
2808 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Resilient System-on-Chip Designs
With NoC Fabrics

Atul Prasad Deb Nath , Student Member, IEEE, Srivalli Boddupalli, Student Member, IEEE,

Swarup Bhunia , Senior Member, IEEE, and Sandip Ray, Senior Member, IEEE

Abstract— Modern System-on-Chip (SoC) designs integrate a
number of third party IPs (3PIPs) that coordinate and com-
municate through a Network-on-Chip (NoC) fabric to realize
system functionality. An important class of SoC security attack
involves a rogue IP tampering with the inter-IP communication.
These attacks include message snoop, message mutation, mes-
sage misdirection, IP masquerade, and message flooding. Static
IP-level trust verification cannot protect against these SoC-level
attacks. In this paper, we analyze the vulnerabilities of system
level communication among IPs and develop a novel SoC security
architecture that provides system resilience against exploitation
by untrusted 3PIPs integrated over an NoC fabric. We show how
to address the problem through a collection of fine-grained SoC
security policies that enable on-the-fly monitoring and control of
appropriate security-relevant events. Our approach, for the first
time to our knowledge, provides an architecture-level solution
for trusted SoC communication through run-time resilience in
the presence of untrusted IPs. We demonstrate viability of our
approach on a realistic SoC design through a series of attack
models and show that our architecture incurs minimal to modest
overhead in area, power, and system latency.

Index Terms— SoC security, NoC security, resilient architec-
ture, untrusted IPs, trusted SoC.

I. INTRODUCTION

MOST modern electronic systems are architected as
System-on-Chip (SoC) designs by integration of pre-

designed hardware blocks, — referred to as “Intellectual
Properties” or “IPs”, — which communicate through a variety
of network-on-chip (NoC) fabrics to realize the system func-
tionality. In current practice, an SoC design house procures
IPs from third-party vendors across the globe. The use of
such third-party IPs (3PIPs) vastly accelerates development
of complex system functionalities and facilitates meeting of
aggressive time-to-market constraints. However, the global
complex supply-chains involved in 3PIP development and
delivery make it difficult to ensure quality and trustworthiness
of 3PIPs. It is common for many IPs to contain errors and
misconfigurations that can undermine the security of the entire
system and make it vulnerable to malicious, in-field exploits.
Given the high design complexity of modern SoC designs,

Manuscript received July 23, 2019; revised November 25, 2019 and
February 14, 2020; accepted February 19, 2020. Date of publication March 2,
2020; date of current version March 24, 2020. The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Prof. Chip-Hong Chang. (Corresponding author: Atul Prasad Deb Nath.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Florida, Gainesville, FL 32611 USA (e-mail: atulprasad@
ufl.edu; bodsrivalli12@ufl.edu; swarup@ece.ufl.edu; sandip@ece.ufl.edu).

Digital Object Identifier 10.1109/TIFS.2020.2977534

as well as the shortening validation cycle in response to time-
to-market constraints, it is impossible to explore the large
vulnerability space during SoC security validation. Unsurpris-
ingly, recent years have seen several escapes of security bugs
to post-silicon or even deployment, often resulting in costly
and error-prone in-field patches, and damage to company
profits and reputation [1]–[3].1

An important class of security vulnerabilities pertains to
the communication of IPs through the NoC fabric. NoC
fabrics have become popular in recent years, as it is getting
increasingly difficult to scale traditional crossbar and bus-
based communications with the increasing number of IPs.
NoCs realize on-chip communication with a collection of
routers connected in a topology customized for the target SoC,
and can enable integration of diverse, heterogeneous IPs with a
variety of interfacing protocols [5], [6]. Unfortunately, NoCs
can introduce some unique security challenges. First, since
NoCs connect all the SoC components in a single substrate,
attacks on on-chip networks can easily undermine coordination
and communication among IPs with potentially catastrophic
system-level effects. Consequently, trustworthiness of modern
SoC designs critically depends on resilience and robustness of
on-chip networks. Furthermore, while the same individual IPs
are used across different SoC products (and hardened through
reuse), the NoC topologies and consequent communication
pattern among IPs are typically unique to a specific SoC target.
This makes it more likely for security vulnerabilities in a
specific communication sequence to be missed or overlooked
in validation and escape to silicon or production. Finally,
since security vulnerabilities in communication can stem from
a collaboration among malicious hardware, firmware, and
software components, detecting such vulnerabilities is beyond
the scope of static IP-trust verification tools [7]–[9].

In this paper, we introduce a security architecture that
ensures resilience of SoC designs against attacks on NoC
communications. The goal of the architecture is to ensure
that a malicious IP cannot subvert the communication and

1Hicks et al. [1] explored a total of 301 bugs obtained from commercial
errata documents/bug reports [2], [3] and demonstrated the security criticality
of 28 bugs. Documented reports have been found on the exploitation of direct
jumps to escape the sandbox of AMD CPUs and execute arbitrary code outside
the sandbox; such violation can cause illegal root access and execution of
malicious piece of code [2]. Intel published an errata document that enlists
129 known bugs of Intel’s Core 2 Duo processor family [3]. The presence of
such security critical bugs can severely affect trusted SoC operation leading
to functional failure [4].

1556-6013 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0050-8379
https://orcid.org/0000-0001-6082-6961

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2809

coordination of the entire system. Our key idea is to develop
a hierarchical, distributed architecture that enforces system-
level resilience through a collection of local and global policy
enforcements. To realize this approach, we develop an adver-
sary taxonomy covering major communication attack models
for NoC, and show how the architecture provides protection
and resilience under a reasonable trust model. In particular,
we show (1) how to ensure resilience against communica-
tion attacks through a collection of fine-grained system-level
security policies, and (2) how to implement such fine-grained
policies through a centralized Security Policy Engine (SPE)
and distributed Satellite Units (SUs) even in the context of
untrusted communication.

In spite of the ubiquity of NoC fabrics in modern SoC
designs and the consequent critical need for a security archi-
tecture to protect the system against attacks on the fabrics,
we found that the current research work is inadequate to
address this problem. In Section VIII we provide a fuller
comparison of the scope of our work with existing literature.
Previous works on NoC security have focused on resilience
against specific Trojan attacks, data leakage, and flooding
attacks. However, security vulnerabilities for SoC designs with
NoC fabrics go significantly beyond these attacks, e.g., in addi-
tion to jamming or flooding, an IP can misdirect an in-flight
message, masquerade as another IP, observe a message it is
not authorized to observe, etc. We believe our work provides
the first security architecture that enables comprehensive,
systematic implementation of resiliency mechanisms against
the spectrum of NoC communication attacks.

The primary contribution of the paper is an approach for
implementing fine-grained security policies to protect an SoC
design against a variety of attacks on communications through
NoC fabrics, resulting in an architecture that addresses the
critical problem of enabling systematic implementation of
resilience mechanisms in modern SoC communications: in the
absence of such a framework, the architect must resort to
implementing security protection in an ad hoc manner across
the entire SoC and interleaving those mechanisms with func-
tionality. Such practice provide key source of design complex-
ity in security architecture of today’s SoC designs, and result in
significant complexity, bugs, and misconfigurations [4]. It also
makes it difficult to verify the implementations since such
verification needs to consider the entire SoC and conflation
of functionality with policy implementation.

In summary, the paper makes the following important con-
tributions.

• We provide an architectural framework to ensure
resilience of system communication in the presence of
untrusted 3PIPs.

• We demonstrate viability of a centralized security archi-
tecture, in conjunction with distributed units, for security
enforcement in the context of NoC-based SoC designs.

• We perform a comprehensive security analysis of NoC
fabrics for each critical category of communication
attacks, i.e., message mutation, message misdirection,
IP masquerade, message observability, and message
flooding.

• We implement the proposed architecture on a realistic
SoC design and showed that it incurs decent overhead in
terms of area, power, and latency costs.

The remainder of the paper is organized as follows.
Section II provides the relevant background SoC security
policies, on-chip networks, and policy implementation through
security architectures. Section III discusses our high-level idea
and explains the key distinctions of our approach from other
related architectural frameworks for SoC security. Section IV
highlights the key security requirements of system level com-
munication through the on-chip network. We give details of
our solution in Section V, and demonstrate various policies
and implementation details in Section VI. Our experimental
results are described in Section VII. We discuss related work
in Section VIII, and conclude in Section IX.

II. BACKGROUND

A. SoC Security Policies

Security policies govern the confidentiality, integrity, and
availability requirements of assets, i.e., sensitive data or infor-
mation in SoC designs. Such assets include system collaterals
and artifacts (e.g., cryptographic keys, defeature bits, man-
ufacturer firmware, etc.) and sensitive end-user information
(e.g., health information, financial transaction records, con-
tacts, emails, etc.). These assets are usually sprinkled across
the entire SoC over various IP blocks. Security policies help IP
designers and SoC integrators map the security requirements
of the assets into actionable design constraints. Representative
examples of SoC security policies would be as following:

• Example 1: At system boot phase, the data transmitted by
the crypto blocks cannot be snooped by any other SoC
component other than the target IP.

