Robust Bitstream Protection in FPGA-based
Systems through Low-Overhead Obfuscation

Robert Karam*, Tamzidul Hoque*, Sandip Ray', Mark Tehranipoor*, and Swarup Bhunia*
*Dept. of ECE, University of Florida, Gainesville, FL. 32608
TNXP Semiconductor, Austin, TX 78721
Email: robkaram@ufl.edu

Abstract—Reconfigurable hardware, such as Field Pro-
grammable Gate Arrays (FPGAs), are being increasingly de-
ployed in diverse application areas including automotive systems,
critical infrastructures, and the emerging Internet of Things
(IoT), to implement customized designs. However, securing
FPGA-based designs against piracy, reverse engineering, and
tampering is challenging, especially for systems that require
remote upgrade. In many cases, existing solutions based on bit-
stream encryption may not provide sufficient protection against
these attacks. In this paper, we present a novel obfuscation
approach for provably robust protection of FPGA bitstreams
at low overhead that goes well beyond the protection offered by
bitstream encryption. The approach works with existing FPGA
architectures and synthesis flows, and can be used with encryp-
tion techniques, or by itself for power and area-constrained
systems. It leverages “FPGA dark silicon” — unused resources
within the configurable logic blocks — to efficiently obfuscate
the true functionality. We provide a detailed threat model and
security analysis for the approach. We have developed a complete
application mapping framework that integrates with the Altera
Quartus II software. Using this CAD framework, we achieve
provably strong security against all major attacks on FPGA
bitstreams with an average 13% latency and 2% total power
overhead for a set of benchmark circuits, as well as several large-
scale open-source IP blocks on commercial FPGA.

I. INTRODUCTION

System security is becoming an increasingly important
design consideration in modern computing systems, especially
network-connected mobile and Internet of Things (IoT) de-
vices. With estimates of 10s of billions of connected sys-
tems in the coming years, it is imperative to have technolo-
gies, architectures, and protocols that pair device efficiency
with hardware security, data security, and privacy. The use
of a reconfigurable hardware platforms, such as Field Pro-
grammable Gate Arrays (FPGA), is a common practice that
helps designers to satisfy the growing demands on the area,
performance, cost, and power requirements of next-generation
devices [1]. In particular, FPGAs are well-suited to after-
market reconfigurability, enabling them to adapt to changing
requirements in functionality, energy-efficiency, and security
during the lifetime of a device [2]. This is a critical design
consideration in many application domains, including military,
automotive, IoT, and data centers, among others.

The role of FPGAs in computing system security has
recently seen significant interest from diverse sectors [3],
[4]. However, existing research primarily focuses on realizing
functional security primitives in FPGA. We note that in addi-
tion to serving as a hardware acceleration engine for security
primitives, FPGAs are inherently more secure against supply
chain attacks. In particular, the post-silicon reconfigurability of

key 1 key 2 key N
00110... | 10010... l 11100...
Logical Logical Logical
Arch. 1 Arch. 2

T ~._X__. 2 ~._X_,— Arci‘ N

FPGA 1 FPGA 2 FPGA N

Fig. 1. The proposed key-based bitstream obfuscation generates logically-
varying bitstreams for the same underlying FPGA architecture. This offers
robust protection against major attacks, including known design, tampering,
and physical attack, against which bitstream encryption is insufficient.

FPGAs implies that the true circuit functionality is not realized
until after chip production and design details are not exposed
to untrusted parties in the foundry and the supply chain.
However, the security of the FPGA bitstream (or configuration
file), can still be at risk, both during initial configuration in
untrusted third-party system integration facilities as well as
during wireless and in-field reconfiguration. These bitstreams
are susceptible to various attacks, including unauthorized
programming to third-party hardware, reverse-engineering of
the design, malicious modifications such as hardware Trojan
insertion [5], and cloning/piracy of the valuable Intellectual
Property (IP) blocks. Such attacks can cause significant mon-
etary loss for the IP designer, and unwanted, unreliable, and
even potentially catastrophic operations in the field.

One existing approach to defend against these attacks is
bitstream encryption [6], which is typically available for high-
end FPGAs. Unfortunately, for many situations, encryption
alone is not sufficient for comprehensive system security:

1) FPGAs aimed at applications constrained by aggressive
low-energy and cost requirements or tiny form-factors
may not include dedicated encryption blocks due to area
or energy constraints.

2) During remote upgrade, encryption keys must be sent
along with the bitstream, making designs vulnerable to

FPGA

00C0() 0oeo
CO00| coeo
0| | CCCO

CSPRNG

Analysis & Synthesis

design.blif

001011.
E’{ Security-Aware Mapping

@

L A Cl
Technology Mapping \ —_—
\ o
N : 1
\ : o]
Assembly Y @5 [ﬁD;
N 1 FH -
AN A KB

Fig. 2. (a) Security-aware mapping for FPGA bitstreams, which requires no design-time changes to the hardware. An initial synthesis run produces technology-
mapped lookup tables, to which (1) the proposed key-based obfuscation is applied; (2) the obfuscated design is resynthesized and (3) mapped to the target
FPGA. (b) (top) Original design consisting of 4 CLBs which support 3 input functions, but only contain 2 input functions, leaving 50% of the LUT unoccupied.
(bottom) after obfuscation, these content bits are filled with other functions; correct response selection depends on the key input position and value.

leakage to an attacker with network access.

