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Abstract— Security is a critical challenge for modern em-
bedded, mobile, and IoT devices. One the one hand, these
devices contain sensitive assets that must be protected from
unauthorized access. On the other hand, high design com-
plexity, aggressive time-to-market, and a complex, global
supply-chain provide numerous opportunities for introduc-
tion of errors, vulnerabilities, and security backdoors that
can be exploited on-field to compromise the device. In this
paper we look at some of the security challenges in this era:
questions on the root of trust and certification challenges
in mobile and embedded devices, conflicts and trade-offs
between security and functional debug, and vulnerability
results from widespread application of electronic design
automation (EDA) tools for system synthesis.

I. INTRODUCTION

Computing devices pervade in our everyday life now,
and include smartphones, tablets, wearables, implants,
smart sensors, etc. The number and diversity of these
devices is increasing at an explosive rate, with the advent
of the Internet-of-Things era. We are moving towards
a world with projected 50 billion smart, connected
computing devices by 2020 from a “mere” 500 million
in 2003 [1], representing the fastest growth point by a
large measure in the history of computing.

A critical gating factor for this new regime is security.
With computing devices being employed for a large
number of highly personalized activities (e.g., shopping,
banking, fitness tracking, providing driving directions,
etc.), these devices have access to a large amount of
sensitive, personal information which must be protected
from unauthorized or malicious access. On the other
hand, communication of this information to other peer
devices, gateways, and datacenters is in fact crucial to
providing the kind of adaptive, “smart” behavior that
the user expects from the device. For example, a smart
fitness tracker must detect from its sensory data (e.g.,
pulse rate, location, speed, etc.) the kind of activity
being performed, the terrain on which the activity is
performed, and even the motivation for the activity in
order to provide anticipated feedback and response to
the user; this requires a high degree of data processing
and analysis much of which is performed by datacenters
or even gateways with higher computing power than the
tracker device itself. The communication and processing
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of one’s intimate personal information by the network
and the cloud exposes the risk that it may be com-
promised by some malicious agent along the way. In
addition to personalized information, computing devices
contain highly confidential collateral from architecture,
design, and manufacturing, such as cryptographic and
digital rights management (DRM) keys, programmable
fuses, on-chip debug instrumentation, defeature bits, etc.
Malicious or unauthorized access to secure assets in a
computing device can result in identity thefts, leakage
of company trade secrets, even loss of human life. Con-
sequently, a crucial component of a modern computing
system architecture includes authentication mechanisms
to protect these assets.

Modern computing systems are typically developed as
system-on-chip (SoC) designs, i.e., a single integrated
circuit encompassing the system functionality. An SoC
design involves composition of a large number of design
modules (often referred to as intellectual properties or
IPs) that coordinate with through a number of on-
chip communication fabrics to implement the system
functionality. Secure assets in such a design are sprinkled
across the different IPs, and their access control require-
ments are defined by a collection of highly complex
security policies. The policies specify the conditions
under which a security asset can be accessed at any point
in the system execution. An SoC design consequently
requires a security architecture, i.e., a mechanism of
authentication to ensure that the system enforces and
manages these policies.

In spite of its obvious importance, there has been little
work on systematizing the development of security assur-
ance for modern SoC designs. Security architecture and
validation in current industrial practice involve ad hoc,
point approaches based on creative insights from design-
ers, architects, and validators. As systems scale to higher
and higher complexity, it is difficult for such approaches
to scale. Exacerbating the issues is the fact that security
requirements, security policies, and design invariants
exploited to implement them are rarely formalized or
even documented. This makes it impossible to validate
if the final design indeed enforces proper authentication
for all design assets: such information is buried within a
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plethora of architectural and design documents, specified
in ambiguous natural language descriptions, and often
left implicit. Unsurprisingly, security vulnerabilities are
abound in modern SoC designs, as evidenced by the
frequency and ease in which activities like identity theft,
DRM override, device jailbreaking, etc. are performed.

In this paper, we outline some key research needs in
SoC system-level security. This goal of the paper is to
provide a broad overview of security validation activities
across the system life-cycle, and point out some of the
gaps and challenges as we move into the IoT era. There
has been some progress on addressing these gaps, and
such related work is discussed in the context.

The remainder of the paper is organized as follows.
Section II provides an overview of security activities,
requirements, and specifications from the SoC design
perspective. We discuss challenges with functional debug
in Section III, hardware/software validation challenges
in Section IV, and specification challenges in Section V.
Section VI discusses some upcoming challenges as we
move into the [oT regime. We conclude in Section VII.