• Example 2: Secure key containers in the SoC platform are
allowed to be updated during silicon validation phase; no
updates are allowed after production.

Example 1 is a confidentiality requirement and Example 2
is an integrity constraint. There are three crucial aspects in
security policy designs: (1) how to protect an asset; (2) from
whom to protect; and (3) when to protect. Consequently, policy
requirements vary significantly based on the state-of-execution
(e.g., normal operation, boot mode, crypto mode, etc.) and
stage in SoC life-cycle (e.g., architecture, implementation,
security validation, etc.).

B. NoCs and Their Role in SoC Communication

The primary mechanism of coordination for IPs in an SoC
involves message-based communication. Consequently, design
of communication fabrics is a crucial activity of SoC design.
In the past, communication fabrics were implemented through
a point-to-point, cross-bar, and bus-based architecture. These
architectures had the benefit of being simple, but unfortunately
incur prohibitive expense in design complexity, area, and
power dissipation for modern SoC designs with hundreds of
integrated IPs. Fabrics based on on-chip networks have the
advantage of being scalable and power-efficient, and have
consequently superseded other communication architectures in

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2810 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

modern SoCs. An NoC involves a collection of routers con-
nected to realize a target topology. NoC topologies for many
industrial SoC designs realize a tree network, although other
networks such as cycle or mesh are also in use [10]. Routers in
an NoC typically include configurable routing tables which can
be reconfigured if necessary by the operating system at boot-
time or under certain circumstances during execution (e.g.,
on detection of congestion or transmission failure in certain
paths). The configurability of routing tables enables the reuse
of the same router IP to realize different network topologies,
and enables error-tolerant communication during execution.
A key advantage of NoC architecture is the ease of implement-
ing power management with low overhead: low power mode
can be implemented by simply shutting off (or reducing high-
speed functionality) routers in the sub-network when message
communication through the sub-network is reduced.

III. AN ARCHITECTURAL APPROACH TO SOC SECURITY

Our work entails a security architecture framework for
NoC-based SoC designs. The architecture can be used to
systematically implement diverse security policies to protect
inter-IP communications against a variety of communication
attacks. The goal is to provide a platform for the security archi-
tect to implement the policies that ensure system resiliency
when the inter-IP communication is susceptible to various
attacks. The result is a trusted, robust SoC architecture even
when built through integration of untrusted IPs.

Our approach is inspired by prior work on the E-IIPS
architecture, [11], [12], an architectural framework devel-
oped for flexible implementation of SoC security policies.
It includes a central “security policy engine” (SPE) and smart
security wrappers implemented around each IP. The security
wrappers detect security critical events at individual IPs and
communicates them to SPE. SPE monitors the security state
of the SoC at system execution time and enforces the policy
restrictions upon notification of security critical events by the
wrappers. The E-IIPS architecture was used to implement
diverse SoC security policies. The proof-of-concept implemen-
tation of E-IIPS was demonstrated on an SoC model with
point-to-point interconnects.

However, a key limitation of such architecture is the reliance
on trusted communication between the IPs. The architecture
operated correctly only under the condition that the inter-
IP communications are tamper-proof (i.e., messages cannot
be tampered or interrupted while in flight) and are delivered
within a short communication latency. This enabled efficient
implementation of a centralized security policy engine to
detect suspicious activities in different IPs and their secu-
rity wrapper interfaces. Given these requiremements, previ-
ous work targeted only SoC designs with point-to-point and
crossbar communications. However, these assumptions are
infeasible for practical SoC designs where communications
are implemented through NoC fabrics. In particular, since the
policies are controlled by a centralized controller, every inter-
IP communication must be routed to the policy engine to check
for trustworthiness; in an NoC-based SoC, the result would
be a prohibitive explosion in SoC communication and corre-
sponding traffic congestion. Furthermore, the assumption of

trustworthy communication is invalid for an NoC susceptible
to communication attacks. In fact, communication is a critical
target of attack in modern SoC designs; furthermore, they
are difficult to detect during security validation as they might
involve subtle and complex interleaving of inter-IP messages
that are difficult to exercise.

Our work shows how to achieve system-level resiliency
in the presence of untrusted on-chip communication through
SoC security policies even in the context of NoC fabrics.
Our approach removes the bottleneck of a centralized policy
controller by introducing satellite units (SUs) integrated with
individual IPs; policy decisions that can be handled locally
in an IP are handled by these units while global decisions
are taken by a centralized control. We show how this hierar-
chical implementation enables disciplined security protection
for NoC communication with little additional overhead in
performance or network congestion. The attack models and
subsequent protection mechanisms considered in this paper are
analyzed to account for the area and power cost as well as the
latency and congestion due to the communication overhead.
Note that development and augmentation of a centralized
security architecture, originally developed for point-to-point
SoC models, to work in tandem with distributed architectural
units on an on-chip interconnect fabric is a non-trivial research
task, as reflected in many of the design choices of our architec-
ture. The proposed architecture is developed with augmented
centralized security architecture that work in conjunction with
distributed policy enforcement units, enhanced with standard-
ized interfaces and communication protocol compatible with
open-source bus and NoC protocol while preserving the core
functionality of security policy enforcement on detection of
violating events.

IV. ATTACK MODEL ANALYSIS FOR

NoC-BASED SoC DESIGNS

The advent of NoCs in on-chip communication has intro-
duced novel vulnerabilities and attack surfaces compared to
traditional point-to-point, shared bus, and cross bus-based SoC
interconnects. The on-chip communication among the IPs via
NoC components (e.g., routers) can be maliciously altered to
launch attacks leading to information leakage, data corruption,
denial-of-service, etc. The following two scenarios illustrate
the nature of these attacks. Albeit simplified, they are sanitized
versions of actual vulnerabilities exercised on industrial SoC
designs during security validation.2

2While security flaws in industrial NoCs have not been reported to date,
the increased adoption of 3PIPs by fabless semiconductor companies make
such threat models comprised of rogue NoC IPs significantly relevant [13].
We participated in many discussions with researchers from industry, academia,
and government during technical conferences and discussion forums where
NoC security flaws have been identified as a critical issue that needs to
be addressed to ensure trusted system execution. Indeed, the motivation
for the threat models and issues presented in the paper came from such
discussions. The vulnerability exercises presented in this work reflect the
authors’ own industry experience and the common practices of security and
reliability assurance in industrial NoCs. For instance, the resilience package of
FlexNoC [14] protects packet headers to prevent masquerading and message
mutation attack, checks the validity of packets and control registers to prevent
non-observability and message misdirection attack, and implements strategies
for transaction time-out and unit duplication to prevent denial-of-service
attack.

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2811

Fig. 1. An illustrative depiction of potential vulnerabilities in on-chip
communication amid the presence of untrusted IPs and compromised NoC
(the tree topology network in this figure is inspired by realistic SoC designs
in current industry practice).

Example 1: A rogue IP A (potentially running malicious
software at a high privilege level) misconfigures the routing
tables for a router to misdirect sensitive information to an
accomplice IP B leading to eventual information leakage and
violation of system confidentiality.

Example 2: A rogue IP A transmits a large number useless
but valid message packets, filling the ingress and egress queues
of the different routers. This can result in high network latency,
packet drops, denial of service, or even overflow of ingress and
egress queues leading to confidentiality or integrity breaches.

To our knowledge, there is no standard, universally accepted
taxonomy for attack models in NoC-based SoC designs.
In industrial practice, SoC integration teams usually define
the key security requirements of on-chip communication based
on system use-case scenarios and protection requirements of
SoC assets at different points of system execution. We have
developed a taxonomy of attacks on NoCs to fill this crucial
gap. The attack taxonomy is depicted in Fig. 2. While not
comprehensive, it covers a broad range of communication
vulnerabilities of on-chip interconnects. Attacks are classi-
fied broadly into two categories i.e., (i) attack surface and
(ii) action characteristics. Each category is further classified
into attack mediums, attack origin, attack payloads, etc. Note
that any given attack can lead to more than one kind of system-
level impact. In general, any malicious IP and compromised
NoC can disrupt the on-chip communication through message
passing, resource sharing, and altering the operation and data
flow. However, based on the system-level impact of different
attack models, the security requirements of on-chip communi-
cation in NoC-based SoC designs can be broadly categorized
as follows:

1) Misdirection prevention: An unauthorized IP should not
be able to act as a diverter, i.e., misdirect the messages
from their original destinations in the NoC fabric. If this
requirement is violated, a rogue IP can maliciously
change the router configuration to divert messages to
invalid or unauthorized destination.

Fig. 2. A taxonomy of attacks on NoC.

2) Masquerade prevention: An unauthorized IP should not
be able to act as a masquerader, i.e., disguise itself as
a different (trusted) IP. If this requirement is violated,
a rogue IP can to get access to secure messages, request
unauthorized service, or disrupt inter-IP communication.

