-aided design (CAD) tools pose similar trust 
issues to the SoC designers. Such tools are designed to 
optimize a design for power, performance, and area. These 
optimizations can introduce new vulnerabilities [13].  
Rogue designers in an untrusted design facility, e.g., in 
case of a design outsourced to an untrusted facility for  

design-for-test (DFT) or design-for-debug (DFD) insertion, 
can compromise the integrity of a SoC design through inser-
tion of stealthy hardware Trojan. These Trojans can act as a 
backdoor or compromise the functional/parametric proper-
ties of a system in various ways.

Finally, many SoC manufacturers today are fabless and 
rely upon external untrusted foundries for fabrication ser-
vice. An untrusted foundry has access to the entire design 
and thus brings in several serious security concerns, which 
include reverse engineering and piracy of the entire SoC 
design or the IP blocks as well as tampering in the form of 
malicious alterations or Trojan attacks. During distribution 
of fabricated SoC designs through a typically long distribu-
tion supply chain, consisting of multiple layers of distribu-
tors, wholesalers, and retailers, the threat of counterfeits is 
a growing one. These counterfeits can be low-quality clones, 
overproduced chips in untrusted foundry, or recycled ones. 
Even after deployment, the systems are vulnerable to physical  
attacks, e.g., side-channel attacks which target information 
leakage, and magnetic field attacks that aim at corrupting 
memory content to cause denial-of-service attacks.

C.  Scope of SoC Security

Given the complex roots of security assurance in mod-
ern computing devices, it is unsurprising that security assur-
ance itself is a problem of very broad scope. The problem is 
classified into the following three groups.

1) Hardware security: This refers to security issues aris-
ing from problems in the underlying hardware. Current 
approaches to hardware security primarily focus on hard-
ware supply-chain vulnerabilities, e.g., Trojan attacks, and 
counterfeit IPs.

2) System or platform security: This refers to vulner-
abilities resulting from functional or performance bugs 
in the system that can be exploited by a malicious third 
party during execution. Examples of such vulnerabili-
ties include functional bugs in security-critical IPs (e.g., 
cryptographic engine), information leakage due to unan-
ticipated behavior when the system encounters inputs 
of unexpected types, information leakage from system 
power profile, etc.

3) Cloud security or cybersecurity: This refers to vulner-
abilities arising from the communication of an embedded 
computing system or IoT either with other embedded sys-
tems in the Internet or with servers and data centers in the 
cloud. It includes eavesdropping or “man-in-the-middle” 
attacks, breach of confidentiality of the stored data in the 
cloud, corruption of the integrity of collected data, etc.

The remainder of the paper focuses primarily on platform 
security assurance, although we refer to the other components 
in the context of their influence on platform security. Note 
that while both hardware security and cybersecurity have 

Fig. 2. Effects of globally distributed supply chain on SoC security.

Fig. 3. SoCs would typically integrate IP blocks from entities 
distributed across the globe.
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received significant attention with several mature research 
programs [14], [15], there has been a dearth of a compre-
hensive treatment of platform security. On the other hand, 
platform security in fact is a large and complicated topic. The 
notion of “platform” itself includes all hardware, firmware, 
and software components of the system, typically also includ-
ing the essential system and application services. To achieve 
security assurance at that level, one must identify all potential 
vulnerabilities (e.g., software, hardware, physical access, etc.), 
and motivations for an attack (e.g., data theft, jailbreaking, 
DRM bypass, etc.). Even identifying the security objectives is 
non-trivial; they include design features, architecture param-
eters, security requirements of the operating system and 
applications, and even the user’s security expectations (even 
if undocumented). Finally, given aggressive time-to-market 
constraints, security assurance must only cover architecture 
and validation components not covered already by other activ-
ities; thus the security architect and validator is faced with 
the daunting task of understanding different designs, archi-
tectures, and validation flows, and identifying gaps in them 
which can undermine security objectives of the system.

III .   SECU R IT Y A LONG S o C DESIGN 
LIFEC YCLE

Fig. 4 provides a high-level overview of the SoC design life-
cycle. Each component of the lifecycle, of course, involves a 
large number of design, development, and validation activi-
ties. Here we summarize the key activities involved along 
the lifecycle that pertain to security. Subsequent sections 
will elaborate on the individual activities.

A.  Risk Assessment

Security requirements definition is a key part of prod-
uct planning, and happens concurrently with (and in close 
collaboration with) the definition of architectural features 
of the product. This process involves identifying the secu-
rity assets in the system, their ownership, and protection 

requirements, collectively defined as security policies (see 
below). The result of this process is typically the generation 
of a set of documents, often referred to as product security 
specification (PSS), which provides the requirements for 
downstream architecture, design, and validation activities.

B.  Security Architecture

The goal of a security architecture is to design mecha-
nisms for protection of system assets. It includes several 
components: 1) identifying and classifying potential adver-
sary for each asset; 2) determining attacker entry points, 
also referred to as threat modeling; and 3) developing pro-
tection and mitigation strategies. The process can identify 
additional security policies—typically at a lower level than 
those identified during risk assessment (see below)—which 
are added to the PSS. The security definition typically pro-
ceeds in collaboration with architecture and design of other 
system features, including speed, power management, ther-
mal characteristics, etc.

C.  Security Validation

Security validation represents one of the most critical 
parts of security assurance, spanning the architecture, design, 
and postsilicon components of the system lifecycle. The 
actual validation target and properties validated at any phase 
depend on the collateral available in that phase, e.g., the  
validators target, respectively, architecture, design, imple-
mentation, and silicon artifacts as the design matures. One 
key activity is to subvert the advertised security requirements 
in PSS, and identify mitigation measures. Mitigation meas-
ures for architecture and early system design often include 
significant refinement of the security architecture itself. 
At later stages of the system lifecycle, when architectural 
changes are no longer feasible, mitigation measures can 
include software or firmware patches, product defeature, etc.

I V.   IN TRODUCTION TO SECU R IT Y 
POLICIES

SoC security is driven by the requirement to protect sys-
tem assets against unauthorized access. Such access control 
can be defined by confidentiality, integrity, and availability 
requirements [16]. The goal of a security policy is to map 
the requirements to “actionable” design constraints that can 
be used by IP implementers or SoC integrators to develop 
protection mechanisms.

