
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

SEVNOC: Security Validation of System-on-Chip Designs
with NoC Fabrics

Xingyu Meng1, Kshitij Raj2, Sandip Ray2 and Kanad Basu1

1ECE Department, University of Texas at Dallas, Richardson, TX, USA
2ECE Department, University of Florida, Gainesville, FL, USA

Abstract—Modern System-on-Chip (SoC) designs include a variety of
Network-on-Chip (NoC) fabrics to implement coordination and commu-
nication of integrated hardware intellectual Property (IP) blocks. An
important class of security vulnerabilities involves a rogue hardware
IP interfering with this communication to compromise the integrity of
the system. Such interference includes message mutation, misdirection,
delivery prevention, or IP masquerading, among others. In this paper,
we propose a scalable RTL-level SoC validation scheme, SeVNoC, for
systematic detection of security violations in inter-IP communications
for SoC designs with NoC fabrics. Given a target security property to
be validated, SeVNoC entails extraction of the control flow graph of the
relevant SoC, which is analyzed through a security property-based model
comparison, without incurring state space explosion. Our experiments on
full scale realistic SoC designs with multiple IPs and NoC architecture
indicate that SeVNoC detects security violations in NoC communications
with near perfect accuracy, within only a few minutes.

Index Terms—SoC validation, Network-on-Chip, Security

I. INTRODUCTION

Modern Internet-of-Things (IoT) systems are built on System-on-
Chip (SoC) architecture, which encompass a plethora of function-
alities, while providing optimized performance and overhead. SoC
designs include pre-designed hardware modules, — referred to as
Intellectual Properties or IPs, — that coordinate through on-chip
communication fabrics to realize system functionality. SoC security
validation has manifested as a critical bottleneck in IoT system
design. Security vulnerabilities in SoCs often result from corner-case
or rare scenarios, which are challenging to ascertain using existing
industrial validation frameworks. Information flow violation, which
involves transmitting of sensitive information to an untrusted entity,
is one of the most precarious issues in a SoC. Existing research to
ameliorate this issue focuses on only a single core, without scalability
to a commercial-scale SoC consisting of multiple IPs.

Many modern SoC designs include network-on-chip (NoC) fab-
rics to implement inter-IP communications. NoCs realize on-chip
communication with a collection of routers connected in a topology
customized for the target SoC, and can enable integration of diverse,
heterogeneous hardware Intellectual Property (IP) blocks with a
variety of interfacing protocols [1], [2]. NoCs have become popular in
recent years, as it is getting increasingly difficult to scale traditional
crossbar and bus-based communications with the increasing number
of IPs. Unfortunately, NoCs can also induce subtle security vulner-
abilities that can compromise the integrity of the entire system by
launching several attacks, e.g.denial-of-service, malfunction, leaking
sensitive information, etc. For example, a Hardrware Trojan planted
in an NoC can snoop transactions and leak sensitive data [3]. One of
the primary challenges of detecting such a vulnerability is the fact
that any number of IPs can participate in a communication utilizing
the NoCs, and any one or multiple of them can collude together to
inflict this malice. Moreover, as explained in Section III, even an IP
which is not part of the communication can lead to a denial-of-service
attack. Therefore, it is insufficient to simply analyze the IPs engaging

in a communication or knowledge of the communication protocol
to secure the SoC using static or dynamic validation methodologies.
Hence, it is crucial to develop robust verification techniques to detect
security compromises through NoC interconnects.

In this paper, we develop a framework for systematic detection of
security violations in SoC designs resulting from vulnerabilities in
NoC communication. In contrast to existing formal or simulation-
based methodologies, we propose a semi-formal technique based
on symbolic analysis. Unlike formal verification frameworks, the
proposed method does not suffer from state space explosion, while
providing sufficient guarantees for detecting corner-case vulnerabil-
ities. Our framework, SEVNOC, consists of a novel algorithm for
efficiently extracting a Control Flow Graph (CFG) of the design
that enables efficient analysis of security properties through state
exploration. The extraction procedure can avoid state explosion while
obviating coarse abstractions. A unique feature of SEVNOC is the
breadth of the attack scope, e.g., the same framework applies to
the swath of NoC adversaries, encompassing message mutation,
IP masquerade, delivery prevention, etc. We evaluated SEVNOC
using an experimental testbed with two different SoC designs, each
instrumented systematically with a number of NoC vulnerabilities.
The SoCs included a variety of realistic features and involved tens
of thousands of lines of RTL code. SEVNOC could detect all but
one of the vulnerabilities and completed in a couple of minutes. The
paper makes the following important contributions:

• For the first time to our knowledge, we develop an infrastructure
for RTL-level SoC security validation that systematically handles
security vulnerabilities in untrusted inter-IP communications.

• Our CFG extraction algorithm provides a unique approach for
addressing the trade-off between accuracy and scalability needs in
SoC security validation in practice. The communication CFG for
each module is generated and connections between these CFGs of
various modules are explored.

• We performed extensive experimental evaluation of SEVNOC on
multiple realistic NoC designs with several variants including
multiple subtle vulnerabilities.

• We developed a comprehensive experimental testbed that includes
multiple realistic SoC designs as well as a systematic methodology
for inserting bugs on NoC communications. Aside of our own
evaluation, the testbed can serve as a flexible experimental platform
for evaluating other related research on SoC security.

The remainder of the paper is organized as follows. Section
II discusses the background of the security validation and NoC
designs. Section III discusses the SoC security challenges induced
by NoC communications. We discuss the proposed SEVNOC design
in Section IV. Section V-A discusses our experimental testbeds,
SoC implementations and the experimental results. We discuss related
work in Section VI and conclude the paper in Section VII.

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

II. BACKGROUND

A. Security Validation in Research and Practice

Security validation of hardware designs entails exploration, analy-
sis, and evaluation of a diverse set of attack surfaces originating from
malicious third-party IPs, malicious software and firmware, insecure
on-chip communications, and many other potential sources, that can
compromise trusted system operation. The area is extremely broad,
with significant academic research as well as mature commercial
tools [4]–[6]. Nevertheless, security validation remains a complex
and expensive process in industrial practice. In particular, many
security bugs are corner-case scenarios, possibly activated through on-
chip communications or asynchronous events [7], which are difficult
to stimulate through either dynamic or formal tools. Consequently,
industrial flows today depend critically on human expertise to identify
such scenarios, perform white-box intrusion testing, or design manual
abstraction to enable efficient application of analysis tools [8].

