
Proving Invariants via Rewriting and Abstraction ∗

Rob Sumners Sandip Ray
Advanced Micro Devices, Inc. Department of Computer Sciences

Austin, TX 78741 University of Texas at Austin
robert.sumners@amd.com Austin, TX 78712

sandip@cs.utexas.edu

July 2005

Abstract

We present a deductive method for proving invariants of reactive systems. Our approach uses term
rewriting to reduce invariant proofs to reachability analysis on a finite graph. This substantially auto-
mates invariant proofs by obviating the need to define inductive invariants while still benefitting from
the expressiveness of deductive methods. We implement a procedure supporting this approach which
interfaces with the ACL2 theorem prover. The interface affords sound extension of our procedure with
rewrite rules based on proven theorems. We demonstrate the method in the verification of cache coherence
protocols.

1 Motivation

The goal of invariant proving is to show that a certain target property of a reactive system is an invariant.
Invariant proving is a key problem in formal verification. Verification of safety properties can be reduced to
the proof of an invariant. Even in the proofs of liveness properties, one typically needs to establish some
auxiliary invariance condition.

Invariant proving is difficult for both model checking and theorem proving. The model checking ap-
proach involves a (symbolic or explicit) search to check if all the reachable system states satisfy the target
property. If the number of states is tractable, the process is automatic usually with the additional benefit
of counterexample generation when the verification fails. However, the method is limited in practice by
state explosion. The theorem proving approach involves strengthening the target property to an inductive
invariant. This approach is generally insensitive to state explosion but in practice can require significant
user interaction for defining the inductive invariant. In addition, inductive invariants are brittle and often
require extensive modification to match design changes. However, theorem provers support expressive logics
which allow users to succinctly define systems, properties, and any additional functions and lemmas that
enable efficient proofs.

We present a method to bridge the automation gap between theorem proving and model checking, while
still preserving the expressiveness of theorem proving. We use term rewriting to reduce an invariant proof to
the reachability analysis of a finite graph; the graph is a predicate abstraction [1] of the system. Rewriting is
guided by rewrite rules that relate the different functions used to model the system. The rules are selected
from theorems proven by a theorem prover.

Our approach transfers the user responsibility from defining inductive invariants to designing rules that
manipulate functions used in system definitions. How does this reduce manual effort? Proving rewrite rules
does require human interaction. However, while inductive invariants are defined by a user for a specific

∗Support for this work was provided in part by the SRC under contract 02-TJ-1032.

1



system, rewrite rules are proven facts about the functions used to model the system and can be used in
other systems using the same functions. It is customary for the users of a theorem prover to design rules
that simplify terms which arise during proofs [2, 3]. We found that most of the rules necessary for our work
are generic, and already available as proven theorems in a deductive setting. Note that since the logic of
a theorem prover is undecidable, any collection of rules is incomplete and it may be necessary for the user
to extend or refine the existing rules and definitions. However, feedback from our procedure assists in the
development of these extensions and refinements which, in our experience, can be reused in the verification
of similar systems.

Our procedure is interfaced with the ACL2 theorem prover [4]. ACL2 has been used to verify several
commercial systems [5, 6], and we make use of rewrite rules that have been proven in these efforts. However,
ACL2 is not critical to our method; it is used primarily as a mechanized logic with which we are familiar.
We believe that our procedure can be easily ported to other theorem provers.

The remainder of the paper is organized as follows. In Section 2, we describe the ACL2 logic and illustrate
our method with a simple example. We present our procedure in Section 3. In Section 4, we demonstrate
the method in proving invariants of cache coherence protocols. In Section 5, we discuss related work. We
conclude in Section 6. An implementation of the procedure, and the proofs described in this paper are
available from the web page of the second author [7].

2 Background and Overview

In this section, we review the ACL2 logic, and illustrate our method to prove invariants of reactive systems
modeled in ACL2. This paper is not about ACL2; our overview only provides a formal context for our work.
Readers interested in ACL2 are referred to [4] for a comprehensive description.