3) Devices that remain in the field for many years, such
as those in long-life military, automotive, and IoT ap-
plications, are susceptible to physical attacks that can
result in leaking the encryption key via side channels
(e.g. power, timing) [6].

Consequently, there is a critical need for a robust, low-cost
approach to FPGA bitstream security that goes beyond the
protection offered by standard encryption techniques.

In this paper, we present a novel, low-overhead FPGA bit-
stream obfuscation solution, which maintains mathematically
provable robustness against major attacks. Central to this con-
tribution is the identification of FPGA dark silicon, i.e., unused
LUT memory already available in design mapped to FPGAs,
which is exploited to achieve bitstream security. It helps to
drastically reduce the overhead of the obfuscation mechanism.
The approach does not introduce additional complexity in de-
sign verification and incurs a low performance and negligible
power penalty. In particular, the mechanism proposed here
permits the creation of logically varying architectures for an
FPGA, so that there is a unique correspondence between a
bitstream and the target FPGA. Fig. 1 shows a high-level
overview of our approach. Compared to existing logic obfus-
cation techniques [7], we do not require design-time changes
to the FPGA architecture or expensive on-chip public key
cryptography. Note that in addition to obfuscation of design
functionality, our approach also enables locking a particular
bitstream to a specific FPGA device, helping to prevent piracy
of the valuable IP blocks incorporated in a design. Therefore,
it goes well beyond standard bitstream encryption in FPGA
security. Furthermore, it is targeted to the protection of FPGA
bitstreams, rather than hardware metering of integrated circuits
[7]. Finally, the procedure seamlessly integrates into existing
CAD tool flows for programming FPGA devices. To our
knowledge, this is the first comprehensive technique to protect

against major attacks on FPGA bitstreams.

The paper makes the following important contributions:

« We propose a novel, low-overhead key-based bitstream
obfuscation technique for FPGAs, which can be used with
off-the-shelf FPGA hardware. This approach leverages
unused FPGA resources within an existing design to min-
imize the hardware overhead required for the obfuscation.

o We analyze the properties of unused FPGA resources for
various (small (< 2000 LUT) to large (> 40000 LUT))
combinational and sequential benchmarks, demonstrating
that this approach can be used with almost any design.

« We introduce a custom software tool for the proposed
obfuscation process. This tool is fast, processing even
large FPGA designs in seconds, and is integrated into
a complete CAD flow for application mapping which
integrates with Altera Quartus II, a commercial software
package for mapping designs to FPGA.

o We provide a detailed security analysis that shows the
mathematical robustness of the approach against reverse
engineering of a design using both brute-force and known
design methods, as well as malicious design modification
(e.g. hardware Trojan insertion). We also provide com-
prehensive evaluation of the approach for diverse FPGA
designs for area, power, and performance.

The rest of the paper is organized as follows. Section II
describes the threats to FPGA bitstream security. Section III
defines the concept of dark silicon in FPGAs with benchmark
results on a modern FPGA. Section IV explains how to exploit
FPGA dark silicon for bitstream security and describes the
software architecture, tool flow, and the proposed authenti-
cation protocol for remote reconfiguration. Section V gives
a detailed security analysis and mapping overhead results on
physical FPGA hardware. We conclude in Section VI.

II. FPGA BITSTREAM SECURITY ISSUES

Our approach is targeted to protect FPGA-based systems
against the following two major categories of attacks.

1) IP Piracy: For designs implemented in FPGAs, the
attacker can obtain the IP by simply converting the
unencrypted bitstream to a netlist [8]. Attacks during
wireless reconfiguration and through physical access to
devices in the field can lead to resale of valuable IP
cores and unauthorized use in third party products.

2) Targeted Malicious Modification (TMM): Once reverse
engineered, insertion of a targeted malicious modifica-
tion can give an attacker complete access, leading to
reduced device lifetime, unreliable or unwanted func-
tionality, decreased battery life, or sharing of private
data. Note that we differentiate such targeted attacks
from a random malicious modification, in which the
attacker blindly modifies portions of the bitstream, in-
tending primarily to render the bitstream non-functional;
protecting against such random malicious modifications
is outside the direct scope of our work.

In the first case, a remote attacker can intercept the com-
munication between the vendor and FPGA during remote
upgrade. Decryption keys are commonly sent along with the
encrypted bitstream to enable the target device to perform the
reconfiguration. For devices in field for many years, such as
military or automotive systems, long-term physical access can
additionally compromise system security, giving an attacker
time to discover vulnerabilities in the security architecture.

In the second case, an attacker can maliciously modify
a bitstream, inserting a Trojan to alter the functionality of
the device. Even if the true functionality is unknown, it is
sometimes possible to make a targeted malicious modification:

1) Unused Resources: This attack operates on unencrypted
(or decrypted) bitstreams by inserting hardware Trojans
in unused FPGA resources that are identified by ob-
serving sequences of zeros into the bitstream [5]. Please
note that our proposed obfuscation based technique only
prevents tampering attacks on partially or fully utilized
FPGA resources.