3) Message immutability: An unauthorized IP should not be
able to act as a modifier, i.e., alter the messages passing
through on-chip network. If this requirement is violated,
a rogue IP can maliciously change or corrupt data
packets between two trusted interacting IPs, possibly in
collusion with a compromised NoC component.

4) Non-observability: An unauthorized IP should not be
able to act as a active/passive reader and snoop/read/
collect messages illegally through the on-chip net-
work. If this requirement is violated, a rogue IP can
to get access to secure messages and leak sensitive
information.

5) Flooding and congestion prevention: An unauthorized IP
should not be able to act as a Denial-of-service (DoS)
attacker and generate or misdirect messages illegally to
create flooding and congestion in the on-chip network.
If this requirement is violated, a rogue IP can disrupt
secure NoC communication leading to operational fail-
ure of the SoC.

The above categorization of NoC security requirements is
based on the system-level impact of potentially malicious
activity in the NoC rather than IP-level security vulnerabilities.
Furthermore, collusion among untrusted/compromised IPs can
lead to attack instances causing security violations in multiple
categories. The consequence of these attacks leads to the
violation of high-level security requirements of the SoC assets,
namely confidentiality, integrity, and availability.

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2812 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE I

TRUST MODEL OF THE PROPOSED FRAMEWORK

Fig. 3. A high-level overview of proposed security architecture in a tiled
many core SoC design with on-chip network (a mesh topology network
is shown in the figure to illustrate the compatibility and scalability of our
architecture with complex SoC designs).

V. RESILIENT ARCHITECTURE FOR UNTRUSTED IPS

A. Architectural Components

Our architecture includes two major components: (1) a dis-
tributed Satellite Unit (SU) at each IP and router of the SoC
platform to monitor security critical events, assert appropriate
security controls, and establish a standardized communication
among the IPs, routers, and the security policy engine; and
(2) a centralized and dedicated Security Policy Engine (SPE)
connected to the NoC fabric as an infrastructure IP for
implementing, modifying, and updating SoC security policies
and system-level security monitoring. Fig. 3 provides a high-
level overview of our framework. It shows how the proposed
framework can be implemented on complex heterogeneous
tiled SoCs with on-chip networks.

1) Satellite Units (SUs): We implement satellite units (SUs)
at each IP and router block. They are designed with security
wrappers, interface action detection logic, and frame-based
interface for communication with centralized SPE. These
units are active agents designed to make mitigation decisions
without intervention from SPE based on local information.
This functionality is critical to ensure that the NoC bandwidth
is not clogged with communications between IPs and SPE.
Consequently, these are complex designs incorporating enough
“intelligence” to act as local policy brains, while ensuring
that cost in area and power are not excessive. These units
monitor security critical events of interest, send triggered event
information to the central SPE, and enforce security policy
restrictions in co-ordination with SPE.

a) Security wrappers: Security wrappers are designed
by extending the IEEE P1500 test wrappers and the
ARM®Coresight™ debug wrappers. IEEE P1500 standard is

comprised of a core wrapper architecture, primarily to support
access to internal signals of the cores. The wrappers include
boundary register cells for the functional I/O ports of the IP
cores. We tailored the standardized wrapper and boundary
registers to monitor and store the events of interest. In addition,
we achieved enhanced flexibility in policy implementation
by obtaining improved controllability and observability over
required signals through Macrocells, designed in accordance
to ARM®Coresight™ architecture. These local modules aka
Macrocells are designed and augmented with configuration
register interfaces to function as debug wrappers in conjunc-
tions with the customized test wrappers. These are instantiated
at each IP and interfaced with the wrappers for retrieving event
information. The wrappers extract local security critical events
relevant to the policies based on different operating states of
the corresponding IP and router. We categorized the events
according to the IP types. Examples of such categorization
include events of the DMA (Direct Memory Access) read/write
requests to specific address ranges in memory IPs, system
controller interrupts in processor IPs, etc. The event related
meta-data (e.g., DMA burst size, page size, address range,
etc) is extracted by the wrappers to be utilized by SUs and
communicated with SPE.

b) Interface actions detectors: Our goal is to prevent the
propagation of malicious activity through the NoC and result
in system-level impact. The interface action detection logic
monitors critical communication events. On detection of a
triggered event, the current transaction is stalled by the SU and
the event information is sent to the SPE. To avoid potential
bottleneck due to traffic congestion, the logics are configured
at boot time to detect and verify a specific set of security
critical events based on the IP type and attempted transactions.
To implement the trigger mechanism, IP interface signals are
classified into four basic types (e.g., control, data, global, and
test signals), and logics are designed to monitor the control
and data signals of the output interface.

c) Frame generation interface: The micro-architectural
events are monitored, analyzed, and stored by the SUs. The
communication interface of SU generates frame-based packets
with security-critical event meta-data for IP-specific temporal
events and critical actions detected by the activity detection
circuitry. The frame-based interface facilitates a standard-
ized communication for sending data packets over the NoC.
To enable portability of event detection logic for multiple
IPs, SUs include configuration registers which are config-
ured at boot-time by the SPE. In this work, our assumption
(Table I) is that the communication between SPE and SU is
trusted. In practice, this trust is enforced in various ways, e.g.,
through special encryptions and communication channels. For
such methods to be effective, it is critical that the number
of such messages is significantly less than normal traffic,

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2813

which is realized in our architecture by ensuring minimal
communication overhead between the SUs and SPE (refer to
section VII-C3).

2) Security Policy Engine (SPE): A primary building block
of our resilience architecture is a centralized “security brain”,
i.e., a single IP called security policy engine (SPE) which
enforces all system-level security policies. We develop fine-
grained policies that enable on-the-fly detection and mitigation
of suspicious run-time NoC communications that may affect
the system-level functionality. SPE is developed from the
ground up to implement, adapt, modify, and upgrade diverse
system-level security policies. It is connected to the NoC
fabric as an infrastructure IP and interfaced with the NoC
components (routers and links) to adhere to on-chip-network
protocol. The key functionalities of SPE is to configure reg-
isters at SUs for security critical events at boot time, analyze
the packets sent by the SUs at run-time, enforce security
policies by sending control signals as standardized frame-
based packets, and update the security state of the overall
system. The microarchitecture of SPE is primarily comprised
of two major components namely, a security buffer and the
policy engine.

a) Security buffer: The security buffer acts as the stor-
age for buffer frames and interfaces with the Policy Engine
through a buffer controller. The buffer storage is implemented
as a static segment scheme that permits variable length of
segments based on the size of metadata. The buffer controller
allows access to the events logs through the buffer ports. The
synchronization and coherence between the SUs and SPE is
maintained by the buffer control logic with respect to segment
sizes, read / write speeds, and frequency of events.

b) Policy engine: The policy engine is a micro-controlled
implementation on a processor core. It functions as a micro-
controlled state machine to assert and de-assert control signals
to enforce the policies. It is comprised of dedicated instruction
memory to store the policies in firmware. Intermediate com-
putations are facilitated by a dedicated data memory inside the
block. The module is augmented with configuration registers
to activate particular sets of implemented policies based on the
use cases of system. The register configuration is performed
by a series of fuses, anti-fuses, and multiplexers.

B. Trust Model

Security assurance in SoC designs relies on the trust
assumptions made for design components and parties involved
in the supply-chain. For this paper, the trust model assumes a
trusted SoC integration house that procures 3PIPs from mul-
tiple vendors with a varying level of trust. Table I shows our
assumptions regarding the presence of untrusted IPs and their
interaction with other on-chip components. This trust model
assumes that IPs themselves (and the NoC fabric) might be
untrusted but the wrappers, SUs, SPE, and the communication
of SUs to SPE are trusted. This is a natural trust model from
an SoC integration perspective: IPs are procured from a global
supply chain, but the above components must be architected,
designed, and standardized by the SoC integration house. For
instance, a 3PIP might have a hardware Trojan located at

strategic locations like control logic, data-path, the storage
section, etc. or execute malicious firmware/software. Further-
more, we account for collusion among the untrusted IPs. For
instance, we consider scenarios where a malicious IP launches
attacks with cooperation of a compromised NoC component.
In current SoC integration, IPs are classified routinely with
various trust categories. The policies are designed to ensure
that untrusted components do not have adverse system-level
effects or the ability to compromise other system components.

Remark 1: Note that we consider the IP test and debug
wrappers trustworthy. In practice, we can rely on the trustwor-
thiness of the test and debug wrappers for two reasons. First,
unlike any other functional IP (processor, memory, hardware
accelerators, etc.), the wrappers are integrated to the SoC
designs as infrastructure IPs. The primary purpose of such
infrastructure IP is to facilitate the testing and debugging.
Hence, the standard test and debug wrappers are highly
validated compared to traditional functional IPs procured from
third-party vendors. Second, the wrappers in our work are
re-purposed and modified versions designed in accordance
with existing architecture to achieve the functionality of secu-
rity wrappers by while avoiding the naive extraction of the
all data, control, and status signals; thus, customized to cater
to our security goals. In the proposed design flow, these are
highly validated by the security architect of the SoC and
configured to monitor the security critical events and enforce
the corresponding security policies.

