
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017 1515

Security Assurance for System-on-Chip
Designs With Untrusted IPs

Abhishek Basak, Member, IEEE, Swarup Bhunia, Senior Member, IEEE, Thomas Tkacik,
and Sandip Ray, Senior Member, IEEE

Abstract— Modern system-on-chip (SoC) designs involve inte-
gration of a large number of intellectual property (IP) blocks,
many of which are acquired from untrusted third-party vendors.
An IP containing a security vulnerability—whether inadver-
tent or malicious—may compromise the trustworthiness of the
entire SoC, e.g., by leaking sensitive information or causing
execution failures at key points. Existing functional validation
approaches, post-manufacturing tests, and IP trust verification
techniques are inadequate to accomplish comprehensive system-
level security assurance in the presence of untrusted IPs. In this
paper, we analyze security issues at the SoC level caused by
untrusted IPs. We also propose a novel, resilient SoC security
architecture to ensure trusted SoC operation with untrusted IPs.
Our architecture realizes fine-grained IP-trust aware security
policies in an efficient security policy checker that enables run-
time monitoring of security issues arising from untrusted IPs.
It also exploits on-chip design-for-debug architecture to ensure
trusted information flow from IP blocks to the security policy
checker. Unlike existing solutions to the untrusted IP problem,
which rely on verification of IP trust before they are integrated
into an SoC, the proposed approach follows a fundamentally
different architecture-level solution based on run-time resilience.
We demonstrate the effectiveness of this framework for system
protection using several illustrative practical use cases. We also
provide experimental results to show that the overhead of the
proposed architecture is modest on representative SoC designs.

Index Terms— Hardware Trojan, untrusted IPs, security
policy, design-for-debug, security wrapper, SoC security, resilient
architecture, Trusted SoC.

I. INTRODUCTION

W ITH increasing globalization of the design and fabrica-
tion processes, the development of a modern comput-

ing device involves a large number of participants, — often
dispersed geographically — coordinating to create a complex
supply-chain pipeline. Most computing devices are developed
as System-on-Chip (SoC) designs, which are architected by

Manuscript received August 14, 2016; revised December 2, 2016;
accepted January 3, 2017. Date of publication January 25, 2017; date
of current version April 13, 2017. The work was supported in part
by the National Science Foundation under Grant 1603483 and Grant
1603475 and in part by the Semiconductor Research Corporation under
Grant 2649.001 and Grant 2651.001. The associate editor coordinating
the review of this manuscript and approving it for publication was
Prof. Jean-Luc Danger.

A. Basak is with Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
abhishek.basak@intel.com).

S. Bhunia is with the Department of Electrical and Computer Engi-
neering, University of Florida, Gainesville, FL 32611 USA (e-mail:
swarup@ece.ufl.edu).

T. Tkacik is with NXP Semiconductors, Chandler, AZ 85226 USA (email:
tom.tkacik@nxp.com).

S. Ray is with NXP Semiconductors, Austin, TX 78735 USA (email:
sandip.ray@nxp.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2658544

integrating pre-designed and pre-verified hardware blocks,
often referred to as “intellectual properties” or “IPs”. Among
the participants in the SoC design supply chain are the IP
vendors and suppliers, the SoC integration house, the foundry,
Original Equipment Manufacturers (OEMs), and product sup-
pliers. Any player in this complex ecosystem can introduce
a security vulnerability in the design, e.g., malicious design
alterations, subversion of critical access control requirements,
etc. The source of a specific security vulnerability may be a
rogue employee, a malicious foundry, or even a hacked or
malicious design automation tool chain. Even in cases where
there is no intended malice, the aggressive time-to-market
requirements and high optimization needs may result in errors
and vulnerabilities inadvertently left into the design, which
can be exploited by a malicious adversary on-field to subvert
system security and trustworthiness. Given this situation, it
is both critical and challenging to ensure that the product
created by this complex ecosystem is trustworthy and free
from security vulnerabilities.

In this paper, we focus on system-level security vulnerabili-
ties in the SoC designs created by integration of untrusted IPs.
These IPs constitute one of the largest vulnerabilities in
the SoC design cycle. In particular, a modern SoC design
typically integrates several hundreds of IPs, most of which
are procured by the SoC integration house from third-party
vendors. It is possible for an IP to contain additional design
logic (often referred to as a hardware or firmware Trojan) that
can make the system fail during critical system operation or
leak sensitive information from the system to an unauthorized
agent. Unfortunately, malicious logic in IP design is difficult to
identify by standard functional validation [1], [2]. In particular,
Trojans are typically designed to be exercised by rare events
under very specific execution corner-cases that are difficult to
excite in a functional validation environment.

Current research on detection and mitigation of hardware
Trojans has primarily focused on trust validation for identi-
fication of malicious logic by exploiting their structural and
activation characteristics, e.g., location of unused circuits and
nets, design points triggered under rare conditions, etc. [3]–[5].
However, such techniques have typically targeted standalone
behavior of an IP block and are difficult to adapt or scale to
Trojans affecting system-level behaviors, influencing other IPs
in the SoC design.

In this paper, we develop a novel architectural solution for
addressing the problem of untrusted IP blocks. Rather than
depending on Trojan characteristics for static verification,
our solution enables development of trustworthy SoC
designs even if some IP components are untrusted. Our

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1516 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

work targets “system-level Trojans”, i.e., those affecting
the behavior of other IP cores or the interconnect fabric
in the system. We provide a detailed overview of these
Trojans and discuss the inadequacy of existing functional
validation and IP trust assurance approaches for them. Our
work thus provides a mechanism for security assurance
that is complementary to existing approaches that rely
on trust validation. Furthermore, the proposed approach
enables protection against Trojans or other malicious design
vulnerabilities detected on-field, that may have been missed
during functional or security validation. To our knowledge,
our work is the first comprehensive architecture-level solution
for providing protection against system-level Trojan attacks
in SoC designs with untrusted components.

Our architecture is based on a centralized, fine-grained
controller for SoC security policies, together with standardized
IP-trust aware security wrappers for the IPs to collect and
monitor necessary events at run time [6], [7]. We show how
to design and configure the controller and associated wrappers
to provide run-time threat mitigation from untrusted IPs. We
also discuss techniques for mitigating and protecting against
errors or malicious logic inserted in the hardware blocks
implementing the architecture itself. Finally, experiments
are performed to evaluate the overhead introduced by the
architecture. Our results show that the overhead is minimal
for realistic use-case scenarios. More importantly, the results
identify the trade-offs that an SoC integration architect needs
to consider in order to adapt our framework in the context of
an industrial SoC design.

The remainder of the paper is organized as follows.
Section II provides a general overview of SoC security poli-
cies, thereby setting up the context of our work. In Section III,
we briefly summarize an architecture called E-IIPS for imple-
menting security policies, which we use as the foundation
for the work in this paper. Section IV provides a character-
ization of system-level Trojan behaviors and their impact in
SoC designs. Section V describes our proposed security archi-
tecture, Section VI shows its application on illustrative use
cases, and Section VII provides overhead results. We conclude
in Section IX.