2) Mapping Rule Extraction: Another attack that does not
rely on a priori knowledge of the bitstream format is
based on known design attack. This is used to reverse
engineer the bitstream format, which enables a targeted
malicious modification, such as leaking the secret key
from a cryptographic module [9]. A number of func-
tional variants are mapped to the device, and the attacker
observes how the resultant bitstream changes, enabling
the extraction of mapping rules. Once all mapping rules
are determined, the knowledge can be used to both
reverse-engineer and maliciously alter any bitstream
generated for the same FPGA series.

III. FPGA DARK SILICON

The typical island-style FPGA architecture consists of an
array of multi-input, single-output lookup tables (LUTs).
Generally, LUTs of size n can be configured to implement
any function of n variables, and require 2™ bits of storage
for function responses. Programmable Interconnects (PIs) can

be configured to connect LUTs to realize a given hardware
design. Additional resources, including embedded memories,
multipliers/DSP blocks, or hardened IP blocks can be reached
through the PI network and used in the design.

The nature of FPGA architecture requires that sufficient
resources be available for the worst case. For example, some
newer FPGAs may support 6 input functions, requiring 64 bits
of storage for the LUT content. However, typical designs are
more likely to use 5 or fewer inputs, while less frequently
utilizing all 6. Note that each unused input results in a 50%
decrease in the utilization of the available content bits. This
leads to an effect that resembles dark silicon in multicore
processors [10], where only a limited amount of silicon real
estate and parallel processing can be used at a given time.
To make this analogy explicit, we refer to the unused space
in FPGA as "FPGA dark silicon”. Note that in spite of the
nomenclature the causes behind dark silicon in the two cases
are different. For multicore processors, it is typically due to
physical limitations or limited parallelism; for FPGAs, it is the
reality of having sufficient resources available for the worst-
case which may occur infrequently, if at all.

Our approach critically depends on the presence of FPGA
dark silicon to be exploited for obfuscation needs. Conse-
quently, we made a comprehensive evaluation of this phe-
nomenon to identify the scope and scale of this phenomenon.
Table I shows the result of this evaluation. Note that the evalua-
tion uses benchmark designs of diverse scale and complexity,
taken from three publicly available benchmarks, e.g., EPFL
Arithmetic Benchmark Suite (http:/Isi.epfl.ch/benchmarks),
Opencores (http://opencores.org), and Github (http://github.
org). All benchmarks were mapped to an Altera Cyclone V
device [11]. The Cyclone V contains two 6-input Adaptive
LUTs (ALUTs) per Adaptive Logic Module (ALM), and 10
such ALMs per Logic Array Block (LAB).

Our evaluation shows the availability of significant unused
space across the diversity of benchmarks. Even for small
combinational circuits (less than 2000 LUTs), roughly 50%
of the LUTs mapped use 4 inputs or fewer, while 8§2% of
the LUTs mapped use 5 inputs or fewer. The effect is more
pronounced for large sequential benchmarks, where 69% of
LUTs are 4 inputs or fewer, and 82% use 5 inputs or fewer.

Remark: Our study of FPGA dark silicon is consistent with,
albeit different from, existing studies. For example, previous
research has shown that the point of minimum area utilization
for a typical FPGA is achieved with less than 100% logic
utilization [12] due to routing constraints. However, this work
refers to utilization in terms of logic, i.e. ALM usage, rather
than the percentage of content bits within the ALMs used
to implement the design. Clearly, the number and type of
LUTs can vary widely among specific designs (cf. Table I).
While increased content utilization can be a byproduct of more
advanced algorithms, it is not necessarily the only objective,
as designs can be optimized for other attributes (e.g. timing
or power) during synthesis. Note also that the phenomenon
of unused LUTs has been exploited in other contexts, e.g.,
for low-overhead insertion of scan flip flops in the context of
Design for Testability (DfT) [13].

To quantify the role of dark silicon, we define a metric,

TABLE I
CUMULATIVE PERCENTAGE OF 1 - 7 INPUT LUTS

Circuit Cumulative % of LUTs with Inputs n Total
Name <2 3 4 5 6 7 LUTs
alu4 10.6 26.1 48.4 71.7 97.9 100 188
apex2 114 26.0 523 91.0 99.1 100 669
apex4 16.7 274 50.3 89.4 97.6 100 574
ex5p 41.0 42.1 58.7 84.5 98.4 100 373
ex1010 16.9 242 46.4 84.8 98.3 100 711
misex 14.0 27.7 46.9 84.0 97.5 100 480
pdc 16.3 28.5 51.9 71.7 98.4 100 1588
seq 16.6 51.9 51.9 89.1 99.0 100 727
spla 17.8 53.1 53.1 79.9 98.7 100 1509
Avg. 17.9 29.0 51.1 84.2 98.3 100 758

div 7.8 13.1 327 60.1 100 - 12.4k
hyp 0.9 28.8 42.6 64.0 100 - 453k
log2 7.0 17.2 39.5 59.7 99.0 100 7894
mult 2.5 25.0 50.5 59.0 99.2 100 5553
sqrt 5.8 5.0 435 84.5 100 - 3685
square 5.6 559 60.2 74.6 100 - 4066
Avg. 4.5 24.2 44.8 67.0 99.7 100 13.1k
AES 39.7 64.2 72.0 100 - - 4112
AOR32 20.7 22.9 31.5 46.8 97.8 100 2299
BTCM 32.5 95.3 99.8 100 100 - 41.0k
JPEGE 452 37.6 48.4 67.0 99.4 100 5154
Salsa20 59.9 57.4 93.8 93.9 100 - 2836
Avg. 39.2 55.5 69.1 81.5 99.4 100 11.1k