A critical area of security validation relevant to our work is
information flow analysis, which entails checking whether malicious
or unauthorized agents can access sensitive assets in the design.
There has been significant recent progress in both static and dynamic
approaches to this problem. Static and formal tools typically employ
path sensitization, i.e., identifying if there is any design path from a
sensitive asset location to an untrusted IP or output [9]–[13], while
dynamic tools target tracking the “flow” of an asset during system
execution [14]–[19]. However, both static and dynamic approaches
have targeted microcontrollers or IP cores, e.g., typically RTL or
netlist models with single clock, no inter-IP communication. To our
knowledge, there is currently no automated framework for systemat-
ically detecting information flow violation among IPs in a SoC with
realistic features.

B. Symbolic Analysis

Formal or symbolic validation entails developing mathematical
analysis tools to prove that a system satisfies specification. When
applicable, this approach can give a much stronger assurance than
dynamic validation or testing, and can capture subtle design corner
cases, which can be typically missed in simulation. Since security
assurance solutions require exploring such corner cases, there has
been significant effort to develop such solutions based on formal
analysis. Formal security verification traditionally use interactive
theorem proving [20]–[22], which obviously requires significant
human expertise and is difficult to scale. Recent research adopted
the same for state space exploration, particularly in the context of
information flow, as mentioned above. This has resulted in several
commercial tools for security validation [6], [23]. Formal tools in
their classic form tend to suffer from state explosion [24]. Recently,
there have been approaches to symbolic testing for security validation
[25], which exploits the benefits of formal but re-targets it for test
generation and largely avoids state space explosion at the cost of
being incomplete. Recent research on deploying concolic testing
directly on RTL models has been proposed [26], [27] to verify the
functionality of the design. However, these approaches overlook the
security vulnerabilities that might manifest in complex SoC designs,
consisting of multiple IPs and interconnection fabrics.

C. NoC Interconnects

A Network-on-chip (NoC) realizes the system-level coordination
of IPs in an SoC design through message-based communication.
An NoC includes a collection of routers that are organized into a
routing topology. NoC topologies in practice typically constitute tree,
mesh, or cycle structures, although other more complex topologies

Fig. 1. Attack Surface in NoC-based System-on-Chip Designs. The com-
promised components can now include routers and communication links in
addition to buggy or rogue IPs.

are possible [28]. Routers in an NoC typically include configurable
routing tables that map the destination of a message packet to an
output port; router functionality entails transferring an input packet
(which is typically delivered asynchronously to its ingress queue)
to an output port (where it is deposited to an egress queue for
asynchronous processing) based on the routing table map. The map
can be reconfigured if necessary by the operating system under certain
circumstances during execution (e.g., on detection of congestion or
transmission failure in certain paths). The configurability of routing
tables also enables the reuse of the same router IP to realize different
network topologies,

III. SECURITY CHALLENGES IN NOC FABRICS

An unfortunate upshot of adoption of NoC fabrics is the intro-
duction of new classes of vulnerabilities that target communication
of messages during their transmission through the on-chip network
[29]. As shown in Fig. 1, the vulnerable components on NoC-based
SoCs include malicious and vulnerable routers and communication
links, in addition to buggy or rogue IPs. This expansion of the attack
surface can result in subtle security bugs that can undermine the
entire system. Furthermore, many of the rogue elements can collude
to undermine system integrity. Consider the following two examples.
Albeit simplified, these are sanitized versions of security bugs in
industrial SoCs that escaped to silicon.

Example 1: Assume that a router R is connected to a CPU which can
re-configure the routing table of R (e.g., to support in-field update).
A bug (or malicious Trojan) implanted in the CPU microarchitecture
causes this functionality to be invoked under a certain rare-to-detect
corner case, enabling malicious re-configuration of the destination
fields of the routing table in R. In a subsequent boot, use of this
maliciously updated routing table results causes R in the transmission
of a secure cryptographic key (e.g., master key) through an untrusted
link, compromising the integrity of the entire SoC.

Example 2: Under a certain (rare) scenario, a rogue IP I continually
transmits garbled or meaningless (but not malformed) messages
across a communication link to a router R after T = tf . Fig. 2
illustrates this attack. Although each message is discarded by R,
the ingress queue of R and the incoming communication link are

2

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 2. Denial-of-Service Attack on NoC Caused by a Rogue IP. Here the
router is benign. A rogue IP floods the link with irrelevant messages preventing
transmission of communication from the victim IP. The graph shows how the
available bandwidth of the link decreases for the victim IP as a result of the
attack.

Fig. 3. Taxonomy of attacks on NoC Fabrics

overloaded by this transmission. Another IP V (i.e., a victim IP)
in the same subsystem is unable to transmit messages through the
communication link or through R itself. This leads to a reduction in
available bandwidth on the channel, as shown in the graph in Fig. 2.
An upshot of this interruption is that any IP B waiting for a message
from V can wait forever. A cascading sequence of such operations can
eventually lead to system deadlock. Even if the deadlock is broken
(e.g., by a non-deterministic external event or through I ceasing
transmission), it still leads to a significant degradation in performance.

Note that such vulnerabilities would be easy to detect if the
potential trigger conditions for the malicious activity were known
in advance. However, in the absence of such knowledge, it is
difficult to develop a systematic methodology for detecting such
violations. In particular, virtually any usage scenario entails a variety
of communications across multiple fabrics, any of which can be
subverted by a malicious IP or router, resulting in a compromised or
non-functioning system. Furthermore, the malicious component may
not even be one of the IPs taking part in any of the usage scenarios.

As illustrated by both the examples above, a malicious IP can corrupt
or flood a communication link or routing table asynchronously, with
respect to the system functionality. Consequently, it is not possible to
simply analyze the usages or communication protocols participating
in the inter-IP coordination across the NoC in realizing a specific
system-level use case; one must additionally account for any other
IP with the ability to communicate through the same routers or
links. This is difficult to do for both dynamic and formal validation.
For dynamic validation, a rare activation scenario (or trigger of the
activity) implies that it is unlikely to be hit in random simulation.
For formal methods, identification of a violation scenario typically
reduces to symbolic exploration of the entire SoC design, which is
clearly limited by the well-known state explosion problem. Thus, it is
imperative to develop alternate techniques for addressing these issues.