II. SECURITY POLICIES

Our work makes use of fine-grained system-level security
policies to protect against Trojans or vulnerabilities in
untrusted IPs. In this section, we start with a general
overview of security policies. In Section V, we will discuss
how to implement fine-grained policies to protect against
untrusted IP behavior.

Traditionally, security policies have been designed to define
control of sensitive data or assets in SoC designs. Such assets
include cryptographic and Digital Right Management (DRM)
keys, premium content, de-featuring bits, configuration
fuses as well as personal end user information, etc., and
are sprinkled across different IP blocks. Following are two
representative examples for a typical SoC.

• Example 1: During boot, data transmitted by the crypto
engine cannot be observed by any IP in the SoC fabric
other than its intended target.

• Example 2: A secure key container can be updated for
silicon validation but not after production.

Example 1 is a confidentiality requirement while Example 2
is an integrity constraint. The policies provide definitions
of (computable) conditions to be satisfied by the design
for accessing a security asset. Furthermore, these may vary
depending on the state of execution (e.g., boot time, normal
execution, etc.), or position in the development life-cycle
(e.g., manufacturing, production, etc.). Below we summarize
some typical policy classes. It is beyond the scope of this paper
to provide a comprehensive overview of different policies,
or even to discuss any of them in detail. The description
below merely provides a flavor of some existing policies,
and the interested reader is referred to existing extensive
literature [8]–[11] on security policies for more detail.

A. Access Control [12]–[14]

This is the most common class of policies, and specifies
how different agents in an SoC can access an asset at different
points of the execution. Here an “agent” can be a hardware or
software component in any IP. Examples 1 and 2 above are
examples of such policy. Furthermore, access control forms
the basis of many other policies, including information flow,
integrity, and secure boot.

B. Information Flow [15], [16]

Values of secure assets can sometimes be inferred without
direct access, through indirect observation or “snooping” of
intermediate computation or communications of IPs. Informa-
tion flow policies restrict such indirect inference. Following is
an example:

• Key Obliviousness: A low-security IP cannot infer cryp-
tographic keys by snooping only the data from crypto
engine on a low-security NoC.

Information flow policies require highly sophisticated
protection mechanisms and advanced mathematical arguments
for correctness, typically involving hardness or complexity
results from information security. Consequently they are
employed only on critical assets with very high confidentiality
requirements.

C. Liveness [17]
These policies ensure that the system performs its function-

ality without “stagnation” throughout its execution. A typical
liveness policy is that a request for a resource by an IP is
followed by an event response or grant. Deviation from such a
policy can result in system deadlock or livelock, consequently
compromising system availability requirements.

D. Time-of-Check vs. Time of Use (TOCTOU) [10], [18]
This refers to the requirement that any agent accessing

a resource requiring authorization is indeed the agent that
has been authorized. A critical example of TOCTOU is in
firmware update, where the policy requires that firmware
eventually installed on an update is the same one that has
been authenticated.

Typically, most policies relate to integration characteris-
tics of SoC designs, not individual IPs i.e., the underlying

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1517

threat model includes external attacks through software and/or
SoC interface with the system, but not malicious internal
hardware/proprietary firmware introduced in the IPs. This
threat model is reasonable for SoC designs involving primarily
in-house rather than third-party IPs. However, the latter is
becoming more widespread, allowing SoC design houses a
simpler plug-and-play approach towards designing SoCs and
thereby helping them realize stricter time-to-market require-
ments with existing resources. With this trend, along with
static trust verification of IP designs, the root of trust and
assumptions based on which security policies are implemented
currently in modern SoC designs need to be revisited and
analyzed carefully.

III. E-IIPS: A POLICY IMPLEMENTATION ARCHITECTURE

The architecture we consider in this paper is based on a
centralized, policy implementation architecture called E-IIPS,
which we developed in previous work [6], [19], [20]. Note
that the previous work was only concerned with system-level
SoC security policy implementation and did not account for
untrusted IPs. Below we provide a brief description of E-IIPS
architecture, and also point out its limitations in the context of
untrusted IPs. The following sections will explain approaches
to extend E-IIPS for untrusted IPs.

The E-IIPS architecture includes a programmable central
security policy controller (SPC) that keeps track of the sys-
tem security state and enforces the restrictions imposed by
the policies, together with security wrappers for individual
IP blocks that detect security-critical events of interest from
IP operations and communicate them to the SPC. The security
wrappers provide a standardized way for SPC to obtain
IP-specific collaterals while abstracting out the details of
internal implementation of individual IPs. They extend the
existing IP debug/test wrappers for SoC security and can be
inserted by IP providers.

As an example of policy implementation through E-IIPS,
consider a representative policy that prohibits access of first
16 (address-wise) internal registers of IP A by IP B when
A is in the middle of a specific security-critical computation.
To enforce the policy, E-IIPS must know when B attempts to
access particular local registers of A as well as the security
state of the computation being performed by A at that instant.
Considering no intrinsic untrustworthy logic in IPs A and B,
the operation flow in the E-IIPS architecture implementing the
necessary security requirement is shown in Fig. 1. When IP A
starts the particular security-critical computation as indicated
by a status flag, the corresponding security wrapper detects
the event and communicates it with the SPC via a frame.
SPC updates the security state of the SoC and disables accesses
to all registers of A by B through control logic in B’s security
wrapper, as part of this particular policy. If at this point B
attempts to access a register bit (e.g., register 7) in A’s address
space to read a configuration value, the security wrapper of B
detects this event of interest and informs the SPC. The SPC,
determining that the request of B as a violation of the policy,
denies corresponding access and maintains the disabling as it
is, in B’s security wrapper.

Fig. 1. Flow of implementation of representative SoC security policy in
E-IIPS architecture, considering internal designs of constituent IP blocks as
trustworthy.

The above example did not assume that any of the IPs
A and B to be intrinsically malicious. However, suppose that
there is indeed a Trojan in B that is triggered only under certain
rare conditions to masquerade a request of the 7th register
of A and substitute it with a fabricated request of 28th register
in A’s address space. Note that 7 shifted two bits left yields 28
in a 5 or higher bit representation, and hence the required
malicious payload logic is minimal. The fabricated request
line (which is equal to actual request line in most scenarios
and hence undetectable) goes through the security wrapper
logic whereas the line with the actual request is interfacing
with IP A. Observing the requested register address as higher
than 16, SPC grants access to B by lifting the restrictions.
IP B can easily snoop on potential system secrets stored in
7th register of A.

Of course, the Trojan may not be in the core of B but
instead in the wrapper control/detection logic and be activated
under rare system conditions in field to trigger a similar
attack. Even in a scenario when the same IP vendor provides
both the IPs A and B (e.g. two processor cores), a Trojan
could be specifically inserted inside A to leak a secret to a
system component through IP B’s interface under a certain
rare trigger condition. Unfortunately, E-IIPS is not resistant to
such intrinsic untrusted IP based system attacks. This paper
shows how to augment the foundation provided by E-IIPS to
address such attacks.