• � Example 1: During boot time, data transmitted by the 
crypto engine cannot be observed by any IP in the SoC 
other than its intended target.

• � Example 2: A programmable fuse containing a secure 
key can be updated during manufacturing but not 
after production.Fig. 4. Lifecycle of a typical SoC from exploration to production.
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Example 1 is a confidentiality requirement while 
Example 2 is an integrity constraint; however, the policies 
provide concrete conditions to be checked by the design for 
accessing an asset. Furthermore, access to an asset may vary 
depending on the state of execution (e.g., boot time, nor-
mal execution, etc.), or position in the development lifecy-
cle. Following are some representative policy classes. They 
are not exhaustive, but illustrate the diversity of policies 
employed.

1) Access control: This is the most common class of 
policies, and specifies how different agents can access an 
asset at different points of the execution. Here an “agent” 
can be a hardware or software component in any IP of the 
SoC. Examples 1 and 2 above are examples of such pol-
icy. Furthermore, access control forms the basis of many 
other policies, including information flow, integrity, and  
secure boot.

2) Information flow: Values of secure assets can some-
times be inferred without direct access, through indirect 
observation or “snooping” of intermediate computation or 
communications of IPs. Information flow policies restrict 
such indirect inference. An example information flow pol-
icy is given below.

• � Key obliviousness: A low-security IP cannot infer the 
cryptographic keys by snooping the data from crypto 
engine on a low-security communication fabric.

Information flow policies are difficult to analyze. They 
often require highly sophisticated protection mechanisms 
and advanced mathematical arguments for correctness, typ-
ically involving hardness or complexity results from infor-
mation security. Consequently, they are employed only on 
critical assets with very high confidentiality requirements.

3) Liveness: These policies ensure that the system performs 
its functionality without “stagnation” throughout its execu-
tion. A typical liveness policy is that a request for a resource by 
an IP is followed by an eventual response or grant. Deviation 
from such a policy can result in system deadlock or livelock,  
consequently compromising system availability requirements.

4) Time of check versus time of use (TOCTOU): This 
refers to the requirement that any agent accessing a resource 
requiring authorization is indeed the agent that has been 
authorized. A critical example of TOCTOU requirement 
is firmware update; the policy requires firmware eventu-
ally installed on update is the same firmware that has been 
authenticated as legitimate by the security or crypto engine.

5) Secure boot: Booting a system entails communication 
of significant security assets, e.g., fuse configurations, access 
control priorities, cryptographic keys, firmware updates, 
postsilicon observability information, etc. Consequently, 
boot imposes stringent security requirements on IPs and 
communications. Individual policies during boot can be 

access control, information flow, and TOCTOU require-
ments; however, it is often convenient to coalesce them into 
a unified set of boot policies.

Most system-level policies are defined at the risk assess-
ment phase by system architects. However, they continue 
to be refined along different phases of the architecture and 
even early design and implementation activities, as new 
knowledge and constraints come to light. For example, dur-
ing architecture definition of a specific product one may 
realize that the “Key Obliviousness” policy cannot be imple-
mented as stated for that product since several IPs need to 
be connected on the same network on chip (NoC) as the 
cryptographic engine due to resource constraints; this may 
lead to a refinement in the policy definition by marking 
some IPs to be “safe” for observing some of the keys. Policies 
may also need to be refined or updated in response to chang-
ing customer or product needs. Such refinements may make 
it highly challenging to develop a validation methodology, 
or even a disciplined security architecture. To exacerbate 
the issue, security policies are rarely specified in any formal, 
analyzable form. Some policies are described in natural lan-
guage in different PSS or other architecture documents, and 
many (particularly refinements identified later in the sys-
tem lifecycle) remain undocumented.

In addition to the system-level policies, there are “lower 
level” policies, e.g., communication among IPs is speci-
fied by fabric policies. Following are some obvious fabric 
policies.

6) Message immutability: If IP ​​ sends a message ​m​ to IP ​
​ then the message received by ​​ must be exactly message ​m​.

7) Redirection and masquerade prevention: If ​​ sends a 
message ​m​ to ​​, then the message must be delivered to ​​. In 
particular, it should be impossible for a (potentially rogue) 
IP ​C​ to masquerade as ​​, or for the message to be redirected 
to a different IP ​D​ in addition to, or instead of ​​.

8) Nonobservability: A private message from ​​ to ​​ must 
not be accessible to another IP during transit.

The above descriptions perhaps belie the complexity 
involved in implementing policies. Consider the SoC configu-
ration shown in Fig. 5. Suppose that IP0 needs to send a mes-
sage to the DRAM. Ordinarily, the message would be routed 
through Router3, Router0, Router1, and Router2. However, 
such a route permits message redirection via software. Each 
router includes a base address register (BAR) which is used 
to route messages for specific destinations. One of the rout-
ers in the proposed path, Router0 is connected to the CPU; 
the BARs in this router are subject to potential overwrite by 
the host operating system, which can redirect a message pass-
ing through Router0 to a different destination. Consequently, 
a secure message cannot be sent through this route unless 
the host operating system is trusted. Note that understand-
ing the potential of redirection requires knowledge of fabric 
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operation, routers design (e.g., the use of BARs), as well as the 
capabilities of the software in an adversarial role.

In addition to the above generic policies, SoC designs 
include asset-specific communication constraints. A poten-
tial fabric policy relevant to secure boot is listed below. This 
policy ensures that a key generated by the fuse controller 
cannot be sniffed during propagation to the crypto engine 
for storage.

•  �Boot-time key nonobservability: During the boot pro-
cess, a key from the fuse controller to the crypto engine 
cannot be transmitted through a router to which any 
IP with user-level output interface is connected.

V.  A TA XONOMY OF A DV ER SA R IES

To ensure that an asset is protected, the designer needs, 
in addition to the security policy, a comprehension of the 
power of the adversary. Effectiveness of virtually all protec-
tion mechanisms is critically dependent on how realistic the 
model of the adversary is. Conversely, most security attacks 
rely on breaking some of the assumptions made regarding 
constraints on the adversary. The notion of adversary can 
vary depending on the asset being considered: for protecting 
DRM keys, the end user would be an adversary, while the 
content provider (and even the system manufacturer) may 
be included among adversaries in the context of protecting 
the private information of the end user. Rather than focus-
ing on a specific class of users as adversaries, it is more con-
venient to model adversaries corresponding to each policy 
and define protection and mitigation strategies with respect 
to that model.