Threat Model and Attack Taxonomy: The focus of the paper is on
system-level interaction. The threat model considered consequently
targets adversaries that can corrupt inter-IP communications in SoC
designs; we do not consider corruption or confidentiality breach
inside an IP that does not impact its interaction with the rest of
the system. Fig. 3 provides a taxonomy of NoC attacks explored
in this paper. The attack taxonomy is inspired from previous work
by Deb Nath et al. [29] on an architecture-level solution to SoC
designs with NoC fabrics using security policy implementation in a
centralized security-policy engine. As with that work, the adversaries
here focus on effect of an adversarial activity on the communicated
messages, rather than the mechanism of the activity. For example,
consider e a message m destined towards an IP D at any router R.
The effect of adversarial activity on m can be classified as one of
three categories: (1) mutation of the payload; (2) prevention of its
delivery (e.g., through flooding); or (3) misdirection of m towards
a different IP D′. Note that the mechanism through which each of
these effects can be implemented can include a large and diverse
set of different actions, e.g., the misdirection is possible by either
corrupting the destination ID of the message, or a malicious IP D′

masquerading as D.
Remark 1: This paper evaluates SeVNoC on SoCs with NoC

fabrics and the threat models illustrated hold true for NoC-based
fabrics. While the threat models associated with bus-based systems
will change, the overall methodology and the operation of SeVNoC
remains the same and it is feasible to quote that this validation
framework can detect vulnerabilities in bus-based systems as well. As
long as the security properties are defined in a way that SeVNoC can
parse it and extract the relevant CFGs, detecting such vulnerabilities
is possible.

IV. SEVNOC METHODOLOGY

We assume a set SP of events, which contains the relevant
communication events E [Ms]. Let the SoC design N constitute a
list of modules ⟨M1, . . . ,Mk⟩, where eachMi contains a sequence
of process blocks F [Mi]. Informally, these process blocks consist of
unspecified events and assignments. For each function f ∈ F [Mi]
and event trigger s ∈ F [Mi], we say that s governs f if f is executed
only when s is true. We define a projection Pv of the Control Flow
Graph [Mi] in module Mi that includes the event statements con-
taining signal v. We refer to Pv as the under-testing CFG ofMi with
v. The notion of governing CFG naturally extends to a set of signals
provided by SP as V ≜ {v1, . . . , vn}, by defining PV ≜

⋃n
i=1 Pvi .

If the set V is in the F [Mi], we refer to the under-testing CFG
PV as the Communication Event CFG (CE CFG) of Mi. We use
CE [Mi] to denote the CE CFG of Mi. The communication event

3

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

CFGs of
Modules

Validation
Results

Extract
CE_CFGs

Re-construct CE_CFGs
with Module information

Model
Comparing

Module Connection

 CE_CFG Generation

CE_CFG Validation

Target NoC

Security
Properties

Submodules
of Modules

Signals of Security
Properties

Fig. 4. SEVNOC Framework.

Algorithm 1 Communication Event CFG Generation

Input: N , SP
Output: CE [Mi] of Mi

CFG Generation(N)
1: for all IPs ∈ N , do
2: Initialize [Mi], [Mi] append Mi

3: for all F [Mi]s in Mi, do
4: if s, f in F [Mi], then
5: Pvi ← s, f , then [Mi] append Pvi

6: end for
7: end for

CE CFG Extraction([Mi], SP)
1: Initialize CE [Mi]
2: for all in SP , do
3: for all Pvis in [Mi], do
4: if s, f ∈ Pvi in E [Ms], then
5: CE [Mi] append Pvi , E [Mi]
6: end for
7: end for
8: CE [M] append CE [Mi]

CFG of S is then naturally defined as the interactive composition
CE(S) ≜ CE [M1] || CE [M2] || . . . || CE [Mk].

SEVNOC works by computing CE(S) which can then be effi-
ciently explored through symbolic analysis, and no additional meta-
data apart from the RTL and security properties are needed. Fig. 4
shows the overall framework of SEVNOC. It includes the following
three components:

1) For each moduleMi of N , construct the CE CFG CE [Mi] by
analyzing the CFG of F [Mi] to identify whether process blocks
contains signal v in security properties SP

2) Assemble and connect the individual CE CFGs to create the
under-testing CFG CE(N). This is done by computing and
developing connection profiles of all constituent modules.

3) Given the CE CFG CE(N), model comparison is used to
systematically verify the correctness of communication events.

A. CE CFG Generation

Algorithm 1 generates the abstract CFG. It scans for all the process
blocks F [Mi]. The trigger condition s and its execution f are
extracted from each process block and added into the CFG as a
subCFG of the module. Note that in RTL we can insert procedural

Modules of the
NoCs

Security
Properties

Signal vi

CFGs of the
Module

Extract Signal

 Search Process
Blocks

Under-testing
CE_CFG

Search Vi in
SubCFGs

Fig. 5. Algorithm 1 Process Flow of Extraction

Algorithm 2 Module Connection Profile

Input: N , IPs
Output: CP[M]

1: Initialize A[IP]
2: for all IPs in N , do A[IP] append IP
3: Initialize A[M]
4: for all IP in A[IP], do
5: if Mx in IP , then A[M] append Mx

6: end for
7: Initialize CP[M]
8: for all Mx in A[M], do Initialize CP[Mi]
9: if Mx in Mi, then CP[Mi] append Mx

10: end for
11: CP[M] append CP[Mi]
12: for all CE [Mi] in CE [M], do
13: if Mx ∈ CP[Mi], then CE [Mi] append CE [Mx]
14: end for

blocks (always @) between each subCFG to form a complete CFG
of the module CE [Mi]. Subsequently, the CFG of the module is
checked to ensure whether it contains any signal vi defined in SP .
The algorithm can then extract Pvi from CE [Mi] according to the
extracted signal V ≜ {v1, . . . , vn} from the security properties. The
algorithm will process all the subCFGs and select the Pvi to develop
a new CE CFG Pv for the module. All modules in the SoC are
processed and associated with their communication event CE CFG
into a new CE [Mi]. Figure 5 shows the overall framework of two
processes in Algorithm 1.