2.1 The ACL2 Logic

ACL2 is a first-order logic of recursive functions with a syntax similar to Lisp. A term is a variable, a constant,
or the application of an n-ary function f to n terms, written (f t1 t2 . . . tn). The set of constants is open
but includes integers, strings, and symbols T and NIL denoting boolean true and false. Formulas in the logic
are represented by terms. For example, the term (with variables x, y, z)
(implies (< x y) (< (+ x z) (+ y z)))

represents a formula about arithmetic. The syntax is quantifier-free, and variables in formulas are implicitly
universally quantified. The term above can be read as follows in the logic: “For all x, y, z, if x is less than
y, then x + z is less than y + z.”

ACL2 axiomatizes a subset of Common Lisp. An axiom relating functions car and cons is: (equal
(car (cons x y)) x). Theorems can be proven about axiomatized functions. The inference rules are
propositional calculus with equality and instantiation, and well-founded induction up to ε0. For example,
instantiation of the above axiom yields the theorem: (equal (car (cons 2 y)) 2).

We make special use of the ternary function if, which is axiomatized to be “if-then-else”: (if x y z)
is equal to z if x is equal to NIL, otherwise y. Since terms containing if are extensively used in ACL2 (and
Lisp), there are constructs to structure such terms. For example, we use (cond (a b) (c d) . . . (x y))
to stand for (if a b (if c d . . . (if x y NIL) . . . )). Boolean operations and, or, implies, etc. are
axiomatized using if:
(equal (and x y) (if x y NIL))

(equal (or x y) (if x x y))

(equal (implies x y) (if x (if y T NIL) T))

(equal (iff x y) (and (implies x y) (implies y x)))

In this paper, we use standard mathematical notations to represent certain functions. We use infix operators
“=” for equal, “∧” for and, “∨” for or, “⇒” for implies, and “⇔” for iff. Instead of writing (implies γ
(equal α β)), we will write γ ⇒ (α = β). We also write (and x1 x2 . . . xn) to mean (and x1 (and x2

... )) and similarly for (or x1 x2 . . . xn). If S is a set {e0, e1, . . . , en} and M maps S to terms, then

2



we write
∨

e∈S M(e) and
∧

e∈S M(e) to denote (or M(e1) M(e2) . . . M(en)) and (and M(e1) M(e2) . . .
M(en)) respectively.

ACL2 provides facilities to consistently introduce new axioms. New total functions can be defined (or
axiomatized), like the function factorial below
(factorial n) = (if (+ve n) (* n (factorial (- n 1))) 1)

where (+ve n) returns T if n is a positive natural number, else NIL. The logic also supports mutually
recursive function definitions. ACL2 further allows the introduction of a function which is only known to
satisfy some specified axioms. We can introduce a function E that only satisfies the axiom: (+ve (E n))
= T. Such axioms are called constraints, and E is then called a constrained function. A theorem about a
constrained function f is provable for any function f̂ satisfying the constraints. A constrained function with
no constraint is termed generic. If φ is a theorem and φ̂ is obtained from φ by replacing occurrences of a
generic function g with any function ĝ of the same arity, then φ̂ is a theorem.

2.2 System Models and Invariants

Reactive systems consist of several components that perform on-going, non-terminating computations while
interacting with an external environment. The “state” of the system at any time is given by the value of
each component. For example, consider a trivial system with two components C0 and C1. C0 and C1 initially
have the value 1. At each instant, they interact with an environment E and execute as follows.

• If E is NIL then C0 gets the previous value of C1; otherwise C0 is unchanged.

• If E is NIL then C1 is assigned to the value 42; otherwise C1 is unchanged.

Such systems can be modeled [5] by specifying, for each component C, a function (C n) that returns the
value of C at time n. The external stimuli are modeled by generic functions of n. We formalize time by two
functions, a 0-ary function t0 for “initial time”, and a unary function t+ for “next time”. The value of a
component at time (t+ n) can depend on other components at time n and the external stimuli at time (t+
n). Equations 1-4 below define the system above, and can be specified using mutually recursive function
definitions.1 Here E is a generic unary function where (E n) is the value supplied by the environment at
time n.
1. (C0 (t0)) = 1

2. (C1 (t0)) = 1

3. (C0 (t+ n)) = (if (E (t+ n)) (C0 n) (C1 n))

4. (C1 (t+ n)) = (if (E (t+ n)) (C0 n) 42)

We call a term Φ a temporal term if it has a single variable n representing time. A temporal term Φ is an
invariant if it does not evaluate to NIL for any n (i.e. Φ ⇔ T is a theorem). The goal of invariant proving is
to show that a temporal term Φ is an invariant. For the system above, an invariant is Φ0 , (+ve (C0 n)).