II. BACKGROUND
A. Security Policies

Security policies [2], [3] identify the authentication,
access, and protection requirements for the different
assets in the design. At a high level, the policies are
typically instances of confidentiality, integrity, and avail-
ability requirements [4]. The role of a policy is to
define an instantiation of these requirements for specific
assets, and provide an “actionable” specification for the
SoC system architect and designer on the protection
mitigation strategies that need to be implemented. For
example, the following sample policies define some of
the policies for cryptographic keys, programmable fuses,
and executable firmware. Note that these policies are
merely illustrative and do not represent the security
policy set of any specific company or design.

1) During boot, keys transmitted by the crypto en-
gine cannot be observed by any IP other than its
intended target.

2) An on-chip fuse can be updated for silicon valida-
tion but not after production.

Note that the access restrictions specified by a policy can
be a function of both the point in the execution (e.g.,
boot vs. normal) or point in the system life-cycle (e.g.,
validation vs. production).

B. Security Along SoC Design Life-Cycle

Fig. 1 provides a high-level overview of the SoC
design life-cycle. Each component of the life-cycle, of
course, involves a large number of design, development,
and validation activities. Here we summarize the key
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Fig. 1. SoC Design Life-Cycle

activities involved along the life-cycle, that pertain to
security.

Risk Assessment. Security requirements definition is a
key part of product planning, and happens concurrently
with (and in close collaboration with) the definition of ar-
chitectural features of the product. This process involves
identifying the security assets in the system, their owner-
ship, and protection requirements, collectively defined as
security policies (see below). The result of this process
is typically the generation of a set of documents, often
referred to as product security specification (PSS), which
provides the requirements for downstream architecture,
design, and validation activities.

Security Architecture. The goal of a security architec-
ture is to design mechanisms for protection of system
assets as specified by the PSS. It includes several compo-
nents, including (1) identifying and classifying potential
adversary for each asset; (1) determining attacker entry
points, also referred to as threat modeling; and (3) devel-
oping protection and mitigation strategies. The process
can identify additional security policies — typically at a
lower level than those identified during risk assessment
(see below) — which are added to the PSS. The security
definition typically proceeds in collaboration with archi-
tecture and design of other system features, including
speed, power management, thermal characteristics, etc.,
with each component potentially influencing the others.

Security Validation. Security validation represents one
of the longest and most critical part of security assurance
for industrial SoC designs, spanning the architecture,
design, and post-silicon components of the system life-
cycle. The actual validation target and properties vali-
dated at any phase, of course depends on the collateral
available in that phase, e.g., we target, respectively,
architecture, design, implementation, and silicon arti-
facts as the system development matures. Below we
will discuss some of the key validation activities and
associated technology. One key component of security
validation is to develop techniques to subvert the adver-
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tised security requirements of the system, and identify
mitigation measures. Mitigation measures for early-stage
validation targeting architecture and early system design
often include significant refinement of the security ar-
chitecture itself. At later stages of the system life-cycle,
when architectural changes are no longer feasible due
to product maturity, mitigation measures can include
software or firmware patches, product defeature, etc.

III. SECURITY/DEBUG CONFLICTS

In this section, we consider one key challenge in secu-
rity assurance for modern SoC designs, viz., challenges
between security and debug/validation requirements. De-
bug and validation typically requires observability of
internal design states of the system. In particular, post-
silicon validation requires instrumentation of the de-
sign with significant additional circuitry, referred to as
Design-for-Debug or DfD, which enables the debugger
to observe the internal design behavior during silicon
execution. These DfD features, obviously, incur a signif-
icant security risk, e.g., it is also possible for attackers to
exploit these features to gain access to critical internal
assets. Even for pre-silicon validation there are cover-
age monitors, assertion checkers, etc. built into RTL
which might be exploited for security violation. The
security/debug trade-off is about enabling debug while
ensuring protection of secure assets.

The security/debug trade-off is just an instance of the
more general trade-off between security and interoper-
ability. High confidentiality and integrity requirements
can be typically realized by restricting functionality of
the design, e.g., an obvious way to protect an asset
from unauthorized access is to prohibit access to it.
Unfortunately, over-zealous access restriction can have
a significant adverse impact on the usability of the
product and even make it vulnerable to denial-of-service
attacks. This is one reason why security policies can
become highly subtle: they need to ensure the the system
functions properly while still providing robust protection
against malicious access. However, debug requirements
are different from most other usability requirements in
this respect because they do not directly affect functional
behavior of the design but only their validation method-
ologies. Since observability requirements from debug
depend upon the potential errors in the design which
cannot be predicted a priori, it is difficult to create robust
security policies to account for debug requirements.
Finally, an “irony” in the trade-off between security and
debug requirements arises from the fact that one key
component of the debug and validation involves checking
security properties themselves: it is not uncommon for
validation of security properties to be stumped by the
constraints imposed by security on observability.