B. Module Connection with CE CFG

Algorithm 2 explores each Mi in NoC N to search for the sub-
modules and complete the CE [Mi]. To achieve this, we list all the
Mis as A[M] and generate a connection profile for each Mi to
determine which sub-modules are included in its design flows. The
structure of each module is scanned by the algorithm to collect
all the sub-modules’ invocations and logistic information. A list
CP[Mi] of each module is created to identify each Mx that is
invoked by the design flow of Mi. The inter-connected Mxs and
its associated CE [Mx] are then assembled to construct a complete
CE [Mi], according to the connection profile of the module. The CFG
of top module CE [Mi] will be updated with all the CE [Mx], where
its module Mx ∈ CP[Mi].

C. Model Comparison with Security Properties

To verify the correctness of the generated CFGs CE [Mi], we
create the model Ms of each specification in SP . Algorithm 3
identifies the trigger conditions s and its executions f from each

4

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Algorithm 3 Module Comparing

Input: CE(N), SPs
Output: Invalid Message, M§

1: Initialize [Ms]
2: for all Specifications in SP , do
3: if s, f in F [Mi], then
4: Ps ← s, f , and [Ms] append Ps

5: else if f in F [Mi], then
6: Ps ← f , and [Ms] append Ps

7: end for
Model Comparison(CE [M], [Ms])

1: for all CEMi in CE [M], do
2: for all Pvi in CE [Mi], do
3: for all Pss in [Ms], do
4: Invalid = Comparing model(Pvi , Ps)
5: if Invalid == 1, then Print(Pvi , Mx)
6: end for
7: end for
8: end for

Security
Properties

CFG of
Specifications

Trigger Event
exists?

All Executions
match?

Trigger Event
matches?

Executions
Partially match?

InvalidValidInvalidValid

Execution
signal matches?

Execution
signal matches?

Execution
value matches?

NoYes

Yes

No

No
YesNo

Yes

Yes

No

No

Yes
Yes

No

Fig. 6. Comparing Process Flow of Algorithm 3

specification, and transforms into a CFG model Ms. When s is
available in the specification, the process of generating the CFG is
identical to Algorithm 1. When s is not available in the specification,
f will be isolated to establish which executions should be computed
simultaneously and which should not happen. [Ms] can be used to
validate the model of CFG generated for each module CE [Mx] by
comparing whether the CFG model matches the security properties.
The details of the comparison are shown in Fig. 6. Once all CFGs in
CE [M] are checked through the model comparison process, we can
evaluate the invalid message returned from Algorithm 3; the message
will contain the subCFGs and Mx of the CE [Mx]s that violate the
Ms. If no invalidation message is obtained, then no property from
SP is violated.

To demonstrate the process of Algorithm 3, we include an example
model process block and three cases that will violate the pre-defined
security property model, as shown in Fig. 7. The original process
block consists of three if-else statements and their assignments. The
register state is assigned as B when reset == 1, as C when input ==
1 and state == B, and as A default. Now, we will discuss the three
possible scenarios.

always@(posedge clk) begin
 1: if (reset == 1)
 2: state <= B;
 3: else if (input ==2) && (state == B)
 4: state <= C;
 5: else
 6: state <= A
 end

always@(posedge clk) begin
 1: if (reset == 1)
 2: state <= B;
 3: else if (input ==2) && (state == B)
 4: state <= C;
 end

always@(posedge clk) begin
 1: if (reset == 1)
 2: state <= B;
 3: else if (input ==2)
 4: state <= C;
 5: else
 6: state <= A
 end

always@(posedge clk) begin
 1: if (reset == 1)
 2: state <= B;
 3: else if (input ==2) && (state == B)
 4: state <= A;
 5: else
 6: state <= C
 end

Security Properties:

Case 2: Missing Condition Case 3: Wrong Statement

Case 1: Missing Statement

Fig. 7. Examples of correct and buggy process blocks. The first one is the
correct flow and the next three are manifested with certain bugs.

1) Case I-Missing Statement: In this case, the default condition is
missing, which will result in undesired functionalities. When the
buggy model is checked through Algorithm 3, it will match the
code in line 1, 2, 3, and 4. However, when checking line 5 and
6, Algorithm 3 will follow the process: Trigger Event No−→ All
Execution Match No−→ Executions Partially Match Yes−−→ Invalid.
Hence, the algorithm detects the missing statement in the model.

2) Case II-Missing Condition: In this case, the condition (state ==
B) in line 3 is missing, which might result in a bypass of the
privilege level. The under-testing model will match line 1 and
2. However, when checking line 3, Algorithm 3 will conduct the
process: Trigger Event Yes−−→ Trigger Event Matches No−→ Execution
Signal Matches Yes−−→ Invalid. Hence, the algorithm will detect the
incorrect condition in this model.

3) Case III-Wrong Statement: In this case, the assignments of
line 4 and line 6 are swapped, which will cause an incorrect
functionality. When the model is checked by Algorithm 3, it will
match the first statement. However, when checking the second
statement, Algorithm 3 will execute the process: Trigger Event
Yes−−→ Trigger Event Matches Yes−−→ Execution Signal Matches Yes−−→

Execution Value Matches No−→ Invalid. Hence, the algorithm will
detect the incorrect assignment in the model.

V. EXPERIMENTAL EVALUATION

A. SoC Benchmarks

A key challenge in research on SoC security validation is the lack
of an appropriate testbed for evaluation. Evaluation of SEVNOC
requires SoCs with multiple communication fabrics, disparate IP
cores, asynchronous communication, etc. Unfortunately, there are
no realistic open source SoCs with these features. Platforms like
Openpiton and BOOM provide microprocessors, but not a frame-
work for building SoCs with enough configurabiltiy to carry out
experimental evaluations for such methodologies. To address this
problem, we developed two SoC benchmark classes, NSNoC and
TransNoC, that implement crucial features reflecting the complexities
involved in realistic SoC designs. These SoC benchmarks have been
derived using our in-house framework, SoCCom [30]. SoCCom
enables SoC integration using open-source IPs and industry standard

5

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 8. NSNoC: Representative IoT SoC model. It includes one NoC realized
by a tree-based topology.