A deductive method for invariant proving is to define an inductive invariant. A unary function inv is an
inductive invariant strengthening Φ if I1-I3 are theorems:
I1: (inv (t0)) ⇔ T

I2: (inv n) ⇒ Φ

I3: (inv n) ⇒ (inv (t+ n))

If some function inv is an inductive invariant strengthening Φ, then the invariance of Φ follows by induc-
tion on time n. For the example above, (inv n) = (and (+ve (C0 n)) (+ve (C1 n))) is an inductive
invariant strengthening Φ0.

1We actually need two other unary functions, namely t- for “previous time” and tzp to check if the “current time” is t0.
We omit discussion of these functions for brevity.

3



2.3 Overview of Our Approach

Consider proving for the system above that Φ0 is an invariant. Instead of manually defining an inductive
invariant, our approach “discovers” the relevant terms by rewriting. The term T0 below is the result of
rewriting the term Φ′

0 (which is the term Φ0 with n replaced by (t+ n)) using equation 3 along with the
following equation 5: (+ve (if x y z)) = (if x (+ve y) (+ve z)).
T0 , (if (E (t+ n)) (+ve (C0 n)) (+ve (C1 n)))

We treat T0 as a boolean combination of (E (t+ n)), (+ve (C0 n)), and (+ve (C1 n)), and classify (+ve
(C1 n)) as a new temporal term Φ1. Using equations 4 and 5, and the computed fact (+ve 42) = T, we
similarly rewrite Φ′

1 (that is, Φ1 with n replaced by (t+ n)) to
T1 , (if (E (t+ n)) (+ve (C0 n)) T)

T0 and T1 specify how Φ0 and Φ1 are “updated” at time n. We make this explicit by constructing the
following mapping N from variables to terms:
N(v0) , (if e v0 v1), N(v1) , (if e v0 T)

N is obtained by replacing terms Φ0, Φ1, and (E (t+ n)) in T0 and T1 with v0, v1, and e respectively.
Informally, variables in the domain of N (namely, v0 and v1) “track” the temporal terms of interest (namely,
Φ0 and Φ1), while other variables (namely, e) represent terms that are abstracted (namely, (E (t+ n))).

N specifies a directed graph G as follows. The nodes are mappings from {v0, v1} to the set {T, NIL}.
The mapping Z , [v0 7→ T, v1 7→ T], corresponding to values of Φ0 and Φ1 at time (t0), is the initial node.
For nodes p , [v0 7→ x, v1 7→ y] and p′ , [v0 7→ x′, v1 7→ y′], there is an edge from p to p′ if for some
eb ∈ {T, NIL}, x′ = (if eb x y) and y′ = (if eb x T).

We then prove that Φ0 is an invariant by checking that v0 is mapped to T in each node p reachable from
node Z. Notice that G is a predicate abstraction of this example system.

3 Procedure

We introduce some notations before describing our procedure. We use [a 7→ α, b 7→ β], where a and b are
distinct, to denote a finite mapping η with domain {a, b} and range {α, β} so that η(a) = α and η(b) = β.
We use dom(η) to denote the domain of η. Given mappings η1 and η2 on disjoint domains, η1 ∪ η2 denotes
their union: if η1 , [a 7→ α, b 7→ β] and η2 , [c 7→ γ], then η1 ∪ η2 , [a 7→ α, b 7→ β, c 7→ γ].

Let ν(τ) be the set of variables in term τ . If ν(τ) is empty, τ is called a ground term. For term τ and
mapping σ from variables to terms, τ/σ is the term obtained by replacing every variable v ∈ dom(σ) in τ
with σ(v). Term τ is called a boolean term if it is (i) a variable, or (ii) one of T or NIL, or (iii) a term (if
α β γ) where α, β, and γ are boolean terms. For a given set V of variables, B(V ) is the set of mappings
from V to {T, NIL}.