Remark 2: Any viable security architecture must assume
certain design components are trusted; if every design com-
ponent can be compromised or malicious it is generally
impossible to ensure resiliency of the overall system. Since
SoC supply chain includes many players (e.g., IP vendors,
SoC integration house, foundry, various test and validation
organizations, end users, etc.), SoC trust models in practice
are defined from the perspective of a specific player in this
supply chain and the goal is to ensure that the assets introduced
by that player are not compromised by malicious activity of
others. Since the SoC security architecture is designed by the
integration house, the goal of our resiliency architecture is to
ensure that other players, in particular potentially malicious
3PIPs, cannot compromise the overall system security. Given
this goal, it is natural for our trust model to assume that
the design components introduced specifically for system
integration are trusted, while individual IPs may be untrusted.
In particular, the design components constituting our secu-
rity architecture (e.g., satellite units, SPE) are trusted since
they are developed and maintained by the SoC integration
house.

VI. IMPLEMENTING NOC SECURITY

RESILIENCE THROUGH POLICIES

We implement resilience against malicious NoC communi-
cation through a collection of fine-grained security policies
implemented in SUs and SPE. The policies we have imple-
mented include protection against a variety of attacks that
violate confidentiality, integrity, non-repudiation, authentica-
tion, and availability requirements. In this section, we discuss
some representative policy implementations. Note that these

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2814 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE II

REPRESENTATIVE SECURITY CRITICAL EVENTS AND ASSOCIATED POLICIES BASED ON ATTACK TYPES

policies are only illustrative, and do not represent a compre-
hensive demonstration of the capability of the infrastructure.
However, they do show how one can approach the problem
of implementing resilience requirements as policies for a
specific, targeted trust model. Similarly, determining optimal
number of policies to implement for effective protection is
not within the scope of the paper: the primary contribution of
the paper is to provide a mean for implementing the policies
systematically once the architect has determined what they
want to implement. In Table II, we present a summary of
illustrative security critical events and corresponding policies
classified in to accordance to attack type, mechanism, and
system level impact.

A. Attack Scenario I: Non-Observability and
Misdirection Prevention

Following are two typical requirements of non-observability
and misdirection prevention.

• Representative Policy 1: Untrusted IPs are prohibited
from exploiting DMA to secure memory range.3

• Representative Policy 2: The routing units of untrusted
NoC routers are subject to update only at secure boot or
at run-time by a trusted IP.

3A formal description of the security policy can be provided by three
tuples: <timing condition>, <predicate>, and <action>. For a given policy
of secure memory range access via DMA, the timing condition will state
when the request is made, the predicate tuple will state which entity placed
the request to access secure memory, and the action tuple will state either to
approve or deny the request based on the information associated to timing
condition and predicate. A detailed description of such tuple-based formal
representation of security policies can be found in our prior work [15].

1) Attack Model: Recall from non-observability require-
ments that untrusted IPs should not be able to observe infor-
mation intended for other SoC components. We consider a
malicious processor IP attempting to violate non-observability
in two ways. It can attempt to read from the protected memory
region of on-chip memory and it can misdirect data packets
to itself or to an illegal destination through a compromised
router. In this scenario, we assume the presence of a malicious
IP that can initiate an illegal DMA read request to the secure
memory region and alter the router configuration to misdirect
data packets to illegal destinations including itself.

2) Flow of Operation: Fig. 4 shows the flow of events for
a security policy to protect against the attack.

• During boot phase, the wrappers and interface action
detectors at SUs of IPs and routers are programmed by
the SPE for event detection. Events include triggers for
micro-architectural flows, e.g., value of program counter
within secure memory address range, read access to
secure data memory, incoming flit to valid channel queue,
flit register content update, allocation to proper virtual
channel, etc.

• When a DMA transfer request is detected by the interface
action detectors at the DMA table corresponding to the
untrusted IP, the request address and access type is
evaluated by the wrapper logic. If there is no viola-
tion, the transfer request is not stalled. However, upon
detection of a DMA request to illegal memory addresses,
a security-critical event notification is triggered, the vio-
lation is logged at the security wrappers, and the entry
request for DMA is discarded by the SU. The frame
generation interface at SU form frames with event logs

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2815

Fig. 4. Message flow diagram of proposed solution for resilient SoC operation
amid non-observability and message misdirection attack.

and meta-data, and send the corresponding packets
through the communication interface to SPE.

• It is possible for a malicious IP to violate non-
observability without memory access. The malicious
processor attempts to clone and misdirect data packets
through a compromised router IP. Misconfiguration of
router involves micro-architectural events, e.g., assigning
incoming flit to invalid channel queue, illegal update
of flit register content, allocation to improper virtual
channel, etc. Any deviation from the standardized events
in the routers is detected by the security wrapper and
interface action detection logic. Consequently, the suspi-
cious transaction is stalled by the SU and corresponding
event frames are sent to SPE as packets.

• Upon reception of the packets from the SU of compro-
mised IP or router, SPE extracts the event frames, updates
the security status of the system, broadcasts packets to
SUs at other IPs and routers to block subsequent DMA
requests of the IP, and discard the data packets from com-
promised router until further verification in debug mode.

The attack scenario and mitigation technique illustrate the
feasibility of policy-based solution for non-observability and
misdirection prevention via proposed architecture. As the
attack models are not mutually exclusive, the non-observability
policies also prevent packet misdirection in this case.

B. Attack Scenario II: Masquerade Prevention
and Message Immutability

We will now demonstrate how message immutability and
masquerade prevention can be ensured by implementing

fine-grained policies in the security architecture. Following are
two typical scenarios.

• Representative Policy 1: The base address of untrusted
IP cores can only be assigned and updated at secure boot
time.

• Representative Policy 2: Data packet header flits can only
be configured at the source but not at the router.

1) Attack Model: Masquerading and Man-in-the-Middle
Attack via Packet Alteration: Consider a malicious processor
IP attempting to violate the masquerade prevention property
in two ways. It can attempt to illegally alter its own address
i.e., it can change the source address of packets and send
illegal packets to the network. On the other hand, it can
alter the packet headers of data en-route with the help of a
compromised router. In this attack scenario, we assume that
a malicious IP can illegally alter its address before sending
packets and enforce a compromised router to alter the packet
header flits of data traversing through it.

2) Flow of Operation: The message flow diagram for the
use case scenario with corresponding policy implementation
is depicted in Fig. 5. The key steps are as following:

• At boot phase, the SPE configures the wrappers at
SUs of IPs and routers with the standard set of events
for masquerade prevention. The set of relevant micro-
architectural events include packet address check, core
ID update, tile ID update, core address, address in local
memory, etc.

• When the malicious IP attempts to send packets through
the output interface, the interface action detection logic
checks the source address of packets in accordance to
boot time configuration. If there is no mismatch, the mes-
sage passing event will not be stalled. Upon detection on
a mismatch of source address, a violation is triggered
and the SU discards the outbound packet. The frame
generation interface located at the SUs of malicious IP
generate frames with event logs and meta-data and sends
the packet to the SPE.

• The malicious IP can violate the non-masquerade prop-
erty without emanating spurious packets from its core.
It can attempt to maliciously alter the header flits of
data packets traversing through a compromised router
and alter the source address of the header flit with an
accomplice router. Such alteration involves suspicious
micro-architectural events at a router, e.g., alteration of
header flit registers, invalid activation of routing unit by
fake header flit, invalid scheduling of the arbiter by illegal
header flit, etc. The wrappers at the router SU will trigger
policy violation upon mismatch in any of of these events.
Consequently, the suspicious event and generated packet
or flit will be discarded and SPE will be notified about
the violation.

• The SPE will receive the packets from the IP SU or
router SU, extract the event frames, and update the system
security status accordingly.

C. Attack Scenario III: Flooding Attack Prevention

We now illustrate how policy-based solutions can be
implemented in the proposed security architecture to prevent

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2816 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 5. Message flow diagram of proposed solution for resilient SoC operation
during masquerading and message mutation attack.

flooding attack by large amount of spurious and misdirected
messages that can cause congestion, livelock, and deadlock
situations in the on-chip network. Following are some typical
security requirements.

• Representative Policy 1: During SoC operation, the num-
ber of messages sent by an untrusted IP should not exceed
the threshold of maximum limit.

• Representative Policy 2: The limit on the number of
packets generated by an untrusted IP cores can only be
assigned and updated at secure boot time.