Fig. 9. TransNoC: An Automotive SoC with application specific subsystems

interfaces, supporting different interconnect fabrics and topologies.
SoCs generated using SoCCom have been functionally validated
against SoC integration and inter-operability of all components. Figs.
8 and 9 show high-level block diagrams for these SoCs. Our designs
are inspired by our previous work [7], which introduced realistic
SoC benchmarks for evaluation of information flow validation due
to asynchronous resets. However, the SoCs developed in that work
were bus-based. We extended them with NoC implementations and
hierarchical subsystems with bus-based and NoC-based fabrics. We
also introduced a mix of high-speed and low-speed IPs, different
cryptographic modules, and multi-core computing systems. All IPs
and routers used in designing the benchmark classes have been
derived from open-source IP implementations. Note that these SoCs

TABLE I
AREA METRICS OF NSNOC AND TRANSNOC

NoC Class Variants
Area

LUT LUTRAM BRAM

NSNoC

Variant #1 19706 2951 144

Variant #2 18137 2876 132

Variant #3 18762 2774 142

Variant #4 18361 2968 148

Variant #5 19026 2815 136

TransNoC

Variant #1 41276 3192 156

Variant #2 43162 3217 164

Variant #3 43578 3285 168

Variant #4 44284 3348 174

Variant #5 40812 3098 152

are not toy designs, e.g., NSNoC implementation constitutes 43000
lines of (behavioral) Verilog code and TransNoC constitutes 57000
lines. Both NoCs can run realistic applications.

NSNoC is targeted for low-power and area-efficient IoT applications.
The IPs are integrated with a network adapter to form a compute-
tile. It includes a RISC-V core that implements RV32I (Baseline
Integer) and RV32E (Embedded Extension) ISAs. The memory
subsystem comprises two RISC-V optimized variants of a single
port and dual port SRAM modules that form the memory compute-
tile. The North Cluster IPs are high-performance IPs comprising
of the Inverse Discrete Fourier Transform (IDFT), Discrete Fourier
Transform (DFT), and Fast Fourier Transforms (FFT) IPs to form the
DSP subsystem. The South Cluster IPs consists of two subsystems,
the crypto subsystem and the peripheral communication subsystem.
The crypto subsystem consists of AES128, DES3, and SHA256 IPs
for carrying out cryptographic operations. The peripheral subsystem
consists of peripheral IPs like UART and SPI to enable communica-
tion with the outside world.

TransNoC has been inspired by SoC designs used in automotive
applications. It features a heterogeneous hierarchical system with
bus-based and NoC-based subsystems for implementing different
functionalities such as DSP, crypto, computing, memory, and com-
munication operations. The individual subsystems are interconnected
using routers with different topologies. Some subsystems are inter-
nally connected via a Wishbone protocol compliant bus. TransNoC
incorporates significantly more IPs than NSNoC. For instance, the
computing core has been scaled up from 2 cores to 4 cores, the
crypto subsystem has RSA, MD5, and DES3 IPs on top of the pre-
existing IPs in NSNoC. The DSP subsystem has an additional Infinite
Impulse Response (IIR) IP in its compute-tile. A GPS IP has also
been integrated into the communication subsystem.

NSNoC and TransNoC benchmarks furnish a set of realistic and
fully functional SoC designs. We use two variants of NSNoC and
TransNoC for evaluating our security validation methodology. Each
of these variants are categorised based on the class of security
violation present in them. In order to provide an understanding of the
design complexity of these SoC benchmarks, we performed FPGA
synthesis in Xilinx Vivado. Table I shows the area statistics of these
2 classes of SoC benchmarks.

6

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II
PLACEMENT OF SECURITY VIOLATIONS IN NSNOC AND TRANSNOC

NoC Class Security Violation Placement

NSNoC Message Misdirection Message Mutation Delivery Prevention Network Congestion

Variant #1 Crypto Cluster Router - - GPS IP

Variant #2 - Comm. Cluster Router CPU Cluster Router -

Variant #3 - - - UART IP

Variant #4 Comm. Cluster Router Memory Cluster Router - -

Variant #5 - - Crypto Cluster Router -

TransNoC Message Misdirection Message Mutation Delivery Prevention Network Congestion

Variant #1 Crypto Cluster Router - SHA256 IP

Variant #2 - - Memory Cluster Router DFT IP

Variant #3 Comm. Cluster Router - - -

Variant #4 - Memory Cluster Router - -

Variant #5 - - - Comm. Cluster Router

B. Inserting Security Violations

To perform a thorough and sound evaluation of our proposed
security validation approach, we developed a framework for system-
atically inserting security bugs in NSNoC and TransNoC, mimicking
the realistic nature of such bugs in terms of frequency of appearance,
excitation condition, and payload. Note that inserting all (or several)
bugs together in the same SoC would not provide a realistic target
for evaluation. The greater the number of bugs in a design, the higher
the likelihood for a validation tool to hit some of them in random
exploration. Consequently, if a validation tool can detect bugs in such
an SoC, one cannot conclude that the tool could also successfully
explore an SoC which only includes a small subset of the bugs (with
the consequence that each bug would be harder to excite).

Our approach addresses this problem by developing multiple
variants of each SoC, each with different classes of bugs. The key
observation is that certain bugs are relevant to certain IP types, e.g.,
a message misdirection attack by an IP requires controlling (and
sometimes modifying) operations of the router attached to the IP,
and typically requires a high privilege, while a flooding attack can
be performed by an IP with lower privilege. For evaluating SEVNOC,
we used five buggy variants of both NSNoC and TransNoC (in
addition to the original bug-free one). Table II shows the IPs in which
violations were inserted, and Table III provides a detailed description
of each vulnerability and its system-level impact. The bugs are culled
from real security vulnerabilities observed in industrial SoCs but
sanitized and simplified to be applied to 10 variants of the two SoC
classes as shown in Table II.