IV. SYSTEM-LEVEL SECURITY ISSUES CAUSED

BY UNTRUSTED IPS

To develop protection mechanisms for SoC designs with
untrusted IPs potentially containing system-level Trojans,
we need to first understand the operation and effect of such
Trojans. We start with an overview of system-level security
issues caused by untrusted IPs to highlight the distinction
between our work and related work on IP-level hardware
Trojans. Table I lists the key distinctions. For a SoC design, at
an event granularity or behavioral level, Trojans or malicious
logic in an IP can affect the overall system function rather

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1518 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 2. Message diagram level representation of untrustworthy IP being a (a) passive reader and modifier, (b) diverter and masquerader, with associated
security threats.

TABLE I

CURRENT TRENDS IN TROJAN RESEARCH AND SCOPE OF THIS WORK

than the IP core itself. For example, a malicious IP may send
spurious communications to other IPs resulting in leakage of
sensitive information, data corruption, or denial-of-service of
the entire system. A critical problem with such system-level
Trojans in an IP A is that their effect can only be observed in
an overall system context — typically as a direct malicious
effect on another IP B — and may remain undiscovered
in standalone functional or IP-trust validation of A. On the
other hand, due to scalability reasons, system-level validation
(of both functionality and security assurance) with real use-
cases can be exercised only on executions using fabricated
chips [21]. However, aggressive time-to-market requirements
imply a limited window for post-silicon validation before the
product goes on-field, resulting in potential escapes to shipped
systems. The objective of this work is to provide architectural
support for on-field detection (and mitigation) of system-level
Trojan threats.

A. System-Level Trojans vs. IP-Level Trojans

While there is no standard, universally-agreed taxonomy,
industrial SoC integration teams have developed a categoriza-
tion based on analysis of system-usage scenarios and pro-
tection requirements at different phases of system execution.
In particular, an untrustworthy IP can typically affect system-
level behavior through message communications, resource
sharing, and control of operation and data flow. We can
classify malicious behavior either in terms of the kind of

threat introduced, or in terms of the system-level impact
of the adversary. We can classify the rogue IP threats
into four categories [22]: (1) Interception; (2) Interruption;
(3) Modification; and (4) Fabrication. Correspondingly, in
terms of system-level impact, malicious IPs can be charac-
terized with the following taxonomy.

• Passive Reader: An IP that illegally reads/collects secret
information meant for other IPs.

• Modifier: An IP that maliciously changes communica-
tion/message content between two IPs.

• Diverter: An IP that diverts a message/information
between two IPs to a third IP.

• Masquerader: An IP that poses or disguises itself as some
other component, in order to request service from or
control the operation of other IPs.

Unlike IP-level Trojans, the taxonomies above character-
ize system-level Trojans by impact rather than their design,
implementation, or triggering characteristics. An upshot is
that the taxonomy does not directly translate to a scheme
of statically checking a design for system-level Trojans, and
one must resort to validation of the run-time system behavior
either through dynamic or formal analysis. Also, the cat-
egories are not mutually exclusive, e.g., a passive reader
may also act as a masquerader. Furthermore, as illustrated in
Fig. 2, any adversarial behavior can result in multiple threats,
e.g., a masquerader can cause any of interception, interruption,
or modification.

Below we provide some examples of system-level Trojans
arising from a sample of potentially malicious IPs. While
the descriptions themselves are simplified for pedagogical
reasons, they are inspired by realistic protection/mitigation
strategies developed by security architects in typical industrial
SoC design flows. Note however that they are only meant to be
illustrative samples; an exhaustive overview of the spectrum
of vulnerabilities caused by untrusted IPs is beyond the scope
of this paper.

B. Untrusted Processors
A typical example of a malicious logic in a proces-

sor involves exploiting reserved opcodes. Such a malicious

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1519

TABLE II

ASSUMPTIONS REGARDING TRUSTWORTHINESS OF COMPONENTS IN PROPOSED METHODOLOGY FOR AN UNTRUSTED IP

behavior avoids detection by IP-level validation techniques
unless there are (potentially expensive) checks to ensure
functional completeness of the instruction fetch logic to return
a fixed, golden set of instructions. Another example is the
generation of shadow load or stores by malicious decode
or memory access logic. Note that the malicious logic can
encompass hardware, firmware, and microcode. Such Trojans
can cause system-wide effect by using unauthorized DMA
requests at a high privilege level, potentially enabling writes
of system secrets by the memory subsystem. With memory-
mapped input-output, such writes can be performed on external
devices, thereby leaking system secrets.

C. Untrusted Memory Controller

A memory controller IP governs access to the system mem-
ory, which is shared by different IPs and system components of
the SoC design. With memory-mapped input-output and DMA,
the memory controller governs access to external devices as
well. An illustrative system-level Trojan in the memory con-
troller can tamper with stored values of a specific IP, e.g., an
IP governing an external temperature sensor. Tampering may
affect the temperature feedback control, causing the system to
overheat and fail. Such a scenario is very difficult to validate in
a standalone IP-trust paradigm, and the exact conditions for
exciting the malicious behavior may be difficult to exercise
during a post-silicon debug through typical validation use-
cases or spec-guided directed tests.

D. Untrusted Network-on-Chip
Another shared system resource which is heavily used by

the different IPs to communicate with each other to per-
form system-wide functions is the Network-on-Chip (NoC).
NoCs are composed of a hierarchy of routers or switches
which direct the packets of information from the source to
the intended destination. A malicious router can potentially
misdirect a highly secure packet (e.g., a security key from the
cryptographic module) to a device controller, compromising
the system’s digital signature, fuse or debug configuration, or
private end-user information.

E. Untrusted Device Controller
Device controllers control devices like USB, bluetooth, eth-

ernet, modem and other I/O components. A malicious device
controller may modify bits of device data input under certain
trigger events such as a particular authentication request (for
login) in a program on the processor, that would require an
user to input credentials. This intentional tampering may lead
to denial-of-service attacks.

V. SOC SECURITY ARCHITECTURE RESILIENT TO

UNTRUSTED IP

Our approach to ensure security assurance in the presence
of untrusted IPs is to develop fine-grained, IP-trust aware
security policies. We show how to implement these fine-
grained policies on top of a standard security architecture for
access control over security assets. In particular, we extend
E-IIPS, a microcontrolled, centralized architecture for secu-
rity policy implementation developed in previous work [6].
E-IIPS permits implementation of diverse system-level secu-
rity policies. The previous work primarily used it for protection
of system assets against attacks through high-level software
stacks and SoC to system interface. The key contribution
of this paper is to show how to adapt and extend such a
policy implementation architecture to provide a systematic,
disciplined and scalable approach for addressing the threats
of the aforementioned SoC level Trojans.