1) Attack Model: Flooding Attack via Spurious and Misdi-
rected Packets: In this attack model, we consider a malicious
processor IP attempting to launch a flooding attack to disrupt
the secure NoC communication. It can create congestion in the
network with spurious packets and misdirect the packets with
the help of a compromised router to create a livelock/deadlock
situation leading to eventual network congestion. Deadlock
rule violation will create contention of the NoC channels
whereas livelock rule violation will allow the packet to traverse
in the network causing a waste of throughput, bandwidth, and
latency. The protection mechanism against flooding attacks
depend on the usage context of the IP. In the given scenario,
we set an upper bound on the number of messages from the
same source IP, implement a message counter at the SU as a
part of security instrumentation, and enforce the corresponding
policies.

2) Flow of Operation: Fig. 6 illustrates the message flow
diagram for the attack scenario of flooding attack with the
implemented policy. The operational flow can described as
follows:

• During secure boot, the wrappers and interface action
detection logic of SUs are configured by the SPE to detect

Fig. 6. Message flow diagram of proposed solution for resilient SoC operation
amid flooding attack.

the standard set of events for flooding attack prevention.
The set of relevant micro-architectural events include
setting the threshold value of messages from the source
IP, valid configuration of message counter at SUs, etc.

• When the malicious IP attempts to send illegal packets
in large volume through the output interface, the counter
implemented at interface action detection circuitry raises
a flag, the messages emanating from the rogue IP are
stalled by the SU, and the outbound packets are discarded.
The events frames are communicated with SPE with
associated logs and meta-data.

• The malicious IP can violate the flooding prevention
property without generating illegal packets from the core.
The rogue IP can attempt to maliciously alter the header
flits of data packets traversing through a compromised
router to cause deadlock and livelock situation. Such
alteration involves suspicious micro-architectural events
at a router, e.g., alteration of flit registers, invalid activa-
tion of routing unit by fake header flit, invalid scheduling
of the arbiter by illegal header flit, etc. The wrappers at
the router trigger a violation upon mismatch in any of of
these events. Consequently, generated packets or flits are
discarded and SPE is notified about the violation.

• The SPE receives the packets from the SU at the rogue IP
or router, extract the event frames, broadcasts the event
information, and update the system security status.

VII. EXPERIMENTAL RESULTS

We implemented the architecture presented in Section V on
illustrative SoC models, and implemented protection against

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2817

Fig. 7. ClusterSoC: Cluster-based SoC model with proposed security
architecture: SPE acts as a centralized, flexible policy brain to enforce policies
in collaboration with distributed satellite units (SUs).

diverse communication attacks through a systematic collec-
tion of fine-grained policies. Our experiments show that the
architecture incurs modest overhead in our SoC models in
terms of area, power, and network congestion (under repre-
sentative message traffic patterns). Perhaps more significantly,
our experimental results indicate the kind of trade-offs that
must be studied to ensure viability of a similar architecture in
industrial SoCs. We also study overhead in performance and
latency for different locations of placement of SPE.

A. Evaluation Platforms

Given the dearth of standard open-source SoC designs for
architectural study, we have been developing our own SoC
models. Fig. 7 and Fig. 8 show illustrations of two different
SoC models developed to analyze the proposed framework.
Our models, albeit academic, is architected with many substan-
tial SoC components and reflects the relevant features of NoC-
based industrial SoC designs, including tree-based topology
for routers inspired by commercial SoCs, a mix of high-speed
and low-speed IPs, application specific subsystems, etc. [16].
The two models are used for two different purposes. The first
model, referred to as ClusterSoC, is relatively simpler and
more mature, which enables deeper exploration and under-
standing of the effects of architectural elements introduced
in this paper. Most of our experiments and explorations have
been performed on this model. The second model, referred to
as AutoSoC, is more complex and inspired by industrial SoC

Fig. 8. AutoSoC: representative automotive SoC model with application
specific subsystems.

designs targeted towards automotive applications; we use it to
demonstrate the flexibility of the framework and its ability
to be adopted for SoC designs of practical complexity with
minimal overhead.

1) ClusterSoC: The ClusterSoC design includes an
OpenRISC 1000 processor featuring 6 stage pipelining and
32-bit load-store RISC architecture with cache and MMU
(Memory Management Unit) support. Two dual port SRAMs
are integrated as memory modules. Three crypto modules i.e.,
AES, 3DES, and SHA are included for generic cryptographic
operations. It also features three high speed DSP blocks,
including FFT, IDFT, and FIR. An SPI controller and a UART
module are integrated with our model for external commu-
nication. A PMU (Power Management Unit) is included to
facilitate scenarios involving power analysis. To study different
system use case scenario of realistic industrial SoC designs,
the IPs are segregated mainly into two clusters. The North
cluster includes the high-speed IPs (e.g., CPU and DSP
accelerators) and the South cluster incorporates crypto engines,
PMU module, and external communication IPs like UART
and SPI.

2) AutoSoC: The AutoSoC model is inspired by
commercial NoC-based automotive SoCs with separate appli-
cation specific subsystems [16]. As with realistic implemen-
tations, it has a much larger number of IPs. The IPs are
organized into a number of subsystems. The SoC incorpo-
rates four 32-bit RISC-V cores with variations in instruction
set support. These cores are size optimized implementations
of RISC-V processors. The crypto subsystem is augmented
with RSA and MD5, DSP subsystem with DFT and IIR,

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2818 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE III

CLUSTERSOC (CLUSTER-BASED SoC): AREA AND POWER OVERHEAD OF SATELLITE UNITS IN REPRESENTATIVE IP CORES

TABLE IV

AUTOSOC (REPRESENTATIVE AUTOMOTIVE SoC): AREA AND POWER OVERHEAD OF SATELLITE UNITS IN REPRESENTATIVE IP CORES

Fig. 9. A illustration of (a) Satellite units (SUs) deployed at each IP and
NoC router. (b) Security Policy Engine (SPE) connected as an Infrastructure
IP on the NoC fabric.

the memory subsystem with DMA controller and single
port SRAM, and the connectivity subsystem with Ethernet
and GPS IP.

Both SoC models incorporate a modular and configurable
open-source Network-on-chip, named LiSNoC, as the inter-
connect fabric [17]. It supports wormhole-based flow control.
The basic routing algorithm is dimension-ordered, deadlock-
free XY-routing. The network interface permits transfer of one
flit per cycle. The packet arbitration employs strict ordering
through the router switch. The link multiplexing is performed
by round-robin arbitration. The number of input ports, output
ports, and allocation of virtual channels (VCs) to input-output
ports are parameterizable. In our work, we employed routers
with 5 input ports, 5 outputs ports, and allotted 2 VCs for

each input and output port. Each VC has a fixed-length queue
of 4 flits. The virtual channel flow control is performed in
on-off manner with two control signals named valid and
ready. The flit transfer occurs through a handshaking protocol
implemented with the ready and valid signals of each VC.
The transfer occurs when both valid and ready signals are
high. The associated network adapters feature DMA engines
and message passing functionalities. The IPs are wishbone-bus
compatible. The network adapter facilitates their compatibility
to NoC protocol. All the IPs are obtained from various open
source repositories in Verilog and SystemVerilog RTL models.
The SoC models are functionally validated in ModelSim.
We augmented both SoC model with SPE units, implemented
through a 32-bit 5-stage DLX micro-controller with dedicated
instruction and data memory. Furthermore, each IP and router
is augmented with a representative SU.

B. Area and Power Overhead Analysis

To obtain overhead values for area and power, we syntheized
the SoC models in Synopsis Design Compiler using a LEDA
standard cell library at TSMC 250nm technology node. The
estimated area and power overhead results incurred by the
proposed satellite units (SUs) at each IP module and router
in both models are presented in Table III and Table IV. The
percentile increase in area and power overhead is relatively
small and varies over a range of 1.67 to 13.49 among the
IPs. The low to modest overhead feature of SUs facilitates the
implementation of arbitrary security policies tailored for each
IP within the periphery of its design constraints including area
and power. Note that the strategy of exploiting of standardized
on-chip resources e.g., test and debug wrappers, which are
readily available in the IPs through existing design practices,
helped maintain reasonable overheads. The comparatively
higher area and power overhead due to the addition of SUs in
the router observed in our experiments is primarily because the
router designs themselves were simple. In an industrial SoC
router the relative overhead will be significantly less. While
there are SoCs with many routers, commercial SoCs for IoT
and automotive platforms include NoC fabrics with a limited
number of routers. Security requirements of these SoCs are
complex because of heterogeneity of IPs and communications.
Our work is targeted towards such SoCs. Table V shows
the area and power overhead results incurred by the SoC

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2819

TABLE V

AREA AND POWER OVERHEAD OF IMPLEMENTED POLICIES FOR DIFFERENT USE CASE SCENARIOS

TABLE VI

DIE AREA OVERHEAD OF CENTRALIZED SPE (AREA: 3.3 × 106 µm2;
POWER: 13.85 mW) IN COMPARISON TO REALISTIC SoCs

security policies implemented for the use cases studied in
this work. In comparison to the industrial SoCs, the die area
overhead incurred by the proposed security policy engine is
significantly low. Note that we compared our overhead against
a baseline SoC without the framework to ensure that we do not
underestimate overhead due to our infrastructure. In practice,
since an SoC will have additional security instrumentation
and communication overhead to implement protection require-
ments, the overhead would be higher than baseline conse-
quently reducing the relative overhead. For commercial SoC
designs, the overhead of proposed security architecture would
be insignificant with respect to full SoC die area.