Defining and classifying the potential adversary is a 
creative process. It needs considerations such as whether 
the adversary has physical access, which components they 
can observe, control, modify, or reverse engineer, etc. 
Recently, there has been some attempts at developing a dis-
ciplined categorization of adversarial powers. One potential 

categorization, based on the interfaces through which the 
adversary can gain access to the system assets, can be used 
to classify them into the following six broad categories (in 
order of increasing sophistication). Note that this classi-
fication is one of the several potential ones, e.g., another 
orthogonal classification could be done by categorizing the 
different potential attacks on system or application features 
as shown in Fig. 1. However, we discuss the design-based 
characterization since this is particularly useful in the con-
text of SoC security architecture and validation.

1) Unprivileged software adversary: This form of adversary 
models the most common type of attack on SoC designs. 
Here the adversary is assumed to not have access to any 
privileged information about the design or architecture 
beyond what is available for the end user, but can identify 
or “reverse engineer” possible hardware and software bugs 
from observed anomalies. The underlying hardware is also 
assumed to be trustworthy, and the user is assumed to have 
no physical access to the underlying IPs. The importance of 
this naïve adversarial model is that any attack possible by 
such an adversary can be potentially executed by any user, 
and can therefore be easily and quickly replicated in the 
field on a large number of system instances. For this type of 
attacks, the common “entry point” of the attack is user-level 
application software which can be installed or run on the sys-
tem without additional privilege. The attacks rely on design 
errors (both in hardware and software) to bypass protection 
mechanisms and typically get a higher privilege access to the 
system. Examples of these attacks include buffer overflow, 
code injection, BIOS infection, return-oriented program-
ming attacks, etc. [17], [18].

2) System software adversary: This provides the next level 
of sophistication to the adversarial model. Here we assume 
that in addition to the applications, potentially the operat-
ing system itself may be malicious. Note that the difference 
between the system software adversary and unprivileged 
software adversary can be blurred, in the presence of bugs 
in the operating system leading to security vulnerabilities: 
such vulnerabilities can be seen as unprivileged software 
adversaries exploiting an operating system bug, or a mali-
cious operating system itself. Nevertheless, the distinction 
facilitates defining the root of trust for protecting system 
assets. If the operating system is assumed untrusted, then 
protection and mitigation mechanisms must rely on lower 
level (typically hardware) primitives to ensure policy adher-
ence. Note that system software adversary model can have 
subtle and complex impact on policy implementation, e.g., 
recall from the masquerade prevention example above that 
it can affect the definition of communication fabric archi-
tecture, communication protocol among IPs, etc.

3) Software covert channel adversary: In this model, in 
addition to system and application software, a side-channel 
or covert-channel adversary is assumed to have access to 
nonfunctional characteristics of the system, e.g., power 

Fig. 5. An illustrative simple SoC configuration. SoC designs include 
several on-chip communication fabrics with differing speed and 
power profiles. This configuration has a high-speed fabric with 
three routers connected linearly, and a low-speed fabric with two 
routers also connected linearly.
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consumption, wall-clock time taken to service a specific 
user request, processor performance counters, etc., which 
can be used in subtle ways to identify how assets are stored, 
accessed, and communicated by IPs (and consequently sub-
vert protection mechanisms) [19], [20].

4) Naïve hardware adversary: This refers to the attack-
ers who may gain access to the hardware devices. While the 
attackers may not have advanced reverse engineering tools, 
they may be equipped with basic testing tools. Targets for 
this type of attacks include exposed debug interfaces and 
glitching of control or data lines [21]. Embedded systems are 
often equipped with multiple debugging ports for quick pro-
totype validation. These ports also provide potential weak-
ness which can be exploited for violating security policies.

5) Hardware reverse-engineering adversary: This adversary 
can reverse engineer the silicon implementation for on-chip 
secrets identification. In addition to sniffing interfaces, they 
can depend on advanced techniques such as laser-assisted 
device alteration and chip-probing. Hardware reverse 
engineering can be further divided into two categories: 
1) chip-level reverse engineering; and 2) IP functionality 
reconstruction. Both attack vectors bring in security threats 
to the hardware systems, and permit extraction of secret 
information (e.g., cryptographic and DRM keys coded into 
hardware), which cannot be otherwise accessed through 
software or debugging interfaces.

6) Malicious hardware intrusion adversary: A hardware 
intrusion adversary (or hardware Trojan adversary) is a mali-
cious hardware inside the design. This category of adversar-
ies encapsulates potential threats arising from the SoC supply 
chain. It is different from a hardware reverse-engineering 
adversary in that instead of “passively” observing and reverse-
engineering functionality, it has the ability to communicate 
with them (and “fool” them into violating requisite policies). 
Protection policies against such adversaries are complex, 
since it is unclear a priori which IPs to trust under this model. 
The typical approach taken for security in the presence of 
intruding adversaries is to ensure that a rogue IP  cannot 
subvert a trusted IP  into deviating from a policy.

V I.   ELEMEN TS OF SECU R IT Y 
A RCHITECT U R E

Given a plethora of complex policies and protection require-
ments under different classes of potential adversaries, how 
would we go about designing authentication mechanisms 
to ensure policy enforcement? Unfortunately, the state of 
the practice today depends heavily on human creativity. The 
typical approach today is to develop a baseline architecture 
definition which is then repeatedly refined through the fol-
lowing two steps:

• � use threat modeling to identify potential threats to the 
current architecture definition (see below);

• � refine the architecture with mitigation strategies cov-
ering the threats identified.

The baseline architecture is typically derived from 
legacy architectures for previous products, adapted to 
account for the policies defined for the system under 
exploration. In particular, for each asset, the architect 
must identify 1) who can access the asset; 2) what kind of 
access is permitted by the policies; and 3) at what points 
in the system execution or product development lifecycle 
such access requests can be granted or denied. The pro-
cess can be complex and tedious for several reasons. A 
SoC design may have a significant number of assets, often 
in the order of thousands if not more. Furthermore, not 
all assets are statically defined; many assets are created 
at different IPs during the system execution. For exam-
ple, a fuse or an e-wallet may have a statically defined 
asset such as key configuration modes. During system 
execution, these modes are passed to the cryptographic 
engine, which generates the cryptographic keys for dif-
ferent IPs and transmits them through the system NoC 
to the respective IPs. Each participant in this process has 
sensitive assets (either static or created) during different 
phases of the system execution, and the security architec-
ture must account for any potential access to these assets 
at any point, possibly under the relevant adversary model.