the Occupancy of the FPGA, as the percentage of content bits
used per LUT, divided by the total number of available bits
in the LUTs which are used. We use the Cyclone V device
architecture as a case study. In Eqn. 1, the number of n-input
LUTs (#(LUTn)) is multiplied by the content bits used for
that LUT (2™); this value is divided by the LUT capacity
2P times the number of LUTs used in total; the variable p
indicates the maximum power of the LUT, which in this case
is 6. This yields the ALUT Occupancy. Next, ALM Occupancy
is computed in Eqn. 2 as the average number of ALUTS per
ALM; in this case, the ALM_MAX_CAP is 2. Finally, the LAB
Occupancy is computed in Eqn. 3 as the average number of
ALMs per LAB; LAB_MAX_CAP is 10 for the Cyclone V.
Finally, the product of these three terms gives the overall
occupancy (Eqn. 4), indicating the true percentage of fine-
grained resource utilization at the content bit level for the given
FPGA architecture.

0 B S L #(LUTn) x 2™ 0
ALUT = """ (LUT) x 2v
O #(ALUT) o
ALM = ALM_MAX_CAP x #(ALM)
o #(ALM))
LAB ™ TAB_MAX_CAP x #(LAB)
Orotat = Oarur X Oarm X Opagp 4

We computed O, for a set of 9 combinational bench-
mark circuits [14] and found the average occupancy to be
26% =+ 4%, leaving nearly 3/4 of the available content
bits within the used LUTs empty. This same phenomenon
extends to designs which require more resources, e.g. large
arithmetic circuits [15] for which the occupancy is slightly

TABLE 11
EXAMPLE LUTS WITH 2 PRIMARY INPUTS AND 1 KEY INPUT. THE TRUE
FUNCTION IS Z = X @ Y, WHICH IS ONLY SELECTED WHEN K = 0.

—_————ococoo| X
—_——oo=—=0o0o |~
—o~o~o~o| R
—_—-oomomoe | N
—_————oooo | X
——oco~=—oo| R
—o~o—~o~oO| K
—ocomoeome | N
—_————ocococo| R
——oco~—~0oo| X
— O~ O —~O~O |
—mo oo o mmae | N

—~
o
=

(b)

—~
o
~

higher (31% =+ 4) and the previously listed IP cores, for which
the occupancy is significantly lower with higher variance
(12 %=+ 8).

IV. BITSTREAM PROTECTION METHODOLOGY

In this section, we describe the proposed bitstream protec-
tion methodology and its integration into the design flow.

A. Design Obfuscation

As described above, most of the LUTs used to implement
a given design do not require full utilization of the available
memory bits. This leaves open spaces where additional func-
tion responses can be inserted to obfuscate the true function-
ality of the design, which in turn makes it more difficult for
an adversary to make a Targeted Malicious Modification.

For example, consider a 3-input LUT, which contains 8
content bits, used to implement a 2 input function, Z = X VY.
A third input K can be added at either position 1, 2, or 3,
leaving the original function in either the top or bottom half
of the truth table, or interleaved with the obfuscation function.
An example of this is shown in the 4 LUT design of Fig. 2(b),
as well as in Table II. In this case, the correct output is selected
when K = (; if K = 1, a response from the incorrect function
(Z = X NY) is selected. However, if it is not known that
this truth table is obfuscated, the function could possibly be
Z=XYKVXYKVXYK,7Z=XYKVXYKVXYK,or
Z =XYKVXYK +XYK — three functions with distinctly
different responses.

The security of this approach depends on the number of
LUTs that are mapped for a given design; with more LUTSs
obfuscated in this manner, the security increases dramatically.
For real-world designs, this is not likely to be a limitation,
since designs will typically implement several hundred to
several thousand device resources. Further analysis of this
security is presented in Section V-C.

B. Key Generation

The first step for the secure bitstream mapping is a low-
overhead key generator, such as a nonlinear feedback shift
register (NLFSR), which is resistant to cryptanalysis. A Phys-
ical Unclonable Function can also be used; though this requires
an additional enrollment stage for each device, it has the added
benefit of not requiring key storage. Various PUF-based key
generators have been proposed, including PUFKY [16], which
are amenable to FPGA implementation. Furthermore, using
a PUF-based key generator requires that FPGA vendor tools
provide floorplanning and/or enable assignment to specific

[Analysis]

1

Partitioning]

i
LUT Obfuscation

[Optimization]

[Output Generation]
[
Structural LUT Report
Verilog Primitives Files

Fig. 3. Software flow leveraging FPGA dark silicon for design security
through key-based obfuscation.

device resources for reproducibility. In general, we refer to
the key generator as the system’s CSPRNG, or cryptograph-
ically secure pseudorandom number generator. The specific
CSPRNG used depends on the application requirements.

C. Initial Design Mapping

The second step is the synthesis of the HDL design into
LUTs. This can be performed by freely available tools (e.g.
ODIN 1II [17]); it is also possible to configure commercial
tools, e.g. Altera Quartus II, by including specific commands
into the project settings file (*.gsf) before compilation; this
generates a Berkeley Logic Interchange Format (BLIF) [14]
file with technology-mapped LUTs.