To the best of our knowledge, there has been no

comprehensive solution to address the security/debug
trade-offs. Other papers [5] have looked at the challenges
that must be addressed by any such solution. Below we
summarize some key aspects of the challenge.

HVM Considerations. High-volume manufacturing test
is the process of identifying manufacturing defects dur-
ing production. This is done by placing the fabricated
silicon in a tester, where it is exercised with a large
number of test vectors. The test patterns are generated
by accounting for the functional definition of the design
under test, the target faults, a fault model, the fabrica-
tion process technology, etc. The accuracy of coverage
inferred from the results of these tests is highly sensitive
to the test patterns being applied and the fidelity of
the silicon design with respect to its pre-silicon netlist
model. Consequently, it is important that irrespective of
security constraints and access control restrictions, the
test patterns work the same way as much as possible
on silicon designs as expected from pre-silicon models,
and their results accurately observed.! Furthermore, it
must be possible to have a simple access to the IP
being exercised with the test, without requiring too many
workarounds.

Reusability: A key source of complexity in the current
state of the practice is the need to manually identify
assets and accesses for different products and usage
scenarios. This job is highly tedious and error-prone.
Consequently, solution to the problem must provide a
reusable infrastructure for systematically identifying and
classifying assets and analyzing usage scenarios.

Late Variability: DfD is notorious for late changes in
requirements and implementation. Indeed, DfD require-
ments can change during IP design, SoC integration,
or even after a silicon stepping; the latter can happen
on realization that observability or control of certain
signals is critical for a future stepping. Consequently,
any solution for addressing security challenges with DfD
must be easy to adapt with such changing requirements.
In particular, it should be possible to quickly validate an
updated DfD architecture against a given set of security
policies and identify vulnerabilities.

Self-Securability It is obvious that any architecture
introduced to address the security-validation trade-off
must be self-securing and must not introduce additional
security back-doors (or complexity with debug).

Architecture: It is critical for any architecture that per-
mits the trade-off to be centralized. The reason is that a
decentralized architecture (both for security and DfD) is

'We say “as much as possible” since it is not possible to have exact
equivalence, e.g., if the system uses dummy keys in debug mode and
test result depends on value of keys.
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difficult to follow and can accidentally break or introduce
vulnerability. To circumvent this possibility, it is critical
that the architecture can be viewed as a centralized IP
which can itself be effectively analyzed for possible
violation of either security or debug requirements.

IV. HARDWARE/SOFTWARE CHALLENGES

Another critical challenge in the development of secu-
rity solutions for modern computing devices is the tight
coupling between hardware and software components.
Traditionally, general-purpose, programmable comput-
ing systems, e.g., desktops, laptops, and servers, were
built upon a standard hardware architecture such as
X86, MIPS, SPARC, etc. with a published, standardized
instruction set. This allowed decoupled design analy-
sis of hardware and software components. Of course
there were embedded systems, e.g., automobile control,
medical instruments, etc., with tightly coupled hard-
ware/software modules; however, these systems were
designed to implement a small set of use-cases and
the individual modules were relatively simpler with
well-defined security requirements. This clear demarca-
tion started to break down with the advent of mobile
systems like smartphones and tablets, and the barrier
has broken down completely with the advent of the
large diversity of IoT devices. These devices are highly
complex, programmable, and have computing power of
the scale higher than a general-purpose computer of a
few years back. On the other hand, they also exhibit
the tight coupling of hardware and software which was
the hallmark of embedded systems of the past. Indeed,
the very definition of embedded systems has changed
from ““a system with hardware and software components
targeted for a specific function” [6] to “any computing
system that is not a desktop, laptop, or server” [7].

Why does this tight hardware/software coupling cause
challenges to security? Many security vulnerabilities
arise because of errors or misconfiguration at the inter-
face of hardware and software components. For example,
an error in the device/driver interface may result in a
buffer overflow for a specific execution usage which can
be exploited by a malicious attacker to induce a code-
injection attack. The trouble with such vulnerabilities
is that since they occur as a result of the breach of
contract between hardware and software they cannot
be detected during either hardware or software valida-
tion and a robust co-validation framework is necessary
to exhibit such problems. On the other hand, tradi-
tional validation technologies are typically inadequate
for hardware/software co-validation. Hardware and soft-
ware components are often abstracted differently, with
different formalisms, tools, and methodologies involved.
To exacerbate the issue, hardware and software compo-
nents are typically developed concurrently by different

teams or vendors, and continue evolving along the entire
system design/validation life-cycle. The key challenge
then is: “How can we validate (evolving) software that
is being developed to execute on a hardware platform
whose design itself is undergoing change at the same
time?”