Given a temporal term Φ0, our procedure first returns three mappings Γ, N , and Z from variables to
terms such that the following hold:
C1: dom(N) ⊆ dom(Γ); Z ∈ B(dom(N)).

C2: Γ(v0) = Φ0 for some v0 ∈ dom(N).

C3: For each v ∈ dom(N), N(v) is a boolean term.

C4: For each v ∈ dom(N), ν(N(v)) ⊆ dom(Γ).

C5: For each v ∈ dom(N), Γ(v)/[n 7→ (t+ n)] ⇔ N(v)/Γ is a theorem.

C6: For each v ∈ dom(N), Γ(v)/[n 7→ (t0)] ⇔ Z(v) is a theorem.

In our example, Γ , [v0 7→ (+ve (C0 n)), v1 7→ (+ve (C1 n)), e 7→ (E (t+ n))]. We then construct a
directed abstraction graph G as follows:
G1: The set of nodes in G is the set B(dom(N)).

G2: The mapping Z is the initial node.

G3: Let V , dom(Γ)\dom(N). There is an edge from node p to node q if there exists i ∈ B(V ) such that for all
v ∈ dom(N), N(v)/[p ∪ i] ⇔ q(v) is a theorem.

4



C3 and C4 imply that N(v)/[p ∪ i] is a ground boolean term; thus the edge relation from G3 can be
determined by evaluation. We now show how the invariance of Φ0 reduces to reachability in G and how we
compute Γ, N , and Z.

For node p of G, we define the minterm of p, denoted by M(p), as:

M(p) ,
V

v∈dom(N)(Γ(v) ⇔ p(v))

Let nbrs(p) denote the set of all nodes q such that there is an edge from p to q. From G3 and C5 the
following can be shown to be a theorem.

M(p) ⇒ (
W

q∈nbrs(p) M(q))/[n 7→ (t+ n)] (1)

Let R(p) be the set of all nodes reachable from p. Since for any node q ∈ R(p), R(q) ⊆ R(p), it follows
from (1) that the following is a theorem.

(
W

q∈R(p) M(q)) ⇒ (
W

q∈R(p) M(q))/[n 7→ (t+ n)] (2)

Claim 1 below is well-known, and follows from the definition of inductive invariants using (2) and C6, and
lets us conclude the invariance of Φ0 by checking if p(v0) = T for each p ∈ R(Z).

Claim 1 If for every node p ∈ R(Z), p(v0) = T then (inv n) = (
∨

q∈R(Z) M(q)) is an inductive invariant
strengthening Φ0.

To compute Γ, N , and Z which satisfy C1-C6, we will define procedures rewrt and chop with the following
properties. Given term τ , rewrt(τ) returns term τ∗ such that τ ⇔ τ∗ is a theorem. Given term τ and
mapping η from ν(τ) to terms, chop(τ, η) returns a pair 〈η′, ρ〉 where ρ is a boolean term and η′ is a mapping
from variables to terms such that the following properties hold: (a) ρ/η′ is syntactically equal to τ , and (b)
For v ∈ dom(η), η′(v) = η(v). We then compute Γ and N as follows.
Initially Γ := [v0 7→ Φ0]; N := [];

while ∃v ∈ dom(Γ)\dom(N) such that (statep(Γ(v)) = T)

let v ∈ dom(Γ)\dom(N) such that (statep(Γ(v)) = T)

〈Γ, ρ〉 := chop(rewrt(Γ(v)/[n 7→ (t+ n)]), Γ)

N := N ∪ [v 7→ ρ]

end while

Return 〈Γ, N〉
Recall that the value of a component at time (t+ n) depends on the components at time n and the external
stimuli at time (t+ n). Hence if (t+ n) occurs as a subterm of a term τ , then τ involves an external stimulus.
Call a temporal term τ a state predicate if it does not contain (t+ n) or the application of the special function
hide in any subterm; otherwise we call τ an input predicate. We use hide for user-guided abstractions, and
we will discuss it in Section 3.1. Procedure statep(τ) above returns T if τ is a state predicate, otherwise it
returns NIL. We compute Z as follows: for a ground term τ , let val(τ) ∈ {T, NIL} where τ ⇔ val(τ) is a
theorem, then Z(v) , val(Γ(v)/[n 7→ (t0)]) for each v ∈ dom(N).