Remark 3: We briefly remark on our overhead calculation.
We have calculated the percentage area overhead of the
proposed security policy engine (SPE) with respect to the
area of our own SoC models and the area of different
commercial SoCs manufactured at similar process technology.
Table VI shows estimated die area overhead of the SPE with
respect to our SoC models and different commercial SoCs
i.e., Intel Atom Z2520, Apple A6 (APL0598), and QualComm
Snapdragon 800, all manufactured at 32 nm node technology.
Such relative overhead calculation helped us get an estimate
of the area overhead incurred by the proposed SPE when
implemented on commercial SoCs.

C. Performance Experiments and SPE Placement

Our SoC models are implemented at RTL level. It is impos-
sible to use an RTL simulator on SoC designs to measure per-
formance and congestion workloads.4 Furthermore, our SoC
models do not include sufficient instrumentation to provide
adequate controllability of internal events, making it difficult to
deterministically exercise specific traffic patterns necessary to
study latency and congestion. To study performance overhead,

4Realistic workloads on an SoC typically entail several hours of execution
on real silicon. On the other hand, one second of silicon execution roughly
requires 30 years to fully simulate on an RTL model [18], [19].

we instead used a state-of-the-art configurable NoC simulator
that provides flexibility in studying the network behavior in
the context of varying traffic patterns and SoC operating
conditions. Analyzing traffic patterns is a common activity in
microarchitectural exploration of SoC designs, to determine
variety of parameters. Our work shows how to reuse such
analysis to determine optimal placement position for SPE.
For this experiment we used the ClusterSoC model: it
is ideal for this experiment since it includes most salient
features of industrial SoC implementations while still being
relatively simple (compared to AutoSoC), facilitating better
comprehension and control of traffic patterns for different
system-level use cases.

A realistic study of performance overhead due to NoC
traffic must account for several issues. First, the use of the
architecture may incur some overhead even in situations when
there is no malicious activity, e.g., communication among SPE
and satellite units to determine if a packet indicates evidence
of masquerade or misdirection could add to the NoC overhead
even if the packet turns out to be benign. We call this overhead
the benign overhead. Furthermore, additional communication
overhead may be incurred in case there is actual malicious
activity. We refer to this overhead as malicious overhead.
A good security architecture should incur minimal benign
overhead and tolerable malicious overhead.

One key challenge in our performance experiments is
to develop a methodology to realistically estimate benign
and malicious overheads. Ideally, we ought to compare
the communication induced by our architecture in benign
(resp., malicious) with communication induced in a corre-
sponding SoC design that does not implement this specific
security architecture but possibly with ad hoc security policy
implementations. To simulate the “SoC design without our
architecture”, we illustrate a collection of real application
induced scenarios that represent the normal traffic pattern
of the SoC. The communication established through these
scenarios involve interactions among the CPU, memory mod-
ules, hardware accelerators, and other peripherals to realize
system functionality. We refer to these representative SoC
functional traffic as regular activity. Our experiments are
designed to compare the benign and malicious overhead with
the regular activity. Note that in regular activity we do not
consider any overhead because of security instrumentation.
Obviously, a practical SoC design would include some security
techniques resulting in additional communication and perfor-
mance bottleneck; hence, the relative performance overhead
of the proposed security architecture in that case will be even
less than the results in our experiments. Consequently, given

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2820 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

that our experiments suggest that the benign and malicious
overhead are not significant (cf. Fig. 10) when compared with
regular activity without security instrumentation, the same
conclusion would be transferred to other SoC designs that do
employ additional security techniques.

1) Regular Activity Details: We implemented the following
scenarios as the regular activity:

• SPI stores data collected from an external source (e.g.,
sensors) in the untrusted memory (SRAM0) via DMA
access. CPU reads the data, processes it, and stores
the processed data in trusted memory (SRAM1). UART
requests access to read the processed data and stores it in
an external storage device connected to it. CPU sends data
and key to crypto-cores (AES) for encryption. Encrypted
data is then transferred to the UART.

• Encrypted data from an external storage device connected
via UART is read into the untrusted memory (SRAM0)
via DMA access. CPU sends the data and the key to SHA
for decryption. CPU forwards the decrypted data to DSP
core (FFT) for processing and DSP sends it back to CPU.
CPU stores the data in trusted memory (SRAM1).

• CPU sends a control packet to Power Management Unit
(PMU) to activate sleep state. PMU sends sleep signals to
all other High-speed IPs and sets the SoC operating mode
to low-power. External device connects through UART to
read processed data. UART triggers the PMU requesting
to switch mode from low-power to high-power. PMU
wakes all the High-speed IPs. CPU handles the UART
read request and sends the requested data and key to AES
for encryption. AES sends the encrypted data to UART.

• UART sends data to (SRAM0) via DMA. The data is
stored in (SRAM1) after encryption by SHA. Sleep state
in activated by CPU in co-ordination with PMU. Normal
operating state is again retrieved by PMU in response
to an interrupt from UART. Encrypted data stored in
(SRAM1) is sent back to UART.

2) Experimental Setup and Performance Results:
We adopted a NoC simulator to create SoC traffic patterns
induced by the use cases. The traffic flow is simulated with
open-source Garnet 2.0 interconnection network model inside
Gem5 simulator [20], [21]. The NoC model is generated by
running Garnet 2.0 in standalone mode. We chose a simulation
period of 10K cycles. The scenarios described above as regular
activity are instantiated at specific instances over this period,
resulting in a total of 64 instantiated transactions. The initia-
tion times intervals for the different transactions were chosen
carefully to ensure a realistic overlap: the purpose of studying
such overlapping and concurrent traffic patterns is to analyze
the system latency under realistic usage scenarios. Fig. 10
shows the results. All overheads are measured with respect
to the regular activity. For Benign Overhead, we additionally
include (on top of regular activity) message traffic resulting
from run-time monitoring of IP-level activity and successive
message passing to maintain overall security status. This
includes the SUs of each IP and routers monitoring various
security critical events as specified by the policies and peri-
odically communicating those with the SPE to update the IP
and system level security status. For Malicious Overhead we

Fig. 10. Overhead estimation of the latency and link utilization for various
positions of SPE in NoC during benign & malicious operating conditions.

randomly perturbed 6% of the transactions to be “malicious”.
The percentage of malicious transactions was chosen to be
6% mimicking the typical numbers used in microarchitectural
explorations for determining optimal microarchitectural para-
meters, as a basis of realistic traffic patterns. Traffic analysis
due to such activity is performed by simulating the attack
scenarios illustrated in VI. The key steps of the message
flow include detection and prevention of rogue IP and router
activity by distributed SUs, the event logs being sent to
the centralized SPE, and security messages being broadcast
across the system. We interpreted the observed overhead in
terms of following parameters: (i) Packet Network Latency,
(ii) Packet Queueing Latency, and (iii) Link Utilization. The
communication between the SUs and the SPE incurs a com-
munication overhead of approximately 5% in benign activity
where our proposed framework monitors system security and
no attack is detected. During malicious activity (i.e., ongoing
attack scenarios), the implementation of the illustrated security
policies incur an additional 0.5% communication overhead
for the detection and mitigation of the attack. The minimal
communication overhead of proposed framework validates the
feasibility of encrypted communication between SUs and SPE
through the on-chip network.

3) Placement of SPE: Clearly, the placement of SPE affects
the traffic pattern; in fact, one critical reason for studying
traffic patterns is to identify the optimum location for SPE
that incurs minimal latency. We connected SPE to each router
of the topology and ran the simulation each time to analyze
the resultant effect on the network performance, as shown
in Fig. 10. The results indicate that, for our specific tree
topology, connecting SPE to Router 2 results in an optimal
performance and incurs the least overhead, while positioning
the SPE to Router 1 results in the highest performance
overhead. The key observation for our exercised use cases
is that placing the SPE near to majority of the peripheral
IP blocks reduces performance overhead due to additional
security message traffic.