The continuous evolution problem alluded to above
is, of course, a general problem for validation of mod-
ern computing devices and not necessarily confined to
security. To address this issue, current industrial practice
involves developing prototypes of the hardware design at
different levels of abstraction specifically for the purpose
of co-validation. Some prototyping frameworks include
(1) virtual platforms, i.e., an abstract software model
of the hardware platform [8], (2) emulation and FPGA
models, and (3) adapting a previous-generation silicon
as a platform for testing the next-generation software
(often called an “N — 1 silicon” solution). While many
of these prototyping solutions work well for functional
validation, they are unfortunately inadequate for security
validation. In particular, what makes the co-validation
problem particularly vexing for security is that security
compromises typically happen as a consequence of very
specific corner-case violations. On the other hand, most
prototyping solutions diverge from the actual design in
some way, either because of abstraction (e.g., for virtual
platforms) or to adapt the design to the platform con-
straints (e.g., for emulation, FPGA, and N — 1 models).
Thus, crucial hardware behavior is typically missed in
these co-validation platforms leading to security com-
promises.

A final point in hardware/software co-validation must
be added for the role of formal verification. Formal
verification involves use of mathematical analysis to
ensure that the system satisfies its desired properties.
Typically formal methods incur significant cost, in terms
of human expertise or computational resources involved.
However, security is critical enough to justify investment
of resources in these techniques. But formal verification
also becomes inadequate for ensuring security properties
involving hardware/software interfaces for the same rea-
son as functional validation using prototyping platforms:
scalability of formal verification requires development
of abstractions (of both hardware and software compo-
nents), resulting in crucial security-critical corner-cases
being ignored by analysis.

The upshot of the above deficiencies is that security
properties involving hardware/software interfaces can be
practically validated only during post-silicon validation
and debug when the silicon implementation of the
current-generation system is ready in some form. Indeed,
such validation is only effective in later stages of post-
silicon validation when both the hardware and software
components are mature. However, errors found so late
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are difficult to fix, and typically result in patches and
point-fixes which may expose the system to yet more
security vulnerabilities.

V. SPECIFICATION CHALLENGES

A third challenge in developing security assurance
for modern computing devices is the complexity and
continuous evolution of requirements and specifications
along the system life-cycle. Ideally, specifications ought
to be available at the beginning of the design phase
of the system and guide design, implementation, and
validation activities. Unfortunately, this is rarely the case
for a number of reasons. Below we summarize some key
issues that cause churn in specification definitions.

Changing Customer and Usage Requirements. The
system life-cycle from exploration to production in-
volves a long period of time. Even for a mobile or
IoT device built on aggressive schedule, the design and
development process takes more than a year. Product
requirements can change within this period of time. For
example, the launch of a competitor product may result
in additional feature requirements to justify additional
value to the developing system. Furthermore, a device
is typically designed with anticipation of launch and
successful business of other components in the overall
ecosystem. For example, a smartphone design optimized
for a specific operating system ‘“bets” on success of
smartphones running that operating system. If the launch
of the operating system is delayed, or it is unsuccessful in
the market then the specification of the smartphone must
change to optimize for other, more successful operating
systems.

Discovery of New Security Vulnerabilities. Although
security requirements for a target device is defined as
part of risk assessment during the design exploration
phase, such analysis is based on known security exploits
at that time. New vulnerabilities may be discovered,
potentially through successful on-field attacks in related
devices. Consequently, the security requirements and
protection mechanisms need to be updated to account
for such threats.

Late Identification of Hardware Bugs. Hardware bugs
found late in design and during post-silicon validation
are typically patched by firmware and software updates.
This is because modifying hardware is more expensive
than developing a software patch, e.g., a bug found in
silicon, if fixed in hardware, would require an additional
silicon spin. Such patches then become part of the
system functionality and carried over from one product
to the next. This means that the specification of hardware
(and in fact, software) gets changed: some functionality
originally specified to be implemented in hardware is
later adapted to be implemented through a combination

of hardware, firmware, and software. Such distribution of
functionality, however, hardly get reflected in the specifi-
cation definition which consequently becomes obsolete.