It remains for us to describe rewrt and chop. Procedure rewrt is a term rewriter. It transforms a term
τ into another term τ∗ using the system definitions and theorems as follows. A definition or theorem of
the form γ ⇒ (α = β) where α, β, and γ are terms, is treated as a rewrite rule.2 The rule is applicable
to term σ if there is a mapping b from variables to terms such that (γ/b ⇔ T) is a theorem and α/b is
syntactically equal to σ; β/b is the result of the application. Since inference rules of the logic include equality
and instantiation, if σ∗ is a result of rewriting σ, then σ = σ∗ (and hence σ ⇔ σ∗) is a theorem. A rewriter
applies rules to a term until no rule is applicable. The resulting term is a normal form. In general rewriting
is a non-deterministic process, but rewrt implements rewriting that is principally inside-out (arguments of a
term are rewritten before the term), and ordered (rules are applied in a fixed total order). The procedure
rewrt also incorporates some congruence-based reasoning and gives special treatment to the function hide.
Terms T0 and T1 in Section 2.3 are normal forms.

We now simply define chop as the following recursive procedure which traverses the applications of if in
a term and replaces the non-if subterms with new variables while updating the mapping η accordingly.

2A definition is of the form α = β and is treated as the rewrite rule: T⇒ (α = β).

5



chop(τ ,η) , If τ = (if α β γ)

let 〈η, ρ1〉 := chop(α, η)

〈η, ρ2〉 := chop(β, η)

〈η, ρ3〉 := chop(γ, η)

Return 〈η, (if ρ1 ρ2 ρ3)〉
Else If (∃v ∈ dom(η) : η(v) = τ) Return 〈η, v〉

Else let u /∈ dom(η) Return 〈η ∪ [u 7→ τ ], u〉

We conclude this description with a note on convergence. The computation of Γ and N need not converge.
In practice, we attempt to reach convergence within a user-specified bound. Why not coerce terms on which
convergence has not been reached to input predicates? We have found that such coercions typically result in
coarse abstraction graphs and spurious failures. We prefer to rely on user control and perform such coercions
only via user-guided abstractions.

3.1 Observations and Extensions

Our method primarily relies on rewrite rules to simplify terms. Even in our example in Section 2, equation 5
is critical to rewrite Φ′

0 to T0. Otherwise, the normal form T′
0 , (+ve (if (E (t+ n)) (C0 n) (C1 n)))

would be classified as an input predicate which leads to a spurious failure.
This trivial example illustrates an important aspect of our approach. Equation 5 is a critical but generic

“fact” about +ve and if, independent of the system analyzed. Equation 5, known as an if-lifting rule, would
usually be stored in a library of common rules. While generic rules can normalize most terms, it is important
for scalability that the procedure provide control to facilitate generation of manageable graphs. We now
discuss one feature, user-guided abstraction, that affords control by coercing terms to input predicates.
We omit other features that our implementation supports, such as use of rewriting for assume-guarantee
reasoning and case splitting, since we do not use them in the examples in this paper.

User-guided abstraction is achieved via a special function hide. In the logic, hide is the identity function:
(hide x) = x. However, the rewrt procedure will immediately return any term (hide τ) as a normal form.
To see how this affords coercion, consider a system with components A0, A1, A2, etc., where A0 is specified
as follows:
1. (A0 (t0)) = 1

2. (A0 (t+ n)) = (if (+ve (A1 n)) (A0 n) 42)

A0 is assigned 42 if the previous value of A1 is not a positive integer, and otherwise is unchanged. Consider
proving that P0 , (+ve (A0 n)) is an invariant. Our procedure will discover the term P1 , (+ve (A1 n))
and attempt to rewrite (+ve (A1 (t+ n))), thereby possibly exploring other components. But P1 is ir-
relevant to the invariance of P0. This irrelevance can be suggested by the user with the rule: (+ve (A1
n)) = (hide (+ve (A1 n))). Since hide is the identity function, proving this rule is trivial. The rule has
the effect of “wrapping” hide around (+ve (A1 n)) to create a normal form which is coerced as an input
predicate (hide (+ve (A1 n))) producing a trivial abstraction graph.