VIII. COMPARISON WITH RELATED WORK

A. Untrusted Third-Party IPs and NoCs

The state-of-the-art research on trust verification of 3PIPs
involves analysis, detection, and deterrence of malicious
circuitry insertion aka hardware Trojans in untrusted IP
cores [22]. Research on hardware Trojan design have been

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2821

TABLE VII

CONTEMPORARY RESEARCH ON UNTRUSTED IPs AND NoCs VS. SCOPE OF OUR WORK

conducted to explore novel trigger conditions and payload
delivery mechanisms and analyze the difficulty of Trojan acti-
vation and detection [23]. Trojan design optimization has been
studied to minimize the side-channel impacts due to trigger
and payloads [24]. The major portion of Trojan research
focuses on countermeasures [25]–[27]. Post-silicon detection
techniques have been extensively studied by researchers [28].
Functional testing for triggering rare nets is proposed by
Chakraborty et al. [29]. Side channel signal analysis has been
performed by researchers to detect Trojans [30]. Pre-silicon
Trojan detection technique and vulnerability analysis have also
been extensively performed through behavioral and structural
code analysis and formal methods [8], [31]. Runtime monitor-
ing in critical computation can significantly increase the trust-
level against various attacks. These approaches can exploit
existing resources or on-chip structures to detect suspicious
behavior and operating conditions like security critical events
and transient power to detect Trojan activity [32]. Jin and
Sullivan [33] proposed an analog on-chip nueral network that
is capable of detecting suspicios activity based on sensor
measurements.

While the research on untrusted IPs applies to NoC IPs to
varying extents, researchers have studied the untrusted NoCs
threats over the past years. The threat of a Trojan inserted
NoC has been studied by Ancajas et al. [34]. The authors con-
sider a threat model comprised of compromised NoC and an
accomplice piece of software. It combines packet certification,
node obfuscation, and data scrambling to prevent information
leakage through the compromised NoC. Boraten and Kodi [35]
employed a packet sensitization technique that incorporates
packet certification. The vulnerability of these works due to
weakness of security primitives, however, is demonstrated
by a later study [36]. Sepulveda et al. [37] addressed these
limitations by developing a tunnel-based network interface.

B. Reliable and Secure Architectures

There has been significant research on secure NoC archi-
tectures for NoC-based MPSoCs. Secure NoCs have been
developed to prevent illegal message mutation by attackers.
Adoption of channel separation is proposed in literature to
prevent data modification [38]. Florin et al. [39] introduced
the deployment of data protection units for secure mem-
ory accesses. Insertion of firewalls to application specific
NoCs is studied to deter denial of service attacks [40].
Kostrzewa et al. [41] designed a dynamic control layer

combining global and local arbitration that supports real-
time mixed critical systems. Non-interfering architecture is
developed to ensure reliability of information flow [42].
Traffic analysis schemes with distributed management is also
designed to develop architectures resilient to timing attacks
like prime+probe [43]. Priority-based arbitration is employed
by Wang and Suh [44] for protection againts timing informa-
tion leakage through timing channels. Efficacy of hierarchical
group-wise security protocols is demonstrated for dynamic
security requirements of MPSoCs [45]. An energy efficient
design for run-time detection of malicious activity in untrusted
NoC is studied by Hussain et al. [46]. Bokhari et al. [47]
proposed a multimode interconnect architecture that can be
configured to run in different operating modes based on
different operational scenarios.

While there has been an abundance of work on untrusted
IP issues and security enhanced NoC architectures, we take
a holistic approach to address the problem at system-level
communication. Our goal in this work is to ensure system reli-
ability and trustworthiness despite the presence of malicious
hardware and colluding firmware and software attempting to
subvert system functionality. Consequently, we focus on the
system level impacts of malicious hardware, firmware, and
software to achieve architectural resiliency. Similarly, we focus
on the paylaods of system level Trojans and malicious software
and firmware compared to existing works of IP level threats.
Moreover, we address the limitations of ad-hoc solutions of
SoC and NoC enhancement for specific threats by developing
a comprehensive framework that helps the developer integrate
a variety of security features to the SoC design based on
requirements and the use case scenarios. The flexibility of
policy based approach allows the designer optimize the system
based on performance and security trade-offs while adopting a
generic architectural solution for both untrusted IPs and rogue
NoC fabric. We demonstrate that the proposed architecture can
be employed efficiently to obtain resiliency against all major
system level communication attacks.

Remark 4: To our knowledge, our work represents the
first SoC resiliency architecture targeted towards the broad
spectrum of inter-IP communication attacks presented in our
threat model. Note that our approach is fundamentally different
from ad hoc approaches used in current practice to implement
security policies. Moreover, most of the existing works focus
on only one attack model and present results based on that
attack scenario whereas our architecture is designed and

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

2822 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

tailored to implement security policy-based solution for the
entire spectrum of inter-IP communication attacks in NoC-
based SoCs. Consequently, there is no relevant related work
against which to compare performance or overhead of our
architecture. Instead, we have performed extensive quantitative
evaluation of our architecture on different SoC models in
terms of area, power, and performance. To be stringent in our
evaluations, we compared our security architecture integrated
SoCs with baseline SoC models that do not incorporate any
security architecture at all; whereas in practice, there would be
some security scheme in those baseline models reducing the
comparative overhead. We showed that the incurred overhead
of our architecture addressing all major communication attacks
is minimal (less than 15% approx.).

IX. CONCLUSION

We have presented, for the first time to our knowledge,
a resilient SoC security architecture to build a trusted system
involving NoC communication among untrusted IPs. We have
shown how to systematically implement key security require-
ments of inter-IP communication and proposed an architecture-
level solution for run-time detection and mitigation of on-chip
communication threats. With the horizontal shift in semi-
conductor industry, there has been an increased reliance on
untrusted 3PIPs and NoCs. Existing works on design-time
IP-trust verification fail to guarantee trusted SoC operation
with the increasing modalities of communication attacks.
Our work presents a fundamentally different approach, i.e.,
an architecture for run-time system-level resilience. We have
shown the efficacy of the approach by implementing policy-
based solutions for all major use case scenarios of secure
system-level communication. Our experimental results on
realistic SoC designs suggests that our approach is viable
and scalable in terms of area, power, and performance
overheads.

In future work, we will evaluate the framework on industrial
SoC designs and investigate mechanisms for automating the
synthesis of the fine-grained security policies for different
communication attacks. Furthermore, we will augment the
architecture with a CAD framework to determine and evaluate
optimal security policies for effective system-level protection
based on deployment requirements.

REFERENCES

[1] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A light-
weight runtime mechanism for protecting software from security-critical
processor bugs,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 517–529,
Mar. 2015.

[2] mseaborn@chromium.org. (2012). X86–64: Data16 Prefix on Direct
Jumps Allows Sandbox Escape on AMD Cpus. Nativeclient Bug
Tracker. [Online]. Available: https://bugs.chromium.org/p/nativeclient/
issues/detail?id=2578

[3] Intel Xeon Processor E7-8800/4800/2800 Product Families: Specifica-
tion Update, Intel Corp., Santa Clara, CA, USA, 2015.

[4] S. Ray, E. Peeters, M. M. Tehranipoor, and S. Bhunia, “System-on-chip
platform security assurance: Architecture and validation,” Proc. IEEE,
vol. 106, no. 1, pp. 21–37, Jan. 2018.

[5] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep. 2007.

[6] N. E. Jerger, T. Krishna, and L.-S. Peh, “On-chip networks,” Synth.
Lectures Comput. Archit., vol. 12, no. 3, pp. 1–210, 2017.

[7] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identifica-
tion of stealthy malicious logic using Boolean functional analysis,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013,
pp. 697–708.

[8] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proc. 52nd
Annu. Design Autom. Conf. (DAC), 2015, p. 112.

[9] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in Proc. IEEE Int. High Level Design
Validation Test Workshop (HLDVT), Nov. 2009, pp. 166–171.

[10] Intel Baytrail Products. Accessed: May 10, 2019. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/codename/55844/
bay-trail.html

[11] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic
implementation of SoC security policies,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 536–543.

[12] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for
System-on-Chip designs with untrusted IPs,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 7, pp. 1515–1528, Jul. 2017.

[13] K. Shuler. (2013). Majority of Leading China Semiconductor Com-
panies Rely on Arteris Network-on-Chip Interconnect IP. [Online].
Available: http://www.arteris.com/press-releases/china_majority_arteris
_pr_19_august_2013

[14] J. Probell and B. de Lescure, “SoC reliability features in the FlexNoC
resilience package: A complementary IP packagefor use with arteris
FlexNoC IP,” Arteris, Inc., Campbell, CA, USA, Tech. Rep., 2014.

[15] A. P. Deb Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip
security architecture and CAD framework for hardware patch,” in Proc.
23rd Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2018,
pp. 733–738.

[16] K. Shuler. (2018). How SoC Interconnect Enables Flexible Architecture
for ADAS and Autonomous Car Designs. [Online]. Available:
http://www.arteris.com/blog/semiconductor-engineering-autonomous-
driving-iso-26262-compliant

[17] S. Wallentowitz, A. Lankes, A. Zaib, T. Wild, and A. Herkersdorf,
“A framework for open tiled manycore system-on-chip,” in Proc. 22nd
Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 535–538.

[18] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-silicon validation in the
SoC era: A tutorial introduction,” IEEE Des. Test. Comput., vol. 34,
no. 3, pp. 68–92, Jun. 2017.

[19] P. Patra, “On the cusp of a validation wall,” IEEE Des. Test. Comput.,
vol. 24, no. 2, pp. 193–196, Feb. 2007.