There has been significant work toward standardiz-
ing architecture to implement access control for differ-
ent assets. Most of the relevant work has taken the form 
of developing a trusted execution environment (TEE), 
viz., a mechanism for guaranteeing isolation between 
code and sensitive data at different points of the system 
execution. TEEs, of course, have been a part of computer 
security for a long time, with a large number of mecha-
nisms and architectures. One of the most common TEE 
architectures is the trusted platform module (TPM), 
which is an international standard for a secure crypto-
processor designed to secure the hardware by integrating 
cryptographic keys into devices [22]. It covers methods 
for secure generation of cryptographic keys and limita-
tion of their use, the requirements from random number 
generator, as well as capabilities such as remote attesta-
tion and sealed storage. In addition to TPM, there has 
been significant work on architecting other TEEs, both 
in the industrial platform and in academic research [23], 
[24]. Below we discuss three TEE frameworks specifi-
cally developed for SoC designs: Samsung KNOX, Intel® 
Software Guard Extension (SGX), and ARM Trustzone®. 
Note that in spite of differences motivated by the isola-
tion and separation targets, the underlying architectural 
plans for these TEEs are similar, viz., a combination of 
hardware support (e.g., secure operating modes, virtual-
ization), and software mechanisms (e.g., context switch 
agents, integrity check).
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A.  Samsung KNOX [25]

This architecture is specifically targeted toward smart-
phones and provides secure separation features to enable 
information partition between business and personal con-
tent coexisting on the same system. In particular, it permits 
hot swap between these two content worlds (e.g., without 
requiring system restart). The key ingredient of this tech-
nology is a separation kernel that implements information 
isolation. This architecture permits several system-level ser-
vices, including the following:

• � trusted boot, i.e., preventing unauthorized OS and 
software from being loaded onto the device at startup;

• � trust-zone based integrity measurement architecture 
(TIMA), which continually monitors kernel integrity;

• � security enhancement (SE) for Android, an enforce-
ment mechanism providing protection of system/user 
data based on confidentiality and integrity require-
ments through separation;

• � KNOX container, which offers a secure environment 
in which protected business applications can run with 
guaranteed information separation from the rest of 
the device.

B.  ARM Trustzone [26]

TrustZone technology is a system-wide approach to 
security on high-performance computing platforms. The 
TrustZone implementation relies on partitioning the SoC’s 
hardware and software resources so that they exist in two 
worlds: secure and non-secure. Hardware supports access 
control and permissions for the handling of secure/non-
secure applications and the interaction and communica-
tion among them. The software supports secure system calls 
and interrupts for secure runtime execution in a multitask-
ing environment. These two aspects ensure that no secure 
world resources can be accessed by the normal world com-
ponents, except through secure channels, enabling an effec-
tive wall-of-security to be built between the two domains. 
This protection extends to input/output (I/O) connected to 
the system bus via the TrustZone enabled AMBA3 AXI bus 
fabric, which also manages memory compartmentalization.

C.  Intel SGX

SGX [27] is an architecture for providing a trusted exe-
cution environment provided by the underlying hardware 
to protect sensitive application and user programs or data 
against potentially malicious operating systems. SGX permits 
applications to initiate secure enclaves or containers which 
serve as so-called “islands of trust.” It is implemented as a set 
of new CPU instructions that can be used by applications to 
set aside such secure enclaves of code and data. This enables  
1) applications to preserve the confidentiality and integrity of 
sensitive data without disrupting the ability of legitimate sys-
tem software to manage the platform resources; and 2) end 

users to retain control of their platforms, applications, and 
services even in the presence of malicious system software.

The TEEs provide a foundation (i.e., a mechanism of isola-
tion) for implementing security policies. However, they are a 
far cry from a standardized approach for implementing poli-
cies themselves. To provide such approaches, it is necessary 
to 1) develop a language for succinctly and formally express-
ing security policies; 2) architecting a parameterized “skel-
eton” design that can be easily instantiated to diverse policy 
implementations; and 3) developing techniques for synthe-
sizing policy implementation from high-level descriptions. 
Recent academic and industrial research has attempted to 
address some of these issues. Li et al. [28] provide a language 
and synthesis framework for certain security policies. Basak 
et al. [29] provide a microcontrol-based flexible framework 
for implementing diverse security policies. There have been 
optimized architectural support for specific classes of poli-
cies, e.g., control-flow integrity [30], Trojan resistance [31]. 
However, in spite of such work on pieces of the problem, we 
are still far away from a robust, configurable security archi-
tecture as necessary for robust system design. Some key defi-
ciencies include interplay of secure access control with on-
chip instrumentation, definition of security architectures that 
are configurable for different phases of system lifecycle, and 
lack of a centralized IP for policy implementation in the SoC 
design, which makes it difficult to evaluate policy compliance.

V II.   THR E AT MODELING

Threat modeling is the activity for optimizing SoC security 
by identifying objectives and vulnerabilities, and defin-
ing countermeasures to prevent, or mitigate the effects of, 
threats to the system. As noted above, it is a vital part  of 
the security architecture definition. It is also a key part 
of the security validation, in particular in negative testing 
and white-box hacking activities. Threat modeling roughly 
involves the following five steps, which are iterated until 
completion.

1)  Asset definition: Identify the system assets governing 
protection. This requires identification of IPs and the point 
of system execution where the assets originate. As discussed 
above, this includes statically defined assets as well as those 
generated during system execution.

2)  Policy specification: For each asset, identify the poli-
cies that involve it. Note that a policy may “involve” an asset 
without specifying direct access control for it. For example, 
a policy may specify how a secure key ​K​ can be accessed by 
a specific IP. This, in turn, may imply how the controller 
of the fuse where ​K​ is programmed can communicate with 
other IPs during the boot process for key distribution.

3)  Attack surface identification: For each asset, iden-
tify potential adversarial actions that can subvert policies 
governing the asset. This requires identification, analy-
sis, and documentation of each potential “entry point,”  
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i.e., any interface that transfers data relevant to the asset to 
an untrusted region. The entry point depends on the cate-
gory of the potential adversary considered in the attack, e.g., 
a covert-channel adversary can make use of nonfunctional 
design characteristics such as power consumption or tem-
perature to infer the ongoing computation.