C. Evaluation and Results

We evaluated SEVNOC through a red-team/blue-team approach.
The red team determined the impacts of bugs and developed the bug
insertion method, while using different SoC variants. The blue team
designed the validation framework and infrastructure. No information
was communicated to the blue team regarding the description of bugs,
IP classes, types of NoC, or the types of bugs inserted at different
IPs. Correspondingly, no information was communicated to the red
team regarding the implementation of SEVNOC. The number of bugs
inserted at the different IPs for each variant was known only to the red

team. The experiments were performed on an AMD Ryzen3 2.6GHz
Dual-Core processor and 4GB RAM.

The process of CFG extraction takes less than 5 seconds to
complete for both NoCs. It significantly reduces the amount of
code before verification process by extracting 480 of 43000 lines
in NSNoC (eight properties), and 350 of 57000 lines in TransNoC
(seven properties). SEVNOC could detect the bugs in all variants of
NSNoC; for TransSoC, it detected all bugs other than one. The entire
validation for each variant took between 120 and 180 seconds of wall
clock time to complete. Validation of NSNoC variants typically took
about 120 seconds, and validation of TransNoC variants took about
180 seconds.

It is illustrative to explain the violation that could not be detected.
This bug is a message misdirection bug in the communication
cluster router in TransNoC #1. The bug was triggered by a specific
assignment in one of the blocks, different from the event procedure
block, which misdirected packets at specific intervals to a different
location. This led to an RTL construct where the trigger and the
event could not be mapped to each other and the extracted CFG for
analysis did not contain the event and trigger together to be examined
for violation. However, when the trigger and the event were included
within a single procedure block (without modifying functionality of
the system), the bug was easily detected by SEVNOC. The lesson
from the experience is that the CFG extraction algorithm is capable
of handling logically distant connections between events and triggers;
however, generalizing the notion of module connections to account
for structurally separated modules can facilitate extensibility and
scope of the framework. We will explore such extended formalization
in future work. When applying assertion-based verification, given
the same number of security properties (15 security properties),
40 additional lines of code need to be inserted into the design.
Moreover, the number of assertions will be enhanced when more
security properties are involved. It will be impractical to use assertion-
based runtime verification when hundreds of security properties are
introduced for NoCs, since it might create substantial space overhead
on the circuit designs and subvert the performance. On the other
hand, simulation-based verification requires well-tuned testbenches
to explore all the potential security vulnerabilities. Therefore, the

7

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE III
SECURITY VIOLATIONS

Type of Violation Mechanism of Attack Impact

Message Misdirection Rogue IP with higher privilege level modifies the
routing table and diverts traffic to an illegal desti-
nation

Leads to sensitive data leakage and unprivileged information
access to malicious IPs .

Message Mutation Rogue IP alters the contents of the inbound and
outbound traffic on the network

Compromised data integrity and can trigger undesired re-
sponse/operation from an unauthorised source. It may also
trigger a streak of challenge/response to a specific destination.

Delivery Prevention Rogue IP blocks all incoming and outgoing trans-
mission from a particular end-point

This may lead to starvation as specific IPs may always have
their packets dropped by the router and also enter a stall as
acknowledgements may never reach the intended destination.

Network Congestion Rogue IP floods the network with undesirable pack-
ets and congest the network, stopping all commu-
nication on the chip

This will cause Denial-of-Service in the system and halt normal
operation. It forces the system to go into an unbounded stall. It
may also lead to starvation of request access to specific IPs.

process of input generation and simulation will create a significant
overhead in terms of latency. Commercial verification tools such
as JasperGold took hours to completely generate all the test cases,
while our framework takes a few seconds for verifying each security
property.

VI. RELATED WORK

A significant component of SoC security validation research has
been on information flow analysis [9], [10]. In addition, formal
methods have also been used to verify security policies and validate
the correctness of the RTL for such security policies [31], [32].
Several design flows have been proposed to facilitate correct-by-
construction security assurance [33].
These approaches are hard to retrofit on existing legacy IPs. Existing
research has developed architectures for systematic security policy
enforcement, which includes untrusted NoC communications [34].
On somewhat similar grounds, Deb Nath et al. [29] proposed an
architecture-level solution for run-time detection of security-critical
events in SoC designs with NoC fabrics using security policies imple-
mented using a centralized security-policy engine. This, however, is
an architectural feature to be invoked at run-time and not a validation
technique, incurring additional integration overheads and in-field
deployment. A critical component of this work involves writing fine-
grained security policies for each type of NoC-induced vulnerability
in the SoC, and these policies need to be revised even if one entity
of the whole attack surface changes. These policies are useful in
thwarting specific known IP vulnerabilities, but take a hit when it
comes to the overall validation of the SoC. There has also been work
on security assertions in the original RTL for detecting manifested
Trojans [27].

Dynamic verification strategy to detect bugs inspired by the types
of security-critical errata in the classification phase was also proposed
[35]. However, this technique is limited in general-purpose func-
tionality due to the increasing number and complexity of invariants.
More recently, symbolic testing for IP security verification has been
proposed [36], [37]. Finally, there has been recent work on SoC
information flow validation that accounts for asynchronous events [7].
This work was applied to realistic SoC designs with multiple IP cores.
However, this approach only accounted for asynchronous resets, and
the SoCs considered implemented bus-based crossbar connection;
security of communication fabrics was not considered.

With the proliferation of NoC fabrics in System-on-Chip designs,
there has been significant research on NoC architecture, exploration,

and analysis. However, we are not aware of any validation frame-
work that accounts for security impacts of NoCs, such as message
corruption, fabrication, or misdirection, as discussed in this paper.
Research on NoC security validation and resilience has addressed
specific attack mechanisms [3], [38]. In particular, Kumar et al. [39]
developed a technique for runtime detection of Denial-of-Service
violations in NoC by integrating traffic monitors in routers. Charles
et al. [38] provide another solution for DoS mitigation, by flagging
unintended and malicious traffic to the node and not allowing it
to propagate to the entire system. There has also been work on
detecting compromised communication infrastructure using special
functionality in the firmware [3]. Network-based monitoring using
unique hardware design probes integrated into the SoC computing
tiles provides a mechanism for run-time observability of system-
level security threats [40]. One pitfall to using this technique is
scalability to support the increasing complexity of modern-day SoC
designs with hundreds of integrated IPs, as it can increase the
area and power overheads in the overall system functionality. There
has also been recent work on detecting NoC-based Trojans [41],
[42]. Unfortunately, none of these works provide a comprehensive
RTL-level validation analysis on full-scale SoC, consisting of NoC
architecture.