D. Security-Aware Mapping

The security-aware mapping leverages FPGA dark silicon
(Section IV-A) for key-based design obfuscation. The software
flow is shown in Fig. 3. The following is a brief description
of the processing stages:

1) Analysis: Inputs to this stage include the BLIF design,
as well as the maximum size of LUT supported by the
target technology. The circuit is parsed, analyzed, and
assembled into a hypergraph data structure. The analysis
also determines the current occupancy.

2) Partitioning: Inputs to this stage include the hypergraph
data structure, as well as the key length. The hypergraph
is partitioned into a set of subgraphs which share com-
mon inputs/outputs using a breadth-first traversal. Nodes
are marked as belonging to a particular subgraph such
that those with the greatest commonality are grouped
into partitions. The number of partitions is directly
proportional to the size of the key.

3) Obfuscation: For a device supporting k-input LUTs,
every LUT with at most (k — 1)-inputs is obfuscated by
implementing a second function using the unoccupied
LUT content bits. One additional input is added to the
LUT which corresponds to the key bit used to select the
correct half of the LUT during operation. The second
function can be either template-derived, such as basic
logic operations (NAND, NOR, XOR, etc.), or functions
implemented in other LUTSs in the same design.

(OEM finalizes new/updated hardware design)
L2

’ Design synthesized with security-aware mapping ‘
2

‘ Query target device for FPGA ID ‘

¥

| Retrieve correct bitstream for target device

Device supports encryption?

Encrypt using existing remote upgrade techniques
¥
| Transmit bitstream to target device
L2
G)evice self-configures from remote upgrade fiIe)

Fig. 4. Remote upgrade of secure and obfuscated bitstreams.

4) Optimization: In this stage, individual LUTs are op-
timized using the Espresso Logic Minimizer [18]. The
optimized Espresso output is converted back into the in-
ternal representation. This process significantly reduces
both the output file size, as well as eventual compilation
time in the FPGA mapping tool.

5) Output Generation: The output file generation can take
one of two formats: (a) structural Verilog, which imple-
ments the circuit as a series of assignment statements,
or (b) using device-specific LUT primitive functions.
The second option is preferred because using low-level
primitives ensures that the design will be mapped with
the specified LUTs.

The number of LUTSs per partition is an especially important
metric, as it has a direct impact on both the overhead and the
level of security. Furthermore, the partitioning and sharing of
key bits need to be done judiciously, as a random assignment
can potentially dramatically increase area overhead (see Sec-
tion V-B). Thus, key sharing, when paired with the LUT output
generation, is intended to (a) reduce overhead, and (b) strongly
suggest to the physical placement and routing algorithms used
by the commercial mapping tool to group certain LUTs in a
given ALM and/or LAB, and thus minimize area overhead.
Ideally, this process could be integrated into a commercial
tool itself to enable technology-dependent optimizations.

E. Communication Protocol and Usage Model

The security-aware mapping procedure creates a one-to-one
association between the hardware design and a specific FPGA
device, since selection of the correct LUT function responses
depends on the CSPRNG output. This means that OEMs
must have one unique bitstream for each key in their device
database. Therefore, it is critical that the correct bitstream is
used with the correct device. Modern FPGAs contain device
IDs which can be used for this purpose; alternatively, if a PUF
is used as the CSPRNG, the ID can be based on the PUF
response. Using existing FPGA mapping software, generating
a large number of bitstreams will take considerable time;
however, with modifications to the CAD tools, the security-
aware mapping can be done just prior to bitstream generation,
so that the design does not need to be rerouted.

The initial device programming, prior to distribution in-
field, may be done by a (potentially untrusted) third party. The
third party is able to read the device ID, but does not require
access to the key database. Similarly, device testers do not need
access to the key, merely the ability to read the ID. This allows
OEMs to keep the ID/key relation secret. Once the device is
in field, the remote upgrade procedure differs slightly from
the initial in-house programming. The typical upgrade flow is
shown in Fig. 4. After finalizing the updated hardware design,
it is synthesized using the security-aware mapping procedure.
Target devices are queried to retrieve the FPGA ID; if the
device supports encryption, the bitstream can be encrypted.
Next, the bitstream is transmitted to the device, and the device
reconfigures itself using its built-in reconfiguration logic.

V. OVERHEAD AND SECURITY ANALYSIS

In this section, we describe the experimental setup, present
the hardware overhead, and analyze the level of security.

A. Experimental Setup

To obtain area, power, and latency overhead results, BLIF
files were generated following the procedure described in
Section I'V-C for an Altera Cyclone V device. Note that BLIF
files cannot be generated if any encrypted IP cores are used
in the design. Moreover, they do not support certain hardware
elements (e.g. asynchronous reset), so any design containing
these signals will not be functionally equivalent to the original
implementation. The Quartus mapper will produce a warning
if this occurs during BLIF generation.

Therefore, the experiments are limited to those files with-
out the offending signals or encrypted IP. Additionally, for
designs which utilize hardened IP blocks within the FPGA,
such as adders or shift registers, these resources are instead
implemented in LUTs when written to BLIF. We refer to
this as the intermediate representation. Note that this can
result in significant overhead when mapped back to the FPGA,
even before undergoing the security-aware mapping procedure.
The effect is not seen in purely combinational circuits, and
therefore the intermediate overhead values are not listed.
However, for larger “IP” cores mapped to FPGA, the effect is
significant, so the intermediate overhead values are reported;
this represents the overhead due to the conversion from the
original HDL code to a technology mapped BLIF file. For
these cores, the security-aware mapping overhead should be
compared to the intermediate mapping results, and not the
original mapping.