4)  Risk assessment: The potential for an adversary to sub-
vert a security objective does not, in and of itself, warrant miti-
gation strategies. The risk assessment and analysis are defined 
in terms of the so-called DREAD paradigm, composed of the 
following five components: a) damage potential; b) reproduc-
ibility; c) exploitability, i.e., the skill, and resource required 
by the adversary to perform the attack; d) affected systems, 
e.g., whether the attack can affect a single system or tens or 
millions; and e) discoverability. In addition to the attack itself 
one needs to analyze the likelihood that the attack can occur 
on-field, motives of the adversary, etc.

5)  Threat mitigation: Once the risk is considered sub-
stantial given the likelihood of the attack, protection mecha-
nisms are defined and the analysis must be performed again 
on the modified system.

A.  Implementation Example

Consider protecting a system against code injection 
attacks by malicious or rogue IPs by overwriting code seg-
ments through direct memory access (DMA) access. The 
assets being considered here are appropriate regions of mem-
ory hierarchy (including cache, SRAM, secondary storage), 
and the governing policy may be to define DMA-protected 
regions where DMA access is disallowed. The security archi-
tect needs to go through all memory access points in the 
system execution, identify memory access requests to DMA-
protected regions, and set up mechanisms so that DMA 
requests to all protected accesses will fail. Once this is done, 
the enhanced system must be evaluated for additional poten-
tial attacks, including attacks that can potentially exploit 
the newly set-up protection mechanisms themselves. Such 
checks are performed typically via negative testing, i.e., look-
ing beyond what is specified to identify if the underlying 
security requirements can be subverted. For our example, 
such testing may involve looking for ways to access the DMA-
protected memory regions, other than directly performing 
a DMA access. The process is iterative and highly creative, 
resulting in a collection of increasingly complex lineup of 
protection mechanisms, until the mitigation is considered 
sufficient with respect to the risk assessment.

In current industrial practice, performing the above 
activities manually over the range of system assets and poli-
cies is a daunting manual task. Admittedly, there are avail-
able tools to assist in the different steps, e.g., documenting 
steps in threat modeling and severity identification [32], 
[33]. Nevertheless, the key architectural decisions and anal-
ysis still depend highly on human insights.

V III.   SECU R IT Y VA LIDATION 
OV ERV IE W

Designing resilience into designs is one aspect of secu-
rity assurance. The other critical aspect is validating that 
the security objectives of the product are indeed satisfied. 
Security validation is different from most other kinds of 
validation (such as functional or power or timing) since the 
requirements are typically less precise. The goal of security 
validation is to “validate conditions related to security and 
privacy of the system that are not covered by other valida-
tion activities.” The requirement that security validation 
focuses on targets not covered by other validation is impor-
tant given strict time-to-market constraints, which preclude 
duplication of resources for the same (or similar) valida-
tion tasks; however, it puts onus on the security validation 
organization to understand activities performed across the 
spectrum of the SoC design validation and identify holes 
that pertain to security. In practice, validation plan includes 
diverse activities that range from the science to the art and 
sometimes even “black magic.”

A.  Functional Validation of Security-Sensitive 
Design Features

This is essentially an extension to functional validation, 
but pertain to design elements involved in critical security 
feature implementations. An example is the cryptographic 
engine IP. A critical functional requirement for the cryp-
tographic engine is that it encrypts and decrypts data cor-
rectly for all modes. As with any other design block, the 
cryptographic engine is also a target of functional valida-
tion. However, given that it is a critical component of a 
number of security-critical design features, cryptographic 
functionality may be crucial enough to justify further vali-
dation beyond the coverage provided by vanilla functional 
validation activities. Consequently, such an IP may undergo 
more rigorous testing, or even formal analysis. Other such 
critical IPs may include IPs involved in secure boot, and  
in-field firmware patching.

B.  Validation of Deterministic Security 
Requirements

Deterministic security requirements are validation 
objectives that can be directly derived from security poli-
cies. They include access control restrictions, address 
translations, etc. Consider an access control restriction 
that specifies a certain range of memory to be protected 
from DMA access; this may be done to ensure protection 
against code-injection attacks, or protect a key that is stored 
in such location. An obvious derived validation objective is 
to ensure that all DMA calls for access to a memory whose 
address translates to an address in the protected range must 
be aborted. Note that validation of such properties may not 
be included in functional validation, since DMA access 
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requests for DMA-protected addresses are unlikely to arise 
for “normal” test cases or usage scenarios.

C.  Negative Testing

Negative testing looks beyond the functional specifica-
tion to identify if security objectives can be subverted or 
are underspecified. Continuing with the DMA-protection 
example above, negative testing may extend the determin-
istic security requirement (i.e., abortion of DMA-access for 
protected memory ranges) to identify if there are any other 
paths to protected memory in addition to address transla-
tion activated by a DMA access request, and potential input 
stimulus to activate such paths.

D.  Hackathons

Hackathons, also referred to as white box hacking fall 
in the “black magic” end of the security validation spec-
trum. The idea is for expert hackers to perform goal-ori-
ented attempts at breaking security objectives. This activ-
ity depends primarily on human creativity, although some 
guidelines exist on how to approach them (see discussion 
on penetration testing in the next section). Because of their 
cost and the need for high human expertise, they are per-
formed for attacking complex security objectives, typically 
at hardware/firmware/software interfaces.

I X .   VA LIDATION TECHNOLOGIES

Recall that focused functional validation of security-
critical design components forms a key constituent of 
security validation. Consequently, security validation 
includes all functional validation tools and methodolo-
gies. Functional validation of SoC designs is a mature and 
established area, with a number of comprehensive sur-
veys covering different aspects [34], [35]. In this section, 
we instead consider validation technologies to support 
other validation activities, e.g., negative testing, white-
box hacking, etc. These activities inherently depend on 
human creativity; tools and infrastructures primarily act 
as assistants, filling in gaps in human reasoning and pro-
viding recommendations.