A. Trust Assumptions

Developing any security assurance requires an assumption
of which design components (and supply-chain entities) can
be trusted. Our framework assumes a trustworthy SoC design
integration house, collecting IPs from potentially untrusted
vendors. The key assumptions regarding integrity of com-
ponents interacting with a particular untrustworthy IP are
listed in Table II. In the IP, we assume that apart from the
standard (highly validated) test and debug wrappers, a Trojan
might be inserted anywhere within the internal control logic,
data-path and/or temporary storage. Furthermore, the E-IIPS
architecture [6] involves smart security wrappers on IPs to
communicate with the SPC. These wrappers are typi-
cally inserted by the corresponding IP providers, like most
test/debug wrappers. We assume that apart from the relatively
standard (in terms of high-level functional specification and
microarchitecture) frame generation logic and wrapper inter-
faces with SPC and local design-for-debug (DfD), a Trojan
might be present anywhere in the wrapper sub-units. However,
we assume no collusion among different (even potentially
malicious) IPs or components in the SoC. In other words, inter-
acting components coming from different IP design houses
may be untrustworthy, but they do not express their malicious
behaviors (if applicable) under the same system contexts.
For example, the debug macrocell local to the corresponding
untrusted IP is part of the SoC DfD framework and comes
from the provider of the debug infrastructure IP. Hence, even
if we consider the macrocell to be untrusted, as the IP design
houses operate independently in the normal SoC ecosystem,
the contexts under which they are malicious are completely

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1520 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 3. (a) Cross-verification based proposed methodology to detect untrusted wrappers; (b) Modifications required for re-purposing D f D for security policies
in SoC; (c) Zoomed view of the additions in IP security wrapper and corresponding D f D.

different. Hence, in the context of this untrustworthy IP, the
local DfD unit and/or the interacting IP block is trusted as
listed in Table II.

B. Untrustworthy Security Wrappers
We first consider the case where the malicious logic

is enclosed within the security wrapper. The case of a
Trojan in the IP core functionality will be discussed in
Section V-C. The solutions for the two can be effectively com-
bined to provide the desired security. To understand the issue
of malicious wrapper, note that the event monitoring/extraction
logic in a smart security wrapper is highly susceptible to
Trojan insertion, since the events detected vary according to
IP types (thus making it difficult to catch malicious logic
through validation). A malicious event detection logic may
cause the security wrapper to not report certain security-critical
events. SPC would then be oblivious to any behavior/activity
(rogue or trusted) originating inside the IP and potentially
propagating to the system level. A Trojan may also commu-
nicate to SPC that an event has occurred inside the IP when it
has not, leading to either system failure or denial-of-service.

1) Solution Methodology: Our approach involves detection
of an untrustworthy security wrapper action by verifying it
with an on-die trusted monitor at run time as shown in
Fig. 3(a). The trusted monitor is implemented using the DfD
trace macrocell local to the IP. Note that DfD instrumentation
exists for virtually all IPs in a SoC design and incorporates
logic for detecting assertions, coverage events, and checkers
for post-silicon validation. For example, a processor trace
macrocell in a SoC design includes standard instruction and
data value/address/range comparators, condition code/status
flag match check, performance counters, event sequencers,
logical event combinations etc. for validation/debug. Utilizing
this to re-purpose debug instruments for security, SPC would
configure the DfD module for the untrustworthy IP of interest
at boot/power-up to detect some or all of the security-critical
events at run time [20]. For an event communicated by the
security wrapper (or DfD), SPC compares the other’s response
(same event, wrong event, or no event) and asserts the neces-

sary security controls. The security architect can configure the
appropriate mitigation strategy as a security policy in SPC.
As an example, SPC may obtain all policy-critical events
(of IP) from the trusted DfD module in the event of one or
multiple mismatches detected from the corresponding wrapper.
However, re-purposing DfD for security requires addressing
the following trade-offs.

• Post-silicon debug and validation are themselves critical
activities performed under highly aggressive schedules.
Re-purposing the DfD should not interfere or “compete”
with debug usages of the same hardware.

• On-chip instrumentation, and in particular the debug
communication fabric, is optimized for energy and per-
formance in debug usages. While re-purposing DfD, one
must ensure that the system power/energy profile is not
significantly disrupted.

2) Implementation Note: The SPC requires an interface with
the debug framework to configure the local DfD. Fig. 3(b)
shows how to extend a typical debug access port [23] to
achieve this. The configuration register values of the associ-
ated DfD macrocells are stored as policy arguments in SPC
(Fig. 3(b)). Standard trace macrocells typically incorporate
logic resources to detect all of the required IP events. Hence,
most of them can be configured at system boot to extract
required events at run time. To ensure noninterference with
debug usage, we transmit security data from DfD to SPC via a
separate port instead of re-purposing the debug trace port and
the trace communication fabric. This port is interfaced with
the corresponding IP security wrapper to send the event infor-
mation. The corresponding architecture is shown in Fig. 3(c).

C. Untrustworthy IP Cores
To address the issue of untrusted IPs with potentially

embedded system-level Trojans, our approach is to facili-
tate systematic development of a run-time monitoring and
protection scheme for direct or indirect effects of system-
level Trojans using fine-grained security policies implemented
through SPC. We will now extend the centralized policy
framework to facilitate this usage.

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1521

Fig. 4. Architecture of enhanced IP-Trust aware security wrapper incorporating additional security monitors and interface trigger logic modules.

Event Detection: Our overall approach is to identify events
that can detect anomalies in the communication between
an untrusted IP and the rest of the SoC design. Note that
there is typically no golden RTL model for third-party IPs;
nevertheless, the SoC design integration team has access to
the high-level behavior and architectural features of the IP.
For example, in case of a processor, key parameters including
number of pipeline stages and cache levels, virtual memory
parameters, etc. are available. A key observation is that these
high-level design features, coupled with common, architecture-
level rationale can be used to verify correlations between
specific temporal events across different IP sub-components,
and thereby detect potentially un-trustworthy behavior that
might originate inside the IP and affect the SoC operations.
In particular, a functionally relevant operation, meaningful and
visible to SoC components external to the IP, incorporates
specific correlated, internal events occurring across multiple
sub-units in the IP. These corresponding events are referred
to here as “Micro-architecturally Correlated Events (MCE)”.
System-level Trojans disrupt/affect the correlation between
these spatio-temporal events. Some examples are provided
below.

Example 1: For a typical in-order processor core with
5 pipeline stages, a memory sub-system request (or sim-
ply a load/store in a RISC core) would involve a typical
MCE sequence, i.e., the decode stage deciphering the instruc-
tion to be a load/store (LD/ST), the execution unit calculating
the address and consequently the memory access stage gener-
ating the appropriate memory sub-system request. An example
processor level Trojan is one inside the memory access logic
to conditionally generate a shadow LD/ST in addition to the
normal one. Here the correlation disruption is in the form of a
single active memory instruction (after decode) in instruction
window generating two data memory requests, which does
not satisfy common architecture-level assertions for a simple
RISC processor.

Example 2: A hardware Trojan in the instruction fetch stage
of a processor, triggering a branch or jump (to potentially
a malicious source) without any previous active branch/jump

instruction or corresponding activity in the program
counter (PC) select logic is an example of not satisfying
correlation.

Example 3: In a typical memory controller architecture,
a Trojan inside the request buffer causing the earliest active
request not being served under a FIFO based scheduling policy
or a random change to row buffer based policy for a Trojan in
the arbiter/scheduler (for just a normal request; no condition
flags etc.) are examples of uncorrelated spatio-temporal events.