[20] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET:
A detailed on-chip network model inside a full-system simulator,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 33–42.

[21] N. Binkert et al., “The Gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[22] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Trans. Des. Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, May 2016.

[23] C. Dunbar and G. Qu, “Designing trusted embedded systems from finite
state machines,” ACM Trans. Embedded Comput. Syst., vol. 13, no. 5s,
pp. 1–20, Oct. 2014.

[24] B. Cha and S. K. Gupta, “A resizing method to minimize effects of
hardware trojans,” in Proc. IEEE 23rd Asian Test Symp., Nov. 2014,
pp. 192–199.

[25] N. A. Hazari and M. Niamat, “Enhancing FPGA security through trojan
resilient IP creation,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAE-
CON), Jun. 2017, pp. 362–365.

[26] M. T. Rahman et al., “Defense-in-depth: A recipe for logic
locking to prevail,” Integration, Jan. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926019303694,
doi: 10.1016/j.vlsi.2019.12.007.

[27] N. A. Hazari, F. Alsulami, and M. Niamat, “FPGA IP obfuscation using
ring oscillator physical unclonable function,” in Proc. IEEE Nat. Aerosp.
Electron. Conf. (NAECON), Jul. 2018, pp. 105–108.

[28] M. T. Rahman et al., “Physical inspection & attacks: New frontier in
hardware security,” in Proc. IEEE 3rd Int. Verification Secur. Workshop
(IVSW), Jul. 2018, pp. 93–102.

[29] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware trojan detection,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. Berlin, Germany:
Springer, 2009, pp. 396–410.

[30] D. Forte, C. Bao, and A. Srivastava, “Temperature tracking: An inno-
vative run-time approach for hardware trojan detection,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2013,
pp. 532–539.

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.vlsi.2019.12.007

DEB NATH et al.: RESILIENT SoC DESIGNS WITH NoC FABRICS 2823

[31] A. P. Deb Nath, S. Bhunia, and S. Ray, “ArtiFact: Architecture and CAD
flow for efficient formal verification of SoC security policies,” in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2018, pp. 411–416.

[32] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia,
“TeSR: A robust temporal self-referencing approach for hardware trojan
detection,” in Proc. IEEE Int. Symp. Hardw.-Oriented Secur. Trust,
Jun. 2011, pp. 71–74.

[33] Y. Jin and D. Sullivan, “Real-time trust evaluation in integrated circuits,”
in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2014, pp. 1–6.

[34] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the
threat of a compromised NoC,” in Proc. The 51st Annu. Design Autom.
Conf. Design Autom. Conf. (DAC), 2014, pp. 1–6.

[35] T. Boraten and A. Karanth Kodi, “Packet security with path sensitization
for NoCs,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
2016, pp. 1136–1139.

[36] C. Reinbrecht, A. Susin, L. Bossuet, and J. Sepúlveda, “Gossip NoC—
Avoiding timing side-channel attacks through traffic management,” in
Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016,
pp. 601–606.

[37] J. Sepúlveda, A. Zankl, D. Flórez, and G. Sigl, “Towards protected
MPSoC communication for information protection against a malicious
NoC,” in Proc. Int. Conf. Comput. Sci. (ICCS), Zürich, Switzerland,
Jun. 2017.

[38] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NOC-centric
security of reconfigurable SoC,” in Proc. 1st Int. Symp. Networks-Chip
(NOCS), May 2007, pp. 223–232.

[39] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure
memory accesses on Networks-on-Chip,” IEEE Trans. Comput., vol. 57,
no. 9, pp. 1216–1229, Sep. 2008.

[40] Y. Hu, D. Muller-Gritschneder, M. J. Sepulveda, G. Gogniat, and
U. Schlichtmann, “Automatic ILP-based firewall insertion for secure
application-specific Networks-on-Chip,” in Proc. 9th Int. Workshop
Interconnection Netw. Archit., Chip, Multi-Chip, Jan. 2015, pp. 9–12.

[41] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic control for mixed-
critical Networks-on-Chip,” in Proc. IEEE Real-Time Syst. Symp.,
Dec. 2015, pp. 317–326.

[42] H. M. G. Wassel et al., “SurfNoC: A low latency and provably
non-interfering approach to secure networks-on-chip,” ACM SIGARCH
Comput. Archit. News, vol. 41, no. 3, pp. 583–594, 2013.

[43] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda, “Timing
attack on NoC-based systems: Prime+Probe attack and NoC-based
protection,” Microprocessors Microsyst., vol. 52, pp. 556–565, Jul. 2017.

[44] Y. Wang and G. E. Suh, “Efficient timing channel protection for on-
chip networks,” in Proc. IEEE/ACM 6th Int. Symp. Networks-Chip,
May 2012, pp. 142–151.

[45] J. Sepulveda, D. Flórez, V. Immler, G. Gogniat, and G. Sigl, “Efficient
security zones implementation through hierarchical group key man-
agement at NoC-based MPSoCs,” Microprocessors Microsyst., vol. 50,
pp. 164–174, May 2017.

[46] M. Hussain, A. Malekpour, H. Guo, and S. Parameswaran, “EETD:
An energy efficient design for runtime hardware trojan detection in
untrusted network-on-chip,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2018, pp. 345–350.

[47] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran,
“SuperNet: Multimode interconnect architecture for manycore chips,”
in Proc. 52nd Annu. Design Autom. Conf. (DAC), 2015, p. 85.

Atul Prasad Deb Nath (Student Member, IEEE)
received the B.Sc. degree from the Khulna Uni-
versity of Engineering and Technology (KUET),
Khulna, Bangladesh, in 2011, and the M.Sc. degree
from the University of Toledo, Toledo, OH, USA,
in 2016. He is currently pursuing the Ph.D. degree
with the University of Florida, Gainesville, FL,
USA. His Ph.D. research focuses on investigating
major aspects of SoC security and developing novel
architectural features to protect assets, firmware, and
on-chip communication against various adversarial

models. He has published four book chapters, 11 peer-reviewed journals, and
premier conference papers, and filed one patent. His research interests include
system-on-chip (SoC) platform security and CAD for security and trust.

Srivalli Boddupalli (Student Member, IEEE)
received the B.Tech. degree from the Chaitanya
Bharathi Institute of Technology, Hyderabad, India,
in 2016, and the M.S. degree from the University
of Florida in 2018, where she is currently pursuing
the Ph.D. degree with the Department of ECE.
She has contributed to research projects on SoC
security, and she is currently working on develop-
ing machine learning-based security primitives for
connected vehicle applications. Her research inter-
ests are in the fields of trustworthy computing and

automotive security, with a primary focus on autonomous vehicle technology.

Swarup Bhunia (Senior Member, IEEE) received
the B.E. degree (Hons.) from Jadavpur University,
Kolkata, India, in 1995, the M.Tech. degree from IIT
Kharagpur, Kharagpur, India, in 1997, and the Ph.D.
degree from Purdue University, West Lafayette, IN,
USA, in 2005.

He was appointed as the T. and A. Schroeder Asso-
ciate Professor of electrical engineering and com-
puter science with Case Western Reserve University,
Cleveland, OH, USA. He is currently the Director
of the Warren B. Nelms Institute for the Connected

World and a Semmoto Endowed Chair Professor of IoT with the University
of Florida, Gainesville, FL, USA. He has over 250 publications in peer-
reviewed journals and premier conferences. His current research interests
include hardware security and trust, adaptive nanocomputing, and novel test
methodologies. He received the IBM Faculty Award, the NSF CAREER
Award, the SRC Inventor Recognition Award, the SRC Technical Excellence
Award, and several best paper awards/nominations. He has been serving as
an Associate Editor for the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the IEEE TRANS-
ACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, the ACM Journal of
Emerging Technologies, and the Journal of Low Power Electronics.

Sandip Ray (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin. He is currently a Professor with the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL, USA, where he
holds an Endowed IoT Term Professorship. Before
joining University of Florida, he was a Senior Prin-
cipal Engineer at NXP Semiconductors, and prior to
that, he was a Research Scientist with Intel Strate-
gic CAD Laboratories. During his industry tenure,
he led industrial research and R&D in pre-silicon

and post-silicon validation of security and functional correctness of SoC
designs, design-for-security and design-for-debug architectures, and security
validation for automotive and the Internet-of-Things applications. His cur-
rent research targets correct, dependable, secure, and trustworthy computing
through cooperation of specification, synthesis, architecture, and validation
technologies. He is the author of three books and over 100 publications in
international journals and conferences. He has also served as a Technical
Program Committee Member of over 50 international conferences, as the
Program Chair of ACL2 2009, FMCAD 2013, and IFIP IoT 2019, as a Guest
Editor for IEEE DESIGN & TEST, IEEE TMSCS, and ACM TODAES, and
as an Associate Editor of Springer HaSS and IEEE TMSCS.

Authorized licensed use limited to: University of Florida. Downloaded on March 25,2020 at 23:55:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