3.2 Reachability Checking

The abstraction graph is checked by reachability analysis. Our reachability implementation is an on-the-
fly, breadth-first search. While less efficient than commercial model checkers, our simple checker has been
sufficient to verify the examples in Section 4. Note that any model checker can be interfaced with our work
by translating the abstraction graph to a program understandable by the checker. We have implemented
interfaces for VIS [8], Cadence SMV [9], and NuSMV [10]. Our checker also contains additional features to
provide user feedback, such as pruning counterexamples to only report predicates that are relevant to the
failures in the reachability check.

We have also found that it is important to leverage the predicate discovery procedure to limit exploration
of irrelevant paths during search. Recall that user-guided abstraction can reduce nodes in the graph by

6



coercing temporal terms to input predicates. However, the process can increase the number of edges in the
graph. To combat this, the abstraction procedure computes for each node p (on-the-fly) a set of representative
input valuations, that is, valuations of input predicates that are relevant in determining nbrs(p). If τ is
coerced to an input using hide, it contributes to an edge from p only if some q ∈ nbrs(p) depends on the
input variable corresponding to (hide τ). In addition, we filter exploration of spurious paths by using
rewrt to determine provably inconsistent combinations of state and input predicates. For example, assume
that for some s ∈ dom(N), Γ(s) , (equal (f n) (g n)), and for i0, i1 ∈ dom(Γ)\dom(N), Γ(i0) ,
(equal (f n) (i (t+ n))) and Γ(i1) , (equal (g n) (i (t+ n))). Then for node p such that p(s) =
NIL, filtering avoids exploration of edges in which both i0 and i1 are mapped to T.

4 Demonstration

In this section, we demonstrate the use of our approach to verify cache coherence protocols. For didactic
reasons, we first consider a simple ESI protocol, and show in some detail the rewrite rules used to generate
the abstraction graph. We then discuss how the same approach is used to verify a more complicated protocol.

4.1 A Simple ESI Protocol

In our ESI model, an unbounded number of client processes communicate with a single controller process to
access memory blocks (or cache lines). Cache lines consist of addressable data. A client can read the data
from an address if its cache contains the corresponding line. A client acquires a cache line by sending a fill
request to the controller; such requests are tagged for Exclusive or Shared access. A client with shared access
can only load data in the cache line. A client with exclusive access can also store data. The controller can
request a client to Invalidate or flush a cache line and if the line was exclusive then its contents are copied
back to memory. The key equations in the ESI model definition are shown in Fig. 1. Functions mem, cache,
excl, and valid model the following components:

• (mem c n) is the content of line c in the memory at time n.

• (cache p c n) is the content of line c in the cache of process p at time n.

• (valid c n) is the set of processes having a copy of line c at time n.

• (excl c n) is the set of processes having an exclusive copy of c at time n.

We model external stimuli with generic unary functions p, op, addr, and data:
• (p n) is the index of the process scheduled at time n

• (op n) is the action taken by (p n). It can be "load", "store", "fille", "fills", or "flush"; "fille" and
"fills" represent exclusive and shared fill requests.

• If (op n) = "store", then (p n) writes (data n) at (addr n) in its cached block.

Notice that we use set and record operations insert, drop, get, put, etc., to define the model. This
emphasizes the importance of rewrite rules to normalize terms built out of the functions used in the system
models. For these operations, such rules are available in ACL2 [2] and the following are some useful rules:
(in e (insert a s)) = (or (in e s) (equal e a))

(in e (drop a s)) = (and (in e s) (/= e a))

(get a (put b v r)) = (if (equal a b) v (get a r))

The property we verify is coherence: reading from an address returns the value most recently written. We
specify coherence as an invariant as follows. Let R and A be generic 0-ary functions representing an arbitrary
reading process and an arbitrary address. We then define unary functions D and coherent in Fig. 2. (D n)
is the last value that was stored to address (A) at time n, and (coherent n) remains true as long as a load
by (R) from (A) returns (D n). Thus, coherence follows from the proof that (coherent n) is an invariant.