A.  Fuzzing

Fuzzing, or fuzz testing [36], is a testing technique for 
hardware or software that involves providing invalid, unex-
pected, or random inputs and monitoring the result for 
exceptions such as crashes, or failing built-in code assertions 
or memory leaks. Fig. 6 demonstrates a standard fuzzing 
framework. It was developed as a software testing approach, 
and has since been adapted to hardware/software systems. In 
the context of security, it is effective for exposing a number 
of potential attacker entry points, including through buffer 

or integer overflows, unhandled exceptions, race condi-
tions, access violations, and denial of service. Traditionally, 
fuzzing uses either random inputs or random mutations of 
valid inputs. A key attraction to this approach is its high 
automation compared to other validation technologies such 
as penetration testing and formal analysis. Nevertheless, 
since it relies on randomness, fuzzing may miss security vio-
lations that rely on unique corner-case scenarios. To address 
that deficiency, there has been recent work on “smart” input 
generation for fuzzing, based on domain-specific knowledge 
of the target system. Smart fuzzing may provide a greater 
coverage of security attack entry points, at the cost of more 
upfront investment in design understanding.

B.  Penetration Testing

A penetration test, or intrusion test, is an attack on a 
system with the intention to find security weakness. It is 
performed by expert hackers often with deep knowledge of 
system architecture, design, and implementation. Roughly, 
penetration testing involves iterative application of the fol-
lowing three phases.

1)  Attack surface enumeration: The first task is to identify 
the features or aspects of the system that are vulnerable to 
attack. This is typically a creative process involving num-
ber of activities, including documentation review, network 
service scanning, and even fuzzing or random testing (see 
below).

2)  Vulnerability exploitation: Once the potential 
attacker entry points are discovered, applicable attacks 
and exploits are attempted against target areas. This may 
require research into known vulnerabilities, looking up 
applicable vulnerability class attacks, engaging in vulner-
ability research specific to the target, and writing/creating 
the necessary exploits.

3)  Result analysis: If the attack is successful, then in this 
phase the resulting state of the target is compared against 
security objectives and policy definitions to determine if 

Fig. 6. Illustration of the fuzzing framework used in post-silicon 
security validation of SoC.
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the system was indeed compromised. Note that even if a 
security objective is not directly compromised, a success-
ful attack may identify additional attack surface which must 
then be accounted for with further penetration testing.

While there are commonalities between penetration test-
ing and testing for functional validation, there are important 
differences. In particular, the goal of functional testing is to 
simulate benign user behavior and (perhaps) accidental fail-
ures under normal environmental conditions of operation of 
the design as defined by its specification; penetration testing 
goes outside the specification to the limits set by the security 
objective, and simulates deliberate attacker behavior.

The efficacy of penetration testing critically depends on 
the ability to identify the attack surface in the first phase 
above. Unfortunately, rigorous methodologies for achieving 
this are lacking. Following are some of the typical activities 
in current industrial practice to identify attacks and vulner-
abilities. We classify them below as “easy,” “medium,” and 
“hard” depending on the creativity necessary. Note that 
there are tools to assist the human in many of the activities 
below [37], [38]. However, determining the relevance of the 
activity, identifying the degree to which each activity should 
be explored, and inferring a potential attack from the result 
of the activity involve significant creativity.

• � Easy approaches: These include review of available doc-
umentation (e.g., specification, architectural materials, 
etc.), known vulnerabilities or misconfigurations of IPs, 
software, or integration tools, missing patches, use of 
obsolete or out-of-date software versions, etc.

• � Medium-complexity approaches: These include inferring 
potential vulnerabilities in the target of interest from 
information about misconfigurations, vulnerabilities, and 
attacks in related or analogous products, e.g., a competitor 
product, a previous software version, etc. Other activities of 
similar complexity involve executing relevant public secu-
rity tools or published attack scenarios against the target.

•  �Hard approaches: This includes full security evalua-
tion of any utilized third-party components, integra-
tion testing of the whole platform, and identification 
of vulnerabilities involving communications among 
multiple IPs or design components. Finally, vulnera-
bility research involves identifying new classes of vul-
nerabilities for the target which have never been seen 
before. The latter is particularly relevant for new IPs 
or SoC designs for completely new market segments.

C.  Static or Formal Reasoning

This involves making use of mathematical logic to either 
derive a security assurance requirement formally, or iden-
tifying flaws in the target system (architecture, design, or 
implementation). Application of formal methods typi-
cally involve significant effort, either in the manual exer-
cise of performing deductive reasoning or in developing 

abstractions of the security objective which are amenable to 
analysis by automated formal tools. In spite of the cost, the 
effort is justified for highly critical security objectives, e.g., 
cryptographic algorithm implementation. Furthermore, for 
some critical properties, automated formal methods can 
be used in a lightweight manner as effective state explo-
ration tools. For example, TOCTOU property violations 
often involve scenarios of overlapping execution of differ-
ent instances of the same protocol, which are effectively 
exposed by formal methods [39]. Finally, formal proofs have 
also been used as certification mechanisms for third party IP 
vendors to convey security assurance to SoC system integra-
tion teams [40].

X .  SECU R IT Y-VA LIDATION TR A DEOFFS

One key source of complexity in developing security assur-
ance solutions in modern computing systems is the number 
of stakeholders involved. We have already seen the role of 
architects, designers, and validators. However, the preced-
ing descriptions pitted them in a cooperative role, with the 
common objective of improving security assurance. The 
situation is more complex in practice because many stake-
holder interests conflict with that of security. A successful 
SoC design needs to ensure security of the product in the 
presence of such interoperability needs from a large number 
of stakeholders. Here we consider one such interoperability 
requirements, viz., validation itself [21], [41].