VII. CONCLUSION

We have developed an automated infrastructure, SEVNOC for
security validation of SoC designs that account for corruptions and
vulnerabilities arising out of NoC communications. Existing research
has shown that these fabrics can be exploited to introduce vulnerabil-
ities, resulting in malicious denouements like leaking sensitive data
and denial of service. To our knowledge, SEVNOC is the first auto-
mated security validation framework that can address the spectrum
of communication attacks on modern SoC designs. Our experimental
results show that SEVNOC can provide near complete detection
accuracy without suffering from the state explosion bottlenecks,
prevalent in tools implementing symbolic analysis. In particular,
for realistic SoCs involving 57, 000 lines of RTL implementation,
SEVNOC could complete the validation in only a few minutes. An
attractive feature of the framework is that it obviates needs for manual
abstractions to enable application of the formal infrastructure: note
that, SEVNOC works directly on RTL designs as is, without requiring
tweaks for scalability. The automation and scalability results suggest
that SEVNOC has the potential to apply to industrial SoC designs
and can be smoothly integrated with industrial flows.

8

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

A key outcome of the work is the testbed developed for evaluation
of SEVNOC. Both NSNoC and TransNoC include several realistic
features, including complete processor (RISC-V) core, memories,
hierarchical subsystems, etc. Aside from providing realistic targets
for our own evaluations, they can address the dearth of realistic SoC
benchmarks that have plagued academic research in SoC architecture
and validation.

In future work, we will improve the scalability and effectiveness
of SEVNOC, particularly for detecting violations triggered by a
combination of multiple inputs and hardware-software interactions.
We will also plan on evaluating SEVNOC on industrial applications.
In particular, many industrial SoC designs for mobile and IoT applica-
tions implement NoCs that entail communication of components with
varying trust levels [43], [44]. We will explore the use of SEVNOC
to detect information flow violations on such systems.

REFERENCES

[1] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE micro, pp. 15–31, 2007.

[2] N. E. Jerger et al., “On-chip networks,” Synthesis Lectures on Computer
Architecture, vol. 12, no. 3, pp. 1–210, 2017.

[3] D. M. Ancajas et al., “Fort-nocs: Mitigating the threat of a compromised
noc,” in ACM/IEEE DAC, 2014, pp. 1–6.

[4] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip Security
Verification and Validation. Springer, 2019.

[5] Cadence, “JasperGold Formal Security App,” www.cadence.com.
[6] Synopsys Inc., “VCFormal Formal Security App,” www.synopsys.com.
[7] X. Meng et al., “Soccar: Detecting system-on-chip security viola-

tions under asynchronous resets,” Cryptology ePrint Archive, Report
2021/309, 2021, https://eprint.iacr.org/2021/309.

[8] S. Ray et al., “System-on-Chip Platform Security Assurance: Architec-
ture and Validation,” Proceedings of the IEEE, vol. 106, no. 1, pp. 21–37,
2018.

[9] X. Guo et al., “Pre-silicon security verification and validation: A formal
perspective,” in ACM/IEEE DAC, 2015, pp. 1–6.

[10] A. Nahiyan et al., “Hardware trojan detection through information flow
security verification,” in ITC. IEEE, 2017, pp. 1–10.

[11] W. Hu, B. Mao, J. Oberg, and R. Kastner, “Detecting hardware trojans
with gate-level information-flow tracking,” Computer, vol. 49, no. 8, pp.
44–52, 2016.

[12] C. Wang, Y. Cai, and Q. Zhou, “Hlift: A high-level information flow
tracking method for detecting hardware trojans,” in 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2018,
pp. 727–732.

[13] W. Hu et al., “Property specific information flow analysis for hardware
security verification,” in Proceedings of ICCAD, 2018, pp. 1–8.

[14] G. E. Suh et al., “Secure program execution via dynamic information
flow tracking,” Sigplan Notices, vol. 39, no. 11, pp. 85–96, 2004.

[15] M. Tiwari et al., “Complete information flow tracking from the gates
up,” in Proceedings of ASPLOS, 2009, pp. 109–120.

[16] J. Oberg et al., “Theoretical analysis of gate level information flow
tracking,” in DAC. IEEE, 2010, pp. 244–247.

[17] A. Ardeshiricham et al., “Register transfer level information flow track-
ing for provably secure hardware design,” in DATE. IEEE, 2017, pp.
1691–1696.

[18] M. Qin et al., “A formal model for proving hardware timing properties
and identifying timing channels,” Integration, vol. 72, p. 123, 2020.

[19] A. Ardeshiricham et al., “Verisketch: Synthesizing secure hardware de-
signs with timing-sensitive information flow properties,” in Proceedings
of ACM SIGSAC CCS, 2019, pp. 1623–1638.

[20] John Rushby, “Noninterference, Transitivity, and Channel-Control Se-
curity Policies,” SRI, Tech. Rep., 1992.

[21] D. A. Greve, M. Wilding, and W. Vanfleet, “A Separation Kernel
Security Policy,” in ACL2 Workshop, 2003.

[22] W. A. Hunt, Jr., R. B. Krug, S. Ray, and W. D. Young, “Mechanized
Information Flow Analysis through Inductive Assertions,” in FMCAD,
2008, pp. 227–230.

[23] Cadence, “Jaspergold formal verification platform (apps),”
https://www.cadence.com/en US/home/tools/system-design-and-
verification/formal-and-static-verification/jasper-gold-verification-
platform.html, (Accessed on 05/15/2020).

[24] E. M. Clarke, O. Grumberg, and D. A. Peled, Model-Checking. Cam-
bridge, MA: The MIT Press, Jan. 2000.

[25] R. Zhang and C. Sturton, “A recursive strategy for symbolic execution
to find exploits in hardware designs,” in Proceedings of ACM SIGPLAN
FSM, 2018, pp. 1–9.

[26] A. Ahmed et al., “Directed test generation using concolic testing on rtl
models,” in DATE, 2018, pp. 1538–1543.