The careful reader will notice that in Fig. 1, membership in the set (excl c n) is tested using the
function in1. In the logic, in1 is simply set membership: (in1 e s) = (in e s), where (in e s) returns
T if e is a member of set s, else NIL. The function in1 is expected to apply to sets that are either empty or
singleton. We utilize this expectation with the following rule:

7



(mem c (t+ n)) (valid c (t+ n))
= =
(cond (cond
((/= (cline (addr (t+ n)) c) ((/= (cline (addr (t+ n)) c))
(mem c n)) (valid c n))
((and (equal (op (t+ n)) "flush") ((and (equal (op (t+ n)) "flush")

(in1 (p (t+ n)) (excl c n))) (e-in1 (p (t+ n)) (excl c n)))
(cache (p (t+ n)) n)) (drop (p (t+ n)) (valid c n)))
(T (mem c n)))) ((or (and (equal (op (t+ n)) "fills")

(empty (excl c n)))
(cache p c (t+ n)) (and (equal (op (t+ n)) "fille")
= (empty (valid c n))))
(cond (insert (p (t+ n)) (valid c n)))
((/= (cline (addr (t+ n))) c) (T (valid c n)))
(cache c n))
((/= (p (t+ n)) p) (excl c (t+ n))
(cache p c n)) =
((or (and (equal (op (t+ n)) "fills") (cond

(empty (excl c n))) ((/= (cline (addr (t+ n))) c)
(and (equal (op (t+ n)) "fille") (excl c n))

(empty (valid c n)))) ((and (equal (op (t+ n)) "flush")
(mem c n)) (e-in1 (p (t+ n)) (excl c n)))
((and (equal (op (t+ n)) "store") (drop (p (t+ n)) (excl c n)))

(in1 p (excl c n))) ((and (equal (op (t+ n)) "fille")
(put (addr (t+ n)) (data (t+ n)) (empty (valid c n)))

(cache p c n))) (insert (p (t+ n)) (excl c n)))
(T (cache p c n))) (T (excl c n)))

Figure 1: A model of the ESI protocol. Function cline is generic; (cline a) is assumed to return the
index of the cache line containing address a. Functions insert and drop are defined to be set insertion and
deletion, in and in1 check set membership, and empty is a test for emptyset. Function put models “record
update”, so that (put a v r) is record r changed to map key a to value v. (e-in1 e s) is defined to be
(or (empty s) (in1 e s)), and (/= x y) is defined to be (not (equal x y)).

(in1 e s) = (cond ((empty s) nil)

((singleton s) (equal e (choose s)))

(T (hide (in1 e s))))

Here (choose s) returns some member s if s is a non-empty set, and (singleton s) checks if s is a singleton.
This rule shows how rewrite rules and structured definitions can convey protocol-level assumptions (namely,
that (excl c n) is always empty or singleton) to the abstraction process without limiting expressiveness.
Application of the rule causes terms involving in1 to be rewritten to introduce a case-split for the cases
where the set is empty, singleton, or otherwise, and coerces the third case to an input predicate.

With the rules above, our procedure proves that (coherent n) is an invariant. The abstraction graph is
defined on 9 state predicates (Fig. 3) and 25 input predicates. The search traverses 133 edges exploring 11
nodes and the proof takes a couple of seconds. Without edge pruning, the search explores 48 nodes. Notice
that the rule about in1 is crucial not only to abstract the irrelevant case, but also to introduce the relevant
state predicate 9; this predicate “tracks” the fact that the value stored in address (A) at the local cache
of an arbitrary processor (not necessarily (R)) at time n is equal to (D n). Factors like this have made it
difficult for fully automatic decision procedures to abstract “processor indices” in past work in abstraction,
and underline the importance of using an expressive logic to define the necessary functions for modeling

8



(D (t0)) = (get (A) (mem (t0)))
(coherent (t0)) = T
(D (t+ n)) = (if (and (equal (addr (t+ n)) (A))

(equal (op (t+ n)) "store")
(in1 (p (t+ n)) (excl (cline (addr (t+ n))) n)))

(data n)
(D n))