Validation occupies a unique position in the context 
of interoperability. A significant component of validation 
(including validation of security objectives) involves postsil-
icon debug. This uses a fabricated, preproduction silicon to 
run tests and software to find errors that have been missed 
in presilicon validation. The tests can include functional val-
idation tests, practical hardware/software usage scenarios, 
deep penetration tests for security, circuit marginality tests, 
etc. Since the silicon executes at target clock speed (about 
a billion times faster than an RTL simulation), one can 
explore deep design states and find errors and vulnerabilities 
which could not have been possibly detected during presili-
con activities. However, it also requires instrumentation of 
the design with a significant amount of additional circuitry, 
often referred to as design-for-debug (DfD) circuitry, to pro-
vide requisite observability and control during silicon execu-
tion. Unfortunately, instrumentation can also account for 
significant security vulnerabilities. In particular, it is tricky 
to determine whether an innocuous instrumentation for 
debug observability compromises some system-level policy. 
Furthermore, some of the DfD circuitry must remain ena-
bled after postsilicon validation when the product is shipped 
to customers, e.g., for debugging problems discovered in 
the field. Many recent security hacks have made direct 
use of these debug features [42], [43]. Note that a viable 
solution to this problem is not to simply disable debug fea-
tures involving sensitive assets. Postsilicon validation itself  
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is also a highly critical activity performed under aggressive 
schedule, and requires planning that spans across the sys-
tem lifecycle just like security does. Delays in postsilicon 
validation also has significant consequences, including the 
possibility of a company missing product release deadlines 
or even having to cancel the production, with consequent 
loss in revenues, reputation, and market share [9].

The tradeoff challenge between security and validation 
is the following. For postsilicon validation, we must observe 
design behavior during system execution; however, security 
policies on certain assets may disallow their observability. 
Put this way, the challenge may appear to be an instance of 
inconsistency between requirements from availability and 
confidentiality/integrity. The DfD architecture is, after all, 
a collection of IPs that need access to some internal data 
at different points of system execution; this need may be 
viewed as an availability requirement. Unfortunately, sev-
eral factors make the tradeoff between security and debug 
more challenging than a general conflict between confi-
dentiality and availability. Here we discuss some of the key 
factors.

A.  Ambiguity

Observability requirements are rarely as clear cut as 
requirements arising from functionality. A key reason is that it 
is unclear a priori which component would exhibit a bug and 
therefore should be a target for observability. Furthermore, 
DfD decisions are made by validators and designers having 
little familiarity with security policies. When security con-
straints are imposed, often late in the design, one of the fol-
lowing two situations is likely: 1) some critical observability 
or control is inadvertently removed as a conservative meas-
ure; or 2) some subtle security flaw remains.

B.  Feed-Through

Security requirements may affect observability indi-
rectly. Consider a signal ​s​ in IP ​​ that we wish to observe 
during postsilicon debug. Assume further that observing ​
s​ does not compromise any security policy. However, in 
order for ​s​ to be observed, its value must be routed to an 
observation point, e.g., an output pin or system memory. 
If this route includes a high-security IP ​​ then confidenti-
ality requirement may cause ​​ to be unobservable during 
system execution, thereby making ​s​ unobservable as well. 
On the other hand, the placement of IPs ​​ and ​​ in the sys-
tem layout, and consequently, the route of signal ​s​, may only 
be determined at an advanced stage of the design lifecycle 
making it impossible to account for that consideration when 
defining the signals to trace.

C.  Lack of Centralization

Both DfD and security components are sprinkled across 
various IPs in the design. This, coupled with the lack of a 

rigorous documentation or specification of DfD require-
ments (and security policies), implies that it is often unclear 
what the purpose of a specific feature is, how it is excited, 
and what vulnerabilities it exposes. This makes it hard to 
determine security risks arising from DfDs.

In current industrial practice, the tradeoff is addressed 
typically by progressively increasing security features (and  
constraining DfD) as the design progresses along its life-
cycle, from design to manufacturing, and production. 
Disabling DfD permanently is possible through blowing 
fuses during manufacturing and production. The situation 
is more complex for modern SoC designs, with the need to 
keep DfD features available for patching the product in the 
field. Nevertheless, the progressive increase is still a valid 
principle with a few adjustments. The first adjustment is 
that one cannot permanently disable DfD features because 
of the need to address this principle. Second, when such 
reversal is needed it is only for specific stakeholders with 
special authentication (e.g., an entity authorized to patch a 
design functionality). Finally, the reversal must be tempo-
rary, and once the activity needing the reversal (e.g., fixing 
an in-field bug) is complete, the system reverts to its default 
“higher security” state appropriate for the current phase of 
its design lifecycle.

A key problem in developing a comprehensive solution 
is that both security assurance and postsilicon validation 
are complex and elaborate processes, involving significant 
planning and a large number of stakeholders. Any solution 
to their tradeoff problem must address a large number of 
parameters. Below we highlight some of the key parameters. 
Obviously, no solution exists in current industrial practice, 
that addresses all of the following. In Section XI, we dis-
cuss one emergent architecture, which provides promise to 
address some of these considerations.

D.  HVM Considerations

High-volume manufacturing test is the process of iden-
tifying manufacturing defects during production. This is 
done by placing the fabricated silicon in a tester, where it 
is exercised with a large number of tests. The test patterns 
are generated by accounting for the functional definition of 
the design, the target faults, a fault model, the fabrication 
process technology, etc. The accuracy of coverage from the 
results of these tests is highly sensitive to the test patterns 
being applied and the fidelity of the silicon design with 
respect to its presilicon netlist model. Consequently, irre-
spective of security constraints and access control restric-
tions, the test patterns must work the same way as much 
as possible on silicon designs as expected from presilicon 
models, and their results must be accurately observed. 
Furthermore, it must be possible to have a simple access to 
the IP being exercised with the test, without requiring too 
many workarounds.
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E.  Reusability

A key source of complexity in the current state of the prac-
tice discussed in Section VI is the need to manually identify 
assets and accesses for different products and usage scenar-
ios. This job is highly tedious and error prone. Consequently, 
solution to the problem must provide a reusable infrastruc-
ture for systematically identifying and classifying assets and 
analyzing usage scenarios.

F.  Late Variability

DfD is notorious for late changes in requirements and 
implementation. Indeed, DfD requirements can change during  
IP design, SoC integration, or even after a silicon step; 
the latter can happen on realization that observability or 
control of certain signals is critical for a future stepping. 
Consequently, any solution for addressing security chal-
lenges with DfD must be easy to adapt with such changing 
requirements. In particular, it should be possible to quickly 
validate an updated DfD architecture against a given set of 
security policies and identify vulnerabilities.

G.  Self-Securability

It is obvious that any architecture introduced to address 
the security-validation tradeoff must be self-securing and 
must not introduce additional security backdoor (or com-
plexity with debug).

H.  Architecture

A decentralized architecture (both for security and DfD) 
is difficult to follow and can accidentally break or introduce 
vulnerability. To circumvent this possibility, it is critical that 
the architecture can be viewed as a centralized IP which can 
itself be effectively analyzed for possible violation of either 
security or debug requirements.