Once the BLIF was generated, the circuits were then pro-
cessed by the secure mapping tool to create obfuscated LUTs,
and then written to file using the original (unsecured) and
mapped (obfuscated) Verilog outputs. For the obfuscation,
random functions were used. Both outputs, along with the
original benchmarks, were simulated using Altera ModelSim
and the same test vectors. All benchmarks were found to be
functionally equivalent when the correct key was provided to
the obfuscated versions; incorrect keys resulted in different
output, as expected. The Verilog files were then mapped to the
same Cyclone V device, from which we obtained the power
(estimated using PowerPlay Power Analyzer), performance

(estimated using TimeQuest Timing Analyzer), and area (ob-
tained from the compilation report). These results were then
compared with the other mapping results to find the overhead.

B. Overhead Analysis

Table IIT lists the initial (pre-obfuscation) and resulting
(post-obfuscation) technology mappings for LUT usage by
function input, the number of ALUTs, ALMs, LABs, and
the Occupancy, as computed by Eqn. 4. Note that in both
mappings, the number of ALUTs (Column W) may differ
slightly from the sum of LUTs in that row; this is because the
number of 1 to 7 input LUTs is obtained from post-synthesis
results, whereas the total number of ALUTS is post-fit. Both
sets of results are shown for comparison purposes.

The addition of a single key bit input to LUTs 1 to 5
resulted in an increase of ALUT Occupancy from an average
41% to 54%. However, the ALM Occupancy decreased, from
88% to 72%. LAB Occupancy also decreased, though less
significantly, from 74% to 71%. Therefore, while the ALUT
Occupancy did increase, the Overall Occupancy remained
nearly equivalent (Table III). The decrease in ALM and LAB
Occupancy also implies a moderate area overhead, which
in terms of ALUTs was under 10% for the combinational
benchmarks. In terms of ALMs, however, the area overhead
was higher, roughly 36%. Less dense packing also implies
increased routing/interconnect delay, which manifests as an
average 1.2x reduction in f,,,,. However, the effect on power
consumption was very low, requiring an average 1.02x more
power for the secured version.

For larger designs, BLIF conversion was possible for 3 of
the 5 “IP” cores from Section III, e.g., AES, Salsa20, and
the AItOR32. The version of AES mapped here differs from
the full encryption core from Section III, in that it utilizes
a number of 6-input LUTs, rather than embedded memory
blocks, to hold the AES substitution box (SBOX) values. This
allows us to obtain the BLIF representation, since no encrypted
IP is involved. Similarly, we use a “Lite” version of the
AlItOR32 which does not instantiate memories for instruction
and data caches, and refer to this as “AOR32-L".

Results for pre- and post-secure mapping for these three
cores are shown in Table IV. Compared to the purely combina-
tional circuits, we observed larger percent increases in the area
overhead, even when comparing to the intermediate mapping
result (Section V-A). For the AES core, this was 25%, 21%,
and 18% for ALUTs, ALMs, and LABs, respectively. Unlike
the combinational benchmarks, AES had only a 6% reduction
in faz, and 2% increase in power consumption, similar to
the combinational circuits. Salsa20 and AOR32-L both had
significantly higher area overhead (e.g. 54% more ALUTs
in Salsa20 and 67% more ALUTs in AOR32-L), and 12%
reduction in f,,, for both (Table IV).

We believe that the larger increase in ALUT usage for the
large IP cores compared to the small combinational circuits is
due primarily to the conversion of arithmetic mode ALUTs,
which use two 4-input LUTs with dedicated hardware full
adders [11] to normal mode ALUTSs with adders realized in
numerous other LUTs. This was not an issue in the combina-
tional benchmarks, as they used only normal or occasionally
extended mode ALUTSs. Based on these results, we believe

TABLE III
ORIGINAL AND SECURE MAPPING RESULTS FOR SMALL COMBINATIONAL BENCHMARKS

Original Mapping*

Secured Mapping*

Name

<2 3 4 5 6 7 w X Y Z (%) <2 3 4 5 6 7 w X Y Z (%)
alud 18 31 42 55 38 4 185 115 14 30.3 12 17 38 61 63 0 191 128 16 33.1
apex2 74 100 176 259 54 6 664 336 49 25.6 24 93 119 243 308 6 793 594 87 27.5
apex4 78 79 132 224 47 14 569 325 45 24.5 29 59 159 171 143 0 562 388 57 24.3
ex5p 96 61 62 96 52 6 371 192 26 25.6 38 33 89 112 93 2 367 245 37 24.3
ex1010 110 62 158 273 96 12 704 418 57 26.2 11 116 106 191 211 1 636 464 66 26.5
misex3 54 79 92 178 65 12 475 271 32 31.5 24 46 105 134 122 1 432 283 37 30.2
pdc 241 212 371 410 328 26 1585 978 140 24.7 56 225 374 625 685 17 2002 1462 228 25.0
seq 93 125 159 271 72 7 723 396 53 25.9 38 73 194 248 153 2 708 465 61 27.8
spla 237 204 360 405 284 19 1502 916 130 24.4 46 234 310 543 663 14 1810 1339 206 25.7
Avg. 111 106 172 241 115 12 758 439 61 26.5 28 102 166 259 271 5 833 596 88 27.2