[27] Y. Lyu and P. Mishra, “Automated test generation for activation of
assertions in rtl models,” in ASP-DAC, 2020.

[28] “Intel baytrail products,” https://ark.intel.com/content/www/us/en/ark/pr
oducts/codename/55844/bay-trail.html.

[29] A. P. D. Nath, S. Boddupalli, S. Bhunia, and S. Ray, “Security assurance
of system-on-chip designs with noc fabrics,” IEEE Transactions on
Information Forensics and Security, vol. 15, no. 1, pp. 2808–2823, 2020.

[30] A. P. D. Nath, K. Raj, S. Bhunia, and S. Ray, “Soccom: Automated
synthesis of system-on-chip architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1–14, 2022.

[31] Y. Jin et al., “Proof carrying-based information flow tracking for data
secrecy protection and hardware trust,” in IEEE VTS, 2012, pp. 252–257.

[32] M.-M. Bidmeshki et al., “Information flow tracking in analog/mixed-
signal designs through proof-carrying hardware ip,” in DATE, 2017, pp.
1707–1712.

[33] X. Li et al., “Sapper: A language for hardware-level security policy
enforcement,” in Proceedings of ASPLOS, 2014, pp. 97–112.

[34] A. Basak et al., “Exploiting design-for-debug for flexible soc security
architecture,” in ACM/IEEE DAC, 2016, p. 167.

[35] M. Hicks et al., “Specs: A lightweight runtime mechanism for protect-
ing software from security-critical processor bugs,” in Proceedings of
ASPLOS, 2015, pp. 517–529.

[36] L. Shen et al., “Symbolic execution based test-patterns generation
algorithm for hardware trojan detection,” computers & security, vol. 78,
pp. 267–280, 2018.

[37] R. Zhang et al., “End-to-end automated exploit generation for validating
the security of processor designs,” in IEEE MICRO, 2018, pp. 815–827.

[38] S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and localization
of dos attacks in noc based socs,” in IEEE DATE, 2019, pp. 1160–1165.

[39] A. Kumar, P. Kuchhal, and S. Singhal, “Secured network on chip (noc)
architecture and routing with modified tacit cryptographic technique,”
Procedia Computer Science, vol. 48, pp. 158–165, 2015.

[40] C. Ciordas, T. Basten, A. Rădulescu, K. Goossens, and J. V. Meerber-
gen, “An event-based monitoring service for networks on chip,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 10, no. 4, pp. 702–723, 2005.

[41] T. Boraten et al., “Mitigation of denial of service attack with hardware
trojans in noc architectures,” in IEEE IPDPS, 2016, pp. 1091–1100.

[42] V. Y. Raparti et al., “Lightweight mitigation of hardware trojan attacks
in noc-based manycore computing,” in ACM/IEEE DAC, 2019, pp. 1–6.

[43] J. W. O’leary, “Verification in the Age of Integration,” in ACL2 Work-
shop, 2015.

[44] A. Basak et al., “Security assurance for system-on-chip designs with
untrusted ips,” IEEE TIFS, vol. 12, no. 7, pp. 1515–1528, 2017.

Xingyu Meng (S’20) is a doctoral student in the
department of Electrical and Computer Engineering
at the University of Texas at Dallas as part of
the Trustworthy and Intelligent Embedded System
(TIES) lab. He received his BE degree in Electronics
Science and Technology from Nankai University in
2015, and he received his MS degree in System En-
gineering from University of Texas, Dallas in 2019.
His research interests include hardware and system
security, Trojan detection and hardware verification.
His research has been published in Design Automa-

tion Conference (DAC), IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), etc.

9

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3179307, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Kshitij Raj (S’19) is a doctoral student in the
Department of Electrical and Computer Engineering
at the University of Florida, Gainesville, Florida as
part of the Rising lab. He received his B.Tech degree
in Electronics & Telecommunication Engineering
from KIIT University, India in 2017 and his Masters
degree in Electrical and Computer Engineering from
University of Florida in 2020. Kshitij is pursuing
his Ph.D. in the domain of Secure Silicon Design
and Validation. His research interests lie in the
field of Silicon Architecture, Design, Validation and

Micro-architecture Verification. His research has been published in Design
Automation Conference (DAC), Design, Automation and Test in Europe
Conference (DATE), AsianHOST Conference, etc.

Sandip Ray (SM’13) is a Professor with the De-
partment of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA, where
he holds an Endowed IoT Term Professorship at
the Warren B. Nelms Institute for Connected World.
Before joining University of Florida, he was a Senior
Principal Engineer at NXP Semiconductors, and
prior to that, he was a Research Scientist with Intel
Strategic CAD Laboratories. During his industry
tenure, he led industrial research and R& D in pre-
silicon and post-silicon validation of security and

functional correctness of SoC designs, design-for-security and design-for-
debug architectures, and security validation for automotive and the Internet-of-
Things applications. His current research targets correct, dependable, secure,
and trustworthy computing through cooperation of specification, synthesis,
architecture, and validation technologies. He is the author of three books and
over 100 publications in international journals and conferences. He has also
served as a Technical Program Committee Member of over 50 international
conferences, as the Program Chair of ACL2 2009, FMCAD 2013, and IFIP
IoT 2019, as a Guest Editor for IEEE DESIGN & TEST, IEEE TMSCS,
and ACM TODAES, and as an Associate Editor of Springer HaSS and IEEE
TMSCS. He has a Ph.D. from University of Texas at Austin.

Kanad Basu (S’07-M’12-SM’20) received his Ph.D.
from the department of Computer and Information
Science and Engineering, University of Florida. His
thesis was focused on improving signal observability
for post-silicon validation. Post-PhD, Kanad worked
in various semiconductor companies like IBM and
Synopsys. During his PhD days, Kanad interned at
Intel. Currently, Kanad is an Assistant Professor at
the Electrical and Computer Engineering Depart-
ment of the University of Texas at Dallas. Prior
to this, Kanad was an Assistant Research Professor

at the Electrical and Computer Engineering Department of NYU. He has
authored 2 US patents, 2 book chapters and several peer reviewed journal
and conference articles. Kanad was awarded the ”Best Paper Award” at the
International Conference on VLSI Design 2011. Kanad’s current research
interests are hardware and systems security.

10

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2022 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