Example 4: A rogue router conditionally generating an addi-
tional destination address and sending the packet in addition
to the address in its active buffer also does not satisfy the
MCE typical for a router from the point of view of high-level
specification and common architecture level rationale.

The micro-architectural components required to be added,
to target this untrustworthy IP core problem are described
below.

1) IP-Trust Aware Security Monitors: For targeting con-
fidentiality (C) and integrity (I) attacks at the system level,
the payload of the Trojan in the IP would be designed by an
adversary to propagate the malicious action out of the IP. This
would invariably involve output transactions with interacting
IPs or SoC components. Detecting availability attacks is more
challenging and is dealt with later. For C/I attacks through
these untrusted IPs, we monitor high-level temporal events
across the IP sub-units that directly/indirectly affect or lead up
to these output interactions. This is done by inserting “security
monitors” inside the test/security wrapper to monitor and store
a recent history of high-level events from strategic locations
internal to the IP. An illustration of the architecture of a typical
wrapper and associated security monitors is provided in Fig. 4.
The selection of these strategic locations internal to the IP from
which the necessary “MCE” are extracted, depends on the
trade-offs between the desired range of Trojan coverage and
constraints of hardware cost as well as increased design effort.
For example, a Trojan in the control state machine of a RISC
processor may lead to easy, stealthy payload expression at
lower hardware costs from point of view of attacker, compared
to malicious insertion in the data path sub-units. Hence SoC

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1522 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

TABLE III

CATEGORIZATION OF IP-TRUST AWARE EVENTS (MCE) AND POLICIES BY IP TYPES

designer may decide based on area, power constraints etc. that
security monitors would be only inserted inside the controller
logic components, thereby not including the data paths within
the Trojan coverage range.

We developed a set of high-level IP-Trust aware security
critical events or “MCE” and associated policies for broad cat-
egories of IPs. These are listed in Table III. Depending on the
degree of untrustworthiness of the IP, extent of IP and system
level validation, and the required range of Trojan coverage,
events may be added or removed from this MCE list or may
be selectively monitored via appropriate boot/run time configu-
ration by SPC. Fig. 5 illustrates some typical potential sites for
MCE extraction across IP types. For Trojans in the fetch stage
of a simple in-order pipelined processor, a typical high-level
correlation check is to verify the instruction/s fetched against
the corresponding program counter calculated in last cycle or
presence of recent asynchronous interrupts/exceptions through
status registers. For untrusted program counter logic, this may
be subject to check one cycle back to the past instruction
fetched or decoded. Note that an attacker is not likely to
insert these Trojans in multiple sub-units internal to the IP
with a view of stealthiness and/or as part of the assumption of
no collusion between trojans in sub-units. Hence, with most
of the sub-components of the IP being actually legitimate,
a malicious trigger can be detected and flagged near its origin.

2) IP-Trust Aware Interface Triggers: In our proposed
solution, the event correlation verification is necessary only
when the corresponding IP attempts to communicate with the
other SoC components through its output interface. These are
detected by additional logic “Interface Triggers” (IT), inserted
as part of the security wrapper as shown in Fig. 4(right).
On detection, the security monitors are triggered to send
their recent security-critical event logs to the SPC. The
constraints of communication bandwidth, SPC execution
resources, power/energy profiles etc. demand for a selec-
tive, configurable trigger to verify these events. Any input
IP interface in a SoC can be categorized into four types
of signals: (1) Control, e.g., command, status, valid etc.;
(2) Data; (3) Test, e.g., scan chain inputs; and 4) Global,
e.g., clock, reset etc. [24]. The SoC designer analyzes the
security criticality of the various inter-IP control and data

inputs from system/subsystem level simulation. For example,
all read/write data accesses for a processor may be critical
at boot, while during normal execution only secure address
ranges may be relevant. These conditions are configured by
SPC in the interface trigger logic at power up to select trigger
events.

Apart from these output interface triggers, the input con-
trol/data stream must also be accounted for, e.g., for a security
critical IP it is important to take into account the source of
these inputs in determining the triggers for untrusted activity
verification. It is done with a tag (e.g., a bit), which is
associated and propagated with the communicating IP inputs,
if applicable. The tag is used in the policies to select events
to trigger on and validate, and the specific security controls to
apply at the interface logic A typical list of output interface
trigger conditions for a processor core is provided in Table IV.

3) IP-Trust Aware Security Policies: IP-Trust aware security
policies in the SPC dictate what correlation checks should be
performed between MCEs and the applicable security controls
at the interfaces of the untrustworthy IP/s before and after the
verification of its behavior. They are programmed as firmware
in the instruction memory of the SPC policy enforcer. Exam-
ples of typical correlation checks are given in Table III. These
policies govern the security controls at the interface logic of
the corresponding wrappers to prevent system compromise.
Two obvious mitigation scenarios are the following, though
more fine-grained checks can be programmed depending on
SoC security requirements.

• Disable all interface actions until verification of the recent
MCE for intended correlation by the SPC. This prevents
system-level attacks at the potential cost of some perfor-
mance overheads, which depend on frequency of such
policy occurences, current SPC loads, communication
bottlenecks etc.

• Allow the interface activities to continue, thereby allow-
ing the IP actions to propagate to other SoC components.
At the same time, the MCE are verified for correlation.
In case of undependability detected, the system would be
halted and possibly rolled back by the SPC (if applicable),
via check points. In these cases, the relative timings of
the assertion of proactive security controls (if necessary),

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1523

Fig. 5. Potential sites in the IP design for insertion of IP-Trust aware security monitors in a) MIPS processor core, b) representative memory controller and
c) NoC router.

TABLE IV

REPRESENTATIVE INTERFACE TRIGGERS FOR AN

UNTRUSTWORTHY PROCESSOR CORE

determine the extent of impact at the system level. The
performance overheads are however negligible. Enhanced
priority is applied to such policies in SPC to reduce
chances of system compromise.

VI. USE CASE ANALYSIS

Consider the application of the framework in an illustrative
system execution scenario. In this use case, we assume that the
adversary inserts Trojans in both the wrapper and the core of
the main memory controller (MC) and designs same rare event
based trigger logic for both. The attack model is as follows:

A. Information Leakage via Malicious Shadow Store to
Memory of Specific Device

For particular load/store request to protected region of mem-
ory during specific secure critical program execution (trigger),
in the scenario of cache miss and associated eviction of dirty
cache block to memory, the Trojan in the memory interface of
the memory controller (MC) is triggered to cause a payload of
an extra shadow store operation to the memory mapped region
of device of interest to the attacker. The attacker, through
a controlled program on processor can request an output to
the corresponding device. Hence potential critical assets used
by the original secure program may be potentially extracted.
The trigger also leads to activated malicious logic in the MC
security monitors to not communicate event logs to SPC on
interface triggers.

B. Assumptions

We assume that the attacker (e.g., memory controller (MC)
IP provider), can utilize the configured secure memory range
in the MC security wrapper to act as a trigger for the
inserted Trojans. Although other IP cores can be independently
malicious, in the context of this attack model, the memory
controller is the only IP considered untrustworthy. This follows
from the requirement the malicious IPs are collusion-free.
All accesses associated with the secure memory region are
disabled by the SPC until the corresponding microarchitecture
events are verified for intended correlation. The MC DfD trace
macrocell is utilized for untrusted security wrapper validation
by the SPC. The MC is assumed to constitute a request buffer,
access scheduler and controller-memory interface logic. Below
are the sequence of steps as illustrated in Fig. 6.