*W, X, Y, and Z represent the total number of ALUTs, ALMs, LABs, and Total Occupancy, respectively.
Columns labeled 1..7 represent the total number of LUTs into which that size function has been mapped.

that tighter integration of the secure mapping process with the
mapping tool would yield further improved occupancy, full
utilization of hard IP resources within the FPGA, and lower
latency overhead from additional routing/interconnect delay:

o The relatively low routing resource utilization strongly
implies that the reduction in ALM and LAB occupancy
is not entirely due to routability constraints.

o The current hypergraph partitioning stage can only make
suggestions to the placement tool by grouping certain
nodes; ultimately this cannot be directly controlled unless
the two tools are tightly integrated.

o The conversion from original design to BLIF and back
can incur significant overhead and running the secure
mapping process on the FPGA mapping tool’s internal
circuit representation could avoid this issue entirely.

C. Security Analysis

For security analysis, we assume the attacker intends to
reverse engineer the design or perform malicious modification
and reprogram the device.

1) Brute Force Attack: A brute force attack represents
the most challenging and time consuming attack. The basic
requirements of the brute force attack on the obfuscated
bitstream differ from a typical cipher, because the attacker
needs not only the bitstream (and a means to apply various
keys) but also knowledge of the bitstream structure and the test
patterns with known responses. Knowledge of the bitstream
structure is required to identify LUT content bits and LUT
interconnection through FPGA routing. Therefore, if a design
has 128 LUTs and a 128 bit key is used, the attacker must try
2128 combinations to determine the key and reverse engineer
the bitstream. If bitstream encryption was used, the attacker
must break the bitstream encryption and the security-aware
mapping, before reverse engineering the bitstream. Further-
more, a larger number of LUTs (e.g. >1000) are typical for
many designs, leading to a much larger search space.

If the attacker does not know the entire bitstream format
(e.g. they can identify the location of the LUT content bits,
but not how LUTSs are connected), and therefore does not know
which input represents the key bit, the search space increases
dramatically. Finding the location of the LUT content bits is
feasible through template attacks (as described in Section II.
The difficulty lies in the number of potential combinations

of the various LUT content bit organizations, which can be
counted as follows:

1) For each k-input LUT, the ordering is important; this
contributes a factor of k!

2) For each LUT, it is necessary to select the correct half,
depending on if the value of the key bit is “0” or “17,
multiplying this result by 2.

3) These factors are multiplied by the number of LUTs in
the design.

However, this is not the complete picture. Recall that some
fraction of LUTs which currently have 6 inputs are in fact
S-input LUTs with 1 additional key bit. The remaining 6-
input LUTs did not receive a key bit, because they were
already at maximum occupancy for the given technology. This
requires the attacker to differentiate between keyed and un-
keyed maximally-occupied LUTs. We denote the total number
of k-input LUTs as #(LUT)},, and the number of keyed (5+1)
input LUTs as #(LUT),—1, which multiply the previous
factors to yield Eqn. 5.

_(#LUT)
Te= (#(LUTn_l

It follows that an attacker will have significantly more
difficulty reverse engineering the design when the complete
bitstream format is not known and the design is obfuscated,
than it is to use template attacks to determine the format of
an unobfuscated bitstream. Even if the format is known, the
previous analysis shows that the difficulty of brute forcing the
key depends on the key length, as long as there are sufficient
LUTs on which to apply a key bit input (e.g. > 128 LUTs).

2) Known Design / Bitstream Tampering Attacks: A known
design attack can enable an attacker to reverse engineer the
bitstream format, and potentially the IP, due to insufficient
protection offered by bitstream encryption. This may lead to
not only IP piracy, but also malicious modification and unau-
thorized system reprogramming with the tampered bitstream.

A moving target defense is known to provide robust pro-
tection against known design attacks, since they rely on an
underlying assumption of consistency between subsequent
trials — in this case, compilations of the bitstream. For FPGA,
the mapping format is traditionally consistent over time for
the same device architecture. Using the proposed technique,

N
) X 22 X k! x #(LUT), (5
k=2

TABLE IV
ORIGINAL, INTERMEDIATE, AND SECURE MAPPING RESULTS FOR THREE LARGE IP BLOCKS.

<2t 3 4 5 6 7 w2 X Y Z (%) fmae (MHz) Power (mW)

., Original 181 78 53 66 905 2 1306 1117 153 325 168.8 545.8
g Intermed.® 169 76 58 76 914 33 1326 1139 154 33.1 167.8 545.8

Secured 29 170 214 152 1067 21 1656 1376 182 34.1 1583 555.5
S Original 1620 8 1031 5 171 1 2836 1656 224 11.9 152.6 550.0
2 Intermed. 916 658 507 1254 1381 46 4463 2929 367 316 112.0 549.4
& Secured 289 732 1434 1255 3156 52 6869 5023 642 33.5 100.4 560.0
~ Original 199 141 153 190 973 65 1624 1424 204 29.0 94.7 531.1
& Intermed. 337 234 221 355 995 64 2211 1616 244 29.8 82.6 528.8
& Secured 421 253 1091 518 1315 87 3686 2496 326 30.2 74.0 538.1
)

1 Columns labeled 1..7 represent the total number of LUTSs into which that size function has been mapped.
W, X, Y, and Z represent the total number of ALUTs, ALMs, LABs, and Total Occupancy (%), respectively.
3Intermed. results show the overhead due to the HDL to BLIF conversion; this gives “Secured” a fair comparison.

we note several aspects that do change between compilations,
violating the assumption of consistency and making known
design attacks impractical:

o If a strong PUF is used as a key generator, then the key
will change each time the design is compiled by issuing
a different challenge vector. If an alternative CSPRNG is
used, a different seed can be used each time to generate a
different key sequence. Using a different key will produce
drastically differing bitstreams.