Such churns in specification, however, have profound
effect on the design, implementation, and validation
activities. In particular, validation planning typically
starts concurrently with design of hardware and software
components using the specification documents as guide.
Consequently, such plans need to be updated when
the specification changes. However, it is infeasible to
perform detailed validation planning in response to each
requirement change, particularly in later stages of the
system life-cycle. To exacerbate the problem, many of
the specification changes are not even propagated to the
specification documents, making the latter obsolete at the
later stages of design development.

VI. UPCOMING SECURITY CHALLENGES IN THE 10T
REGIME

The challenges discussed in the preceding section
pertain to SoC design development and validation, and
apply to modern embedded, mobile, as well as IoT
systems. IoT systems, however, come with some unique
challenges of their own, consequent of their form factor,
distributed nature, and applications. In this section we
mention a few of those challenges. An IoT system
involves a large number of small, smart devices, also
called edge devices that communicate with each other
and to a “cloud” of servers and datacenters through a
communication network involving routers and gateways.
In its simplest form, the idea is for the edge devices to
obtain sensory data from the environment (e.g., ambient
temperature for a thermostat, heart rate for a fitness
tracker, etc.) which are accumulated, consolidated, and
passed to the datacenters in the cloud to perform analysis
(e.g., determining whether the temperature ought to be
increased or decreased for a home climate system, or
an analysis of fitness and health for a health monitoring
system, etc.). The cloud is responsible for performing
the global analytics and the results are passed along to
the edge devices as directives to perform appropriate
action (e.g., reduce the temperature if the analytics
suggests it ought to be cooler for that time of day at
that season of the year). The security challenge in this
context arises from the fact that the collection of so
much of often highly personalized or intimate infor-
mation makes the IoT systems susceptible to security
threats. Unfortunately, the nature of the threat is still not
sufficiently understood (see below). Nevertheless, based
on our experiences with mobile systems as well as the
understanding of the basic usages of 10T, following are
some of the baseline challenges that must be addressed.

Long, Complex Life-Cycle. IoT systems have a long
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life, compared to the life of a traditional desktop, lap-
top, or mobile system. For example, a smart home,
car, or multiplex can have a life-time of 20-30 years
or more. Security requirements, designs, and attacks
can change considerably within this time-frame. It is
therefore critical for security to be designed with on-
field configurability and facilities to upgrade design, im-
plementation, or even the complete specification. As an
example of the drastic requirements this might introduce,
note that it is possible for quantum computing to be
introduced in the years 2030-2050, which will break
many of the cryptographic algorithms used in current
computing devices. Consequently, one must design IoT
systems to ensure that any cryptographic implementation
in IoT devices must either be resistant to attacks by
adversaries having access to quantum computing or be
upgradable on-field.

Power, Performance, an Form-factor Constraints.
IoT edge devices perform under aggressive constraints
on power; additional constraints may be introduced
by unique form factor. For example, a smart implant
or wearable must operate with extremely low energy
budget. Many traditional security primitives cannot be
used in IoT edge devices because of these constraints,
e.g., it is often not possible to insert complex security
monitors or encryption primitives in hardware. Alterna-
tive approaches must be devised to ensure security in the
face of these constraints.

Unanticipated Usages and Attacks. IoT systems are
connecting “things” that were never originally intended
to be connected, e.g., light bulbs, refrigerators, etc.
Consequently it is difficult to imagine potential attacks
in these interactions. For example, it is difficult to
determine what a potential attack can be in a system
where the refrigerator can communicate with the car to
direct the grocery items to be collected. IoT designs must
therefore be flexible to develop mitigation and protection
mechanisms for grossly unanticipated attacks.

Note that the above challenges are not comprehensive.
In fact, we do not know all the potential challenges to
IoT as we move into the regime. However, they give a
flavor of the kind of challenges that we must address in
order for IoTs to become robust and trustworthy.

VII. CONCLUSION

In this paper, we discussed some security challenges
in computing devices as we move into the regime of
Internet-of-Things. Some of them are reincarnations of
old challenges, e.g., hardware/software validation, inter-
operability of functionality with security, etc. Some are
unique and new. Nevertheless, all of these challenges
(and many more) must be taken into account in order to
make the IoT regime trustworthy. Security flaws in IoT

systems can have catastrophic consequences, precisely
because the scale and complexity of these systems. Un-
fortunately, as we discussed through several examples,
we do not have an effective solution or even a good
understanding of the nature of different challenges. On
the other hand, such an environment provides an ex-
cellent opportunity for impactful, collaborative research.
We believe that a robust security solution for IoT regime
will be achievable only through strong collaboration
among researchers across different disciplines, poten-
tially breaking many of the topic silos we currently have
in computing science.
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