C. Flow of Operation

1) At the boot phase, the SPC configures the security
monitors (if applicable) and the interface trigger logic
of the MC security wrapper to program for example “all
accesses associated with secure portion of the memory
should be disabled until the preceding MC actions are
verified for trustworthiness”. The DfD trace macrocell
for MC are also configured for security wrapper verifi-
cation.

2) During normal execution, for a program executing on
the processor core, a cache miss occurs for a load-
store from/to secure memory. Associated with it is also
a cache block eviction. The processor wrapper checks
whether the memory access is allowed according to the
privilege level of the program. It passes the check and
the accesses are added to the MC request buffer.

3) At some point, along with the missed load-store, the
evicted store (ST) is scheduled by the MC scheduler
arbiter. The associated address value triggers the Trojan
to generate an additional shadow store to device memory
of attacker’s interest (payload). Consequently, both of
these requests would access the physical memory next.
However, the configured interface trigger controls of the
MC wrapper (by SPC policy) has disabled the controller
interface until the verification of past MC events. The
interface logic triggers the security monitors to send

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1524 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 6. Operation flow of the proposed solution for providing system level protection in use case scenario of Trojan in security wrapper and inside core of
main memory controller.

the event logs for check to SPC. But a Trojan (same
delayed trigger) in the monitor prevents the SPC of
being notified of these events. At the same time, the
DfD trace macrocell detects the corresponding events
of 2 scheduled stores to physical memory and informs
the SPC. Receiving nothing from the security monitors,
the SPC detects the malicious MC wrapper. The SPC
commands the MC security monitors to send the event
logs for verification.

4) Assuming the event logs to be legitimate (which can be
verified by DfD, but not shown here), the SPC analyzes
them for satisfying a correlation according to MCE of
the memory controller IP core. Consequently, according
to rule “All read-write accesses at memory interface
must be preceded by their presence in the scheduler
and the request buffer sub-units”, the correlation failure

is caught and the Trojan action detected. The access is
dropped.

5) The attacker, running a program remotely on the proces-
sor core, requests for data output from the corresponding
memory (shadow address) to the device of interest. How-
ever, with the attack thwarted by the proposed solution,
the adversary fails to extract any security critical data.

VII. OVERHEAD ANALYSIS

In this section, we consider the hardware overheads incurred
by the IP-Trust aware security monitors, inserted in the
wrappers of different IP types, for varying Trojan coverage
scenarios. Due to lack of standard open-source models of
studying SoC architecture, we have developed our own SoC
model in Verilog RTL. Fig. 7 shows the key features of this
model. Although simpler than an industrial SoC design, our

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1525

Fig. 7. a) Block Diagram of our SoC framework; the internal sub-units of the b) DLX processor, c) Representative memory controller and
d) SPI controller.

model is substantial and can be used for implementing realistic
security requirements. In particular, it includes a DLX micro-
processor core (DLX), a representative memory controller IP,
a 128b FFT engine, a 128b AES crypto core as well as a
Serial Peripheral Interface (SPI) controller. We developed an
instance of the E-IIPS framework [6] for this model; this
includes implementing security wrappers for IPs to detect
the standard set of critical events for implementing security
policies, to ensure protection against attacks via system inter-
faces and S/W stacks. In Section VI we show some of the
implemented events. We also implemented a representative
design-for-debug infrastructure, based on a simplified version
of ARM Coresight®. The framework has been functionally
validated using ModelSim for typical use cases. All analysis
for area/power was performed using 32nm technology library.

A. Security Monitor Implementations
To incorporate the proposed security monitors, we consid-

ered three IP blocks of different types, e.g., the DLX processor
core, the memory controller and the SPI controller. According
to the methodology described in Section V for untrusted
IP cores, security monitors are inserted in their wrappers at
varying spatio-temporal granularities, for verifying different
Trojan coverage scenarios. Table V lists the Trojan logic
(in terms of their effect/payload), against which protection is
ensured by these monitors and the necessary IP-Trust aware
security policies in the SPC. Interface trigger logic is also
incorporated within the wrappers. For event communication to
SPC, a separate, frame-based interface is incorporated in the
IP wrappers to avoid contention between the two traffic types.
Note that it is infeasible for the SPC to perform complete
emulation of the high-level, intended IP operation. Hence
monitors must be placed at intermediate strategic locations
in the IP as discussed in Section V, to enhance efficiency
of Trojan coverage. In scenario I of DLX Trojan coverage,

monitors are placed at input of fetch, output of decode,
and output of memory access stage, whereas in scenario
II, monitors are additionally inserted at ALU outputs and
write-back outputs. In the latter scenario, a malicious logic
triggering a branch/jump for a particular unsatisfied condition
(which implies there should be no branch/jump under normal
operation) is detected using the ALU monitor. Similarly for
the memory controller (MC) in scenario I, monitors at output
of request buffer as well as scheduler can detect any mali-
cious activity in scheduler hardware or firmware. Additionally,
storing the memory requests arriving at the input interface of
MC allows one to detect Trojans in the buffer (scenario II).

B. Results
The estimated area and power overheads for the inserted

security monitors and interface triggers in the three scenarios
of Trojan coverage for the processor core are shown in
Table VI. We note that the overhead is calculated here with
respect to the base design of DLX core with a standard secu-
rity wrapper. The overhead varies between a relatively small
(6% to 11%) across the coverage scenarios. Besides, increasing
the additional frame interface width to 256 bits from 32 bits
to transfer simultaneously the 8 temporal event logs stored in
each monitor (8 chosen according to design details) incurs
minimal additional overhead. In addition, a point to also
highlight is that for significantly increased Trojan coverage
from scenario II to III, the corresponding increase in hardware
overhead is minimal. This signifies that one could potentially
gain high run time security against an untrusted IP at minimal
hardware cost.