X I.   EMERGEN T TECHNOLOGIES

Given the disturbing recent trend of increasing security attacks 
on embedded, mobile, and IoT systems, there has been signifi-
cant research interest to develop technologies for streamlining 
SoC security specification, architecture, and validation. There 
are efforts to develop security architectures beyond TEE defi-
nitions, integrating them with protocols and creating methods  
to identify access control at different points of the system 
execution [44]. There are efforts to extend formal verifica-
tion technology for security validation, both among EDA 
vendor tools and through academic and industrial research 
[45]–[47]. There are also efforts on developing scalable, com-
positional theories for security assurance [48] and metrics for 
defining quality of security assurance. It is beyond the scope 
of this paper to review all the different approaches and the 
innovative technologies involved. Instead, in this section, we  

discuss two relatively extensive efforts undertaken by some of 
the authors themselves, and outline our thinking toward the a 
comprehensive solution. Note that the point is not to advocate 
these specific solutions but to provide our own take on the kind 
of thinking necessary to tame the complexity of security assur-
ance in modern SoC designs.

A.  A Centralized Policy Definition Architecture

Recent work [29], [49] has attempted to develop a cen-
tralized, flexible architecture called E-IIPS for implement-
ing security policies in a disciplined manner. The idea is to 
provide an easy-to-integrate, scalable infrastructure IP that 
serves as a centralized resource for SoC designs to protect 
against diverse security threats at minimal design effort and 
hardware overhead. Fig. 7 shows the overall architecture 
of E-IIPS. It includes a microcontroller-based firmware-
upgradable module called security policy controller (SPC) 
that realizes system-level security policies of various forms 
and types using firmware code following existing security 
policy languages. The SPC module interfaces with the con-
stituent IP blocks in a SoC using “security wrappers” inte-
grated with the IPs. These security wrappers extends the 
existing test (e.g., IEEE 1500 boundary scan based wrapper 
[50]) and debug wrapper (e.g., ARM’s CoreSight interface 
[51]) of an IP. These security wrappers detect local events 
relevant to the implemented policies and enable commu-
nication with the centralized SPC module. The result is a 

Fig. 7. SoC security architecture based on E-IIPS for efficient 
implementation of diverse security policies.
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flexible architecture and approach for implementing highly 
complex system-level security policies, including those 
involving interoperability requirements and trade-offs with 
debug, validation, and power management. The architec-
ture is realizable with modest area and power overhead [29]. 
Furthermore, more recent work has shown that the existing 
design instrumentations, e.g., for DfD, could be exploited in 
implementing the architecture [49].

Of course, the architecture itself is only one component 
of the policy definition. Several challenges remain, e.g.,  
1) defining a language for security policy specification that 
can be efficiently compiled to SPC microcode; 2) study of 
bottlenecks related to routing and congestion across com-
munication fabrics in implementing the architecture;  
3) implementing security policies involving potentially mali-
cious IPs (including malicious security wrappers or Trojans 
in the SPC itself), etc. Nevertheless, the approach shows a 
promising direction toward systematizing policy implemen-
tations. Furthermore, by enclosing the policy definitions to 
a centralized IP, it enables security validation to focus on a 
narrow component of the design, thereby potentially reduc-
ing validation time.

B.  A Framework for Security Rule Check

Another critical problem is to define security rules to 
identify vulnerabilities. Recall that a significant cost in vali-
dation (e.g., penetration testing) comes from enumerating 
vulnerabilities. The vulnerabilities depend on several fac-
tors, e.g., the target market segment, supply chain, design 
and implementation technologies used, etc. Identifying 
these vulnerabilities early is critical: cost of fixing (or even 
finding) vulnerabilities at later stages of the lifecycle can be 
staggering.

This problem is being addressed by an emerging frame-
work: design security rule check (DSeRC). The goal is to 
analyze vulnerabilities of a design and assess its security 
level at each design stage. The framework is shown in Fig. 8.  
Similar to design rule check (DRC), DSeRC will read the 
design files and user inputs, and check for vulnerabilities at 
all levels of abstraction. Each vulnerability is tied with met-
rics and rules so that each design’s security can be quantita-
tively measured. At each level, the DSeRC framework will 
quantitatively analyze vulnerabilities in a design and pro-
vide feedback to the designer.

The first critical thrust for the development of DSeRC 
is to construct a comprehensive list of vulnerabilities pre-
sent in SoC design. These include design mistakes, unclear 
or ambiguous specification, errors in CAD tools, design-
for-test (DfT) and DfD insertion, etc. The second thrust 
is to incorporate each vulnerability with rules and met-
rics so that security of each design can be quantitatively 
measured. A sample vulnerability table was developed to 
present the list of vulnerabilities in SoC designs and their 

corresponding metrics and rules as well as additional 
vulnerabilities that needs to be addressed in the DSeRC 
framework [52], [53].

Note again that in spite of this progress the framework 
is still in its infancy. As we discussed earlier, system-level 
policies are complex and the security vulnerability detec-
tion performed during penetration testing is highly creative. 
Nevertheless, the direction shows promise and if successful,  
can significantly ameliorate validation challenges.

X II.   CONCLUSION

We have presented, for the first time to our knowledge, 
a comprehensive overview of platform security assur-
ance requirements, resilient architecture, and security 
validation in modern SoC designs. The goal has been 
to provide an understanding of the current state of the 
practice, highlight the key challenges, and describe the 
different pieces of a highly complex ecosystem that must 
interact and cooperate to ensure trustworthiness of our 
computing devices. The picture of the current practice in 
SoC security assurance is scary. The complexity involved 
is staggering and increasing at an alarming rate. On the 
other hand, we depend on human creativity to identify 
innovative attacks within a small time window before the 
system goes to field (and is exposed to attacks from the 
“bad guys”)—an approach that cannot scale over the com-
plexity we are encountering. While there are promising 
emergent approaches, we are far from creating trustwor-
thy computing devices. There is a critical need to develop 
a disciplined approach to security assurance from the 
ground up. Perhaps more importantly, it may require a 
cooperative research involving different participants, viz., 
architects, designers, validators, and cross-cutting stake-
holders such as power/performance architects and physi-
cal design engineers.� 

Fig. 8. Overall flow of DSeRC framework for design-time security 
evaluation.
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