The location of the key input to each LUT also changes
each time, leading to a number of different configurations
of the content bits equal to the number of inputs. This
information is encoded in the routing bits, and therefore
its security is independent of the key generator.

The second function mapped into spare LUT content bits
also changes each time. Thus, not only do half the content
bits change each time, they are also permuted in different
ways. This also does not depend on the key generator,
providing another independent layer of security.

In summary, the key, the LUT content bits, and their
ordering will mutate each time the design undergoes the
security-aware mapping procedure. This approach therefore
provides robust protection against known design attacks. This
also prevents targeted malicious modifications, because the
meaning of individual bits changes during each compilation.

VI. CONCLUSION

We have presented a novel, low-overhead design obfusca-
tion technique aimed at securing FPGA bitstreams. The ap-
proach does not require any modification in FPGA architecture
and hence can be readily used with existing FPGA devices —
both before in-field deployment, and subsequently via standard
remote upgrade procedures. It is therefore attractive for both
FPGA vendors as well as system designers, who pursue
system integration with FPGA devices already in the market.
Moreover, the tool flow can seamlessly integrate with commer-
cial FPGA mapping tools, such as Altera Quartus II. While
the process does minimally affect the design optimization
process for FPGA, and hence incurs modest performance
and negligible power overhead, it provides mathematically
robust security against several major threats to FPGA-based
systems, which are not fully protected against by traditional
bitstream encryption approaches. Nevertheless, it can still be

used in conjunction with encryption for additional security.
The technique capitalizes on the unoccupied space in an
FPGA’s lookup tables — which we call the FPGA’s dark
silicon, making area-efficient use of existing resources, rather
than consuming a large number of additional logic elements
for security enhancement. The approach is scalable to larger
designs. Future work will focus on refining the tool to further
reduce overhead, as well as built-in support for outputting low-
level primitives for different FPGA platforms.

REFERENCES
[1]
[2]

P. Garcia et al., “An Overview of Reconfigurable Hardware in Embedded
Systems,” EURASIP Journal on Embedded Systems, 2006.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “FPGA-oriented Secu-
rity,” Introduction to Hardware Security and Trust/eds. M. Tehranipoor
and C. Wang. Springer, pp. 195-231, 2011.

G. Gogniat et al., “Reconfigurable Hardware for High-Security/High-
Performance Embedded Systems: the SAFES perspective,” TVLSI,
vol. 16, no. 2, pp. 144155, 2008.

P. Kocher et al., “Security as a New Dimension in Embedded System
Design,” in DAC. ACM, 2004, pp. 753-760.

R. S. Chakraborty et al., “Hardware Trojan Insertion by Direct Modifi-
cation of FPGA Configuration Bitstream,” Design & Test, IEEE, vol. 30,
no. 2, pp. 45-54, 2013.

A. Moradi et al., “On the Vulnerability of FPGA Bitstream Encryption
Against Power Analysis Attacks: Extracting Keys from Xilinx Virtex-1I
FPGAs,” in CCS, 2011, pp. 111-124.

J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Iptegrated Circuits,” in DATE. ACM, 2008, pp. 1069-1074.
E. Rannaud, “From the Bitstream to the Netlist,” in FPGA.
2008, pp. 264-264.

P. Swierczynski et al., “FPGA Trojans Through Detecting and Weak-
ening of Cryptographic Primitives,” IEEE TCAD, vol. 34, no. 8, pp.
12361249, 2015.

H. Esmaeilzadeh et al., “Dark Silicon and the End of Multicore Scaling,”
in ISCA. IEEE, 2011, pp. 365-376.

Altera, “Cyclone V Device Handbook,” Tech. Rep., Dec. 2015.

R. Tessier and H. Giza, “Balancing Logic Utilization and Area Efficiency
in FPGAs,” in FPL. Springer, 2000, pp. 535-544.

A. Palchaudhuri and A. S. Dhar, “Efficient Implementation of Scan
Register Insertion on Integer Arithmetic Cores for FPGAs,” in VLSID.
IEEE, 2016, pp. 433-438.

S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.
EPFL, “The EPFL Combinational Benchmark Suite.” [Online].
Available: http://lsi.epfl.ch/benchmarks

R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A
Fully Functional PUF-based Cryptographic Key Generator,” in CHES.
Springer, 2012, pp. 302-319.

V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing
Tool for FPGA Research,” in FPL. Springer, 1997, pp. 213-222.

R. L. Rudell, “Multiple-Valued Logic Minimization for PLA Synthesis,”
DTIC, Tech. Rep., 1986.

[4]
[5]

[6]

[7]
[8]
[9]

ACM,

[10]

[11]
[12]

[13]

[14]
[15]
[16]

[17]

(18]