Similarly, the incurred hardware overheads for the memory
controller and the SPI controller are listed in Table VII.
For the memory controller, a 4KB register-based functional
memory is added to the base memory controller to calculate
the security monitor overheads. Although for small IP designs

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1526 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

TABLE V

DIFFERENT SCENARIOS OF TROJAN (REPRESENTED BY PAYLOAD) COVERAGE BY INSERTION
OF SECURITY MONITORS IN THREE IP CORES OF OUR FRAMEWORK

TABLE VI

AREA & POWER OVERHEAD OF SECURITY MONITORS IN PROCESSOR IP (ORIG. AREA AND POWER

WITH 1 KB INST., DATA MEMORY AT 32 nm - 352405 µm2, 12.56 mW)

TABLE VII

AREA & POWER OVERHEAD OF SECURITY MONITORS IN MEMORY CONTROLLER (MC) IP AND SPI CONTROLLER IP (ORIG. AREA

AND POWER OF MC AND SPI WITH WRAPPERS AT 32 nm - 629433 µm2, 13.81 mW;; 5456 µm2, 0.298 mW)

TABLE VIII

DIE AREA OVERHEAD (OVH) OF SECURITY MONITORS (SMS) WITH MAXIMUM TROJAN COVERAGE WRT.
TO OUR SoC FRAMEWORK (AREA - 13.1X106), APPLE A5 APL2498 (AREA - 69.6X106),

INTEL ATOM Z2520 (AREA - 40.2X106), ALL AT 32 nm PROCESS TECHNOLOGY

the area/power overhead could be significant with respect to
the base (e.g., in scenario II of SPI controller), the overhead
with respect to the full SoC die is insignificant for all IPs,
as shown in Table VIII. Along with our representative SoC
model, two commercial SoCs, manufactured at 32 nm, are
also taken into consideration to calculate these approximate
overheads. Note that the increase in the SPC overhead with
respect to its base value, due to incorporation of additional
IP interfaces for event logs, control signals and IP-trust aware
policies as firmware in instruction memory, has not been taken
into account in this work. However, from the sample values

in Table VIII, we believe that even after incorporation of SPC
overheads, the H/W overhead of this proposed architecture
would be minimal with respect to the full SoC die. Perhaps
more generally, our experiments show the design parameters
and trade-offs that a security architect must analyze to deploy
this framework in an industrial SoC design environment.

VIII. RELATED WORK

There has been significant previous work on understand-
ing, detecting, and mitigating threats arising from Hardware
Trojans [4], [5], [25]–[29]. This includes characterization of

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

BASAK et al.: SECURITY ASSURANCE FOR SoC DESIGNS WITH UNTRUSTED IPs 1527

Trojans based on design and activation characteristics, e.g.,
time-bombs, combinational event triggers, etc. Most test-
ing methods have been aimed at static trust validation of
IP cores [3], [4], [25], [30]. These approaches include the
detection of suspicious nets, nodes, regions or unused circuits,
and generation of optimized targeted test sets. Although effec-
tive on specific instances, these approaches have significant
false negatives/positives based on chosen test set, threshold
parameters, design type etc. The efficiency of these tech-
niques with respect to test time and Trojan coverage reduce
with increasing sizes of modern designs. Formal verification
techniques have also been used for trust validation on small
designs [30], [31], but are difficult to scale to industrial
designs consisting of hundreds of IPs. There are also recent
reports on use of run-time monitors for detecting hardware
Trojans [24], [32], but they have been specifically designed
for microprocessor cores and are not applicable for arbitrary
IPs interacting with other components in a SoC design.
Furthermore, these approaches do not address online mitiga-
tion of detected threats in a platform. Some approaches have
been studied to harden or strengthen IP designs against hard-
ware Trojan insertions [33]–[35], but they are complementary
to this work.

IX. CONCLUSION

We have presented, for the first time to our knowledge,
a comprehensive analysis of trust issues at the SoC level
caused by untrusted IP blocks. We have also presented a novel
architecture-level solution to achieve trusted SoC operation
with untrusted IPs. With growing reliance on third-party
IP blocks during the SoC design process, untrusted IPs are
rapidly becoming major security concerns for SoC manufac-
turers. Design-time IP trust verification approaches proposed
in the literature to date, fail to provide high confidence in
identifying malicious implants of all forms and types, as
well as possible exploits of apparently benign design arti-
facts, such as the design-for-test infrastructure. The proposed
architecture provides a low-cost and robust run-time defense
against untrusted IPs. The architecture employs fine-grained
IP Trust aware security policies to detect and prevent malicious
operation of an untrusted IP at the system level. It builds
system trust by considering trustworthiness of a minimal set
of standard components (e.g. design-for-debug structure and a
security policy checker), which are suitable for comprehensive
trust verification. The proposed architecture is evaluated over
diverse use-cases obtained from industry, which proves its
effectiveness for representative SoC designs. It is applicable,
in general, to various types of SoC designs and is scalable
to large complex SoCs with an arbitrary number of IPs.
Future work will involve further evaluation of the proposed
architecture with diverse SoC designs and automatic synthesis
of the security policies.

REFERENCES

[1] J. Rajendran, A. K. Kanuparthi, M. Zahran, S. K. Addepalli,
G. Ormazabal, and R. Karri, “Securing processors against insider
attacks: A circuit-microarchitecture co-design approach,” IEEE Design
Test, vol. 30, no. 2, pp. 35–44, Apr. 2013.

[2] A. Das, G. Memik, J. Zambreno, and A. Choudhary, “Detect-
ing/preventing information leakage on the memory bus due to malicious
hardware,” in Proc. IEEE DATE, Mar. 2010, pp. 861–866.

[3] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using Boolean functional analysis,” in Proc.
ACM CCS, Nov. 2013, pp. 697–708.

[4] M. Banga and M. S. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in Proc. IEEE HOST, Jun. 2010, pp. 56–59.

[5] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and
J. M. Smith, “Overcoming an untrusted computing base: Detecting and
removing malicious hardware automatically,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2010, pp. 72–159.

[6] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for system-
atic implementation of SoC security policies,” in Proc. IEEE ICCAD,
Nov. 2015, pp. 536–543.

[7] X. Wang, Y. Zheng, A. Basak, and S. Bhunia, “IIPS: Infrastructure
IP for secure SoC design,” IEEE Trans. Comput., vol. 64, no. 8,
pp. 2226–2238, Aug. 2015.

[8] J. Rushby, “Noninterference, transitivity, and channel-control security
policies,” SRI, Menlo Park, CA, USA, Tech. Rep. CSL-92-2, 1992.

[9] X. Li et al., “Sapper: A language for hardware-level security pol-
icy enforcement,” in Proc. Archit. Support Program. Lang. Oper.
Syst. (ASPLOS), 2014, pp. 97–112.

[10] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor, “Security
of SoC firmware load protocol,” in Proc. IEEE HOST, May 2014,
pp. 70–75.

[11] M. Sastry, I. Schoinas, and D. Cermak, “Method for enforcing resource
access control in computer system,” U.S. Patent 20 120 079 590 A1,
Mar. 29, 2012.

[12] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and N. Ashokan,
“ConXsense: Automated context classification for context-aware access
control,” in Proc. ASIACCS, 2014, pp. 293–304.

[13] M. Conti, B. Crispo, F. Fernandes, and Y. Zhauniarovich, “CRêPE:
A system for enforcing fine-grained context-related policies on
Android,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 5,
pp. 1426–1438, Oct. 2012.

[14] R. Hull, B. Kumar, P. F. Patel-Schneider, A. Sahuguet, S. Varadarajan,
and A. Vyas, “Enabling context-aware and privacy-conscious user data
sharing,” in Proc. IEEE Int. Conf. Mobile Data Manage., Jan. 2004,
pp. 187–198.

[15] J. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. IEEE Symp. Security Privacy, Apr. 1982, pp. 11–20.

[16] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for infor-
mation flow in object-oriented programs,” in Proc. 33rd ACM
SIGPLAN-SIGACT Symp. Principles Program. Lang. (POPL), Jan. 2006,
pp. 91–102.

[17] B. Alper and F. B. Schneider, “Recognizing safety and liveness,” Distrib.
Comput., vol. 2, no. 3, pp. 117–126, 1987.

[18] N. Borisov, R. Johnson, N. Sastry, and D. Wagner, “Fixing races for fun
and profit: How to abuse Atime,” in Proc. 14th USENIX Secur. Symp.,
Jul. 2005, pp. 303–314.

[19] S. Ray and Y. Jin, “Security policy enforcement in modern SoC designs,”
in Proc. IEEE ICCAD, Nov. 2015, pp. 345–350.

[20] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible SoC security architecture,” in Proc. IEEE DAC, Jun. 2016,
pp. 1–6.

[21] P. Patra, “On the cusp of a validation wall,” IEEE Design Test Comput.,
vol. 24, no. 2, pp. 193–196, Mar. 2007.

[22] C. P. Pfleeger and S. L. Pfleeger, Security Computing. Englewood Cliffs,
NJ, USA: Prentice-Hall, 2007.

[23] Coresight Debug and Trace. [Online]. Available: https://developer.arm.
com/products/system-ip/coresight-debug-and-trace

[24] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,”
in Proc. IEEE Symp. Secur. Privacy, May 2010, pp. 173–188.

[25] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. IEEE HOST, Jun. 2011,
pp. 67–70.

[26] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” IEEE Design Test Comput., vol. 27, no. 1,
pp. 8–9, Feb. 2010.

[27] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojan:
Threats and emerging solutions,” in Proc. IEEE Int. High Level Design
Validation Test Workshop (HLVDT), Nov. 2009, pp. 71–166.

[28] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in Proc. IEEE Symp. Secur. Privacy, May 2011, pp. 49–63.

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

1528 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

[29] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in Proc.
CHES, Sep. 2009, pp. 396–410.

[30] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf., Jun. 2015, pp. 1–6.

[31] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Trans. Inf.
Forensics Security, vol. 7, no. 1, pp. 25–40, Feb. 2012.

[32] H. David, J. Dubeuf, and R. Karri, “Run-time detection of hardware
Trojans: The processor protection unit,” in Proc. IEEE ETS, May 2013,
pp. 1–6.

[33] Y. Alkabani, “Trojan immune circuits using duality,” in Proc. IEEE DSD,
Sep. 2012, pp. 177–184.

[34] X. T. Ngo, S. Bhasin, J. L. Danger, S. Guilley, and Z. Najm, “Linear
complementary dual code improvement to strengthen encoded circuit
against hardware Trojan horses,” in Proc. IEEE HOST, May 2015,
pp. 82–87.

[35] R. S. Chakraborty and S. Bhunia, “Security against hardware
Trojan attacks using key-based design obfuscation,” J. Electron. Test.,
vol. 27, no. 6, pp. 767–785, 2011.

Abhishek Basak (M’15) received the bachelor’s
degree in electrical engineering from Jadavpur Uni-
versity, India, in 2010, and the Ph.D. degree in
computer engineering from Case Western Reserve
University, Cleveland, OH, USA, in 2016. He is
currently a Research Scientist in Security and Pri-
vacy Research, Intel Laboratories, Intel Corporation,
Hillsboro, OR, USA. His current research interests
include the design and implementation of new secu-
rity features for processor cores across all domains,
analysis of attacks on machine learning platforms,

and potential countermeasures. During his Ph.D., his overall research focus
was mainly on system and architecture level co-design of infrastructure
and primitives for enhancing the security and trustworthiness of integrated
circuits. As part of his Ph.D. studies, he has also led research in low-power
design of wearable, miniaturized ultrasonic imaging system for point-of-care
monitoring applications. He has over ten first author publications in premier
conference/journals in his corresponding research areas of interest.

Swarup Bhunia (SM’09) received the B.E. degree
(Hons.) from Jadavpur University, Kolkata, India,
the M.Tech. degree from the IIT Kharagpur,
Kharagpur, India, and the Ph.D. degree from Purdue
University, West Lafayette, IN, USA. He is cur-
rently a Professor with the University of Florida,
Gainesville, FL, USA. Earlier, he was appointed as
the T. and A. Schroeder Associate Professor of Elec-
trical Engineering and Computer Science with Case
Western Reserve University, Cleveland, OH, USA.
He has over ten years of research and development

experience with over 200 publications in peer-reviewed journals and premier
conferences. His research interests include hardware security and trust,
adaptive nanocomputing, and novel test methodologies. He received the IBM
Faculty Award (2013), the National Science Foundation Career Development
Award (2011), the Semiconductor Research Corporation Inventor Recognition
Award (2009), and the SRC Technical Excellence Award (2005), and several
best paper awards/nominations. He has been serving as an Associate Editor of
IEEE TRANSACTIONS ON CAD, IEEE TRANSACTIONS ON MULTI-SCALE

COMPUTING SYSTEMS, the ACM Journal of Emerging Technologies, and
the Journal of Low Power Electronics; served as a Guest Editor of the IEEE
Design & Test of Computers (2010, 2013) and IEEE JOURNAL ON EMERGING

AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (2014). He has served
as a Co-Program Chair of IEEE IMS3TW 2011, IEEE NANOARCH 2013,
IEEE VDAT 2014, and IEEE HOST 2015, and in the program committee of
many IEEE/ACM conferences.

Thomas Tkacik received the B.S. degree from the
University of Virginia in 1980, the M.S. degree from
the California Institute of Technology in 1981, and
the Ph.D. degree from the University of Virginia in
1986, all in electrical engineering. From 1986 to
1993, he was with General Motors Research Labora-
tories, focused on automotive computer architecture,
VLSI design, and robotics. From 1993 to 1998,
he worked at Motorola on behavioral synthesis,
and then on security. In 2004, Motorola spun off
Freescale, which merged with NXP in 2016. For the

past 18 years, he was involved in adding increasing levels of hardware security
and trust to processor SoCs used for cell phone, multi-media, and networking
applications. He is an NXP Master Inventor. He has published about a dozen
papers, and has over 35 U.S. patents. His current research interests include
designing and testing hardware random number generators for cryptographic
purposes.

Sandip Ray (SM’13) received the Ph.D. degree
from The University of Texas at Austin. He was a
Research Scientist with the Intel Strategic CAD Lab-
oratories, where he was involved in the pre-silicon
and post-silicon validation of security and func-
tional correctness of SoC designs, and design-for-
security and design-for-debug architectures. He is a
Senior Principal Engineer with NXP Semiconduc-
tors, where he leads research and development on
security validation for automotive and Internet-of-
Things applications. He is the author of three books

(two upcoming) and over 60 publications in international journals and
conferences. His research involves developing correct, dependable, secure,
and trustworthy computing through cooperation of specification, synthe-
sis, architecture, and validation technologies. He has served as a Program
Committee Member for over 40 international conferences, and as a Program
Chair for the Formal Methods in Computer-Aided Design. He currently
serves as an Associate Editor of the IEEE TRANSACTIONS ON MULTI-SCALE
COMPUTING SYSTEMS and Springer HaSS journals.

Authorized licensed use limited to: University of Florida. Downloaded on March 14,2020 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