(coherent (t+ n)) = (if (and (equal (p (t+ n)) (R))
(equal (addr (t+ n)) (A))
(equal (op (t+ n)) "load")
(in (R) (valid (cline (addr (t+ n))) n)))

(equal (get (A) (cache (R) (cline (A)) n)) (D n))
(coherent n))

Figure 2: Definition of functions D and coherent for the ESI model. Function get is the “record access”
operation; (get k r) returns the value stored with key k in record r

1. (coherent n)
2. (valid (cline (A)) n)
3. (in (R) (valid (cline (A)) n))
4. (excl (cline (A)) n)
5. (singleton (excl (cline (A)) n))
6. (equal (choose (excl (cline (A)) n)) (R))
7. (equal (D n) (get (A) (mem (cline (A)) n)))
8. (equal (D n) (get (A) (cache (R) (cline (A)) n)))
9. (equal (D n) (get (A) (cache (choose (excl (cline (A)) n))

(cline (A)) n)))

Figure 3: State Predicates Discovered for the ESI Model

target systems.

4.2 A More Elaborate Cache Coherence Protocol

We now consider a more elaborate system and observe how concepts from the ESI model are reused with
little “overhead”. The system is based on the protocol defined by S. German. In this system, the controller
(named home), communicates with clients via three channels 1, 2, and 3. Clients make cache requests (fill
requests) on channel 1. Home grants cache access (fill responses) to clients on channel 2; it also uses channel 2
to send invalidation (flush) requests. Clients send flush responses on channel 3, sometimes with data.

The German protocol has been studied extensively by the formal verification community [11, 12, 13]. The
original implementation has single-entry channels. In UCLID, indexed predicates were used [14] to verify a
version in which channels are modeled as unbounded FIFOs. Our system is inspired by the version with
unbounded FIFOs. However, since we have not built rules to reason directly about unbounded FIFOs, we
modify the protocol to use channels of bounded size, and prove, in addition to coherence, that the imposed
channel bounds are never exceeded in our model. As in our ESI model, we also model the memory.

Our model is roughly divided into three sets of functions specifying the state of the clients, the home
controller, and the channels. The state of the clients is defined by the following functions:

• (cache p c n) is the content of line c in the cache of client p at time n.

• (valid c n) is the set of clients having a copy of line c at time n.

• (excl c n) is the set of clients which have exclusive access of c at time n.

9



Home maintains a central directory which enables it to “decide” whether it can safely grant exclusive or
shared access to a cache line. It also maintains a list of pending invalidate requests it must send, and the
state of the memory. The state of home is specified by the following functions:

• (h-valid c n) is the set of clients which have access to line c at time n.

• (h-excl c n) is the client which has exclusive access to line c at time n.

• (curr-cmd c n) is the pending request for line c at time n.

• (curr-client c n) is the most recent client requesting for line c at n.

• (mem c n) is the value of line c in the memory at time n.

• (invalid c n) is a record mapping client identifiers to the state of a pending invalidate request at time n. It can
be “none pending”, or “pending and not sent”, or “invalidate request sent”, or “invalidate response

sent”. This function models part of the state of home and part of the state of the channels 2 and 3 (namely,
invalidate requests and responses).

Finally, the states of the three channels are specified by the following functions (in addition to invalid
above):

• (ch1 p c n) is the requests sent from client p for line c at time n.

• (ch2-sh c n) is the set of clients with a shared fill response in channel 2.

• (ch2-ex c n) is the set of clients with an exclusive fill response in channel 2.

• (ch2-data p c n) is the data sent to client p with fill responses.

• (ch3-data p c n) is the data sent from client p with the invalidate responses.

At any time n, one of the following 12 actions is selected to execute nondeterministically: (1) a client sends a
shared fill request on channel 1, (2) a client sends an exclusive fill request on channel 1, (3) home picks a fill
request from channel 1, (4) home sends an invalidate request on channel 2, (5) a client sends an invalidate
response on channel 3, (6) home receives an invalidate response on channel 3, (7) home sends an exclusive
fill response on channel 2, (8) home sends a shared response on channel 2, (9) a client receives a shared
fill response from channel 2, (10) a client receives a shared exclusive response from channel 2, (11) a client
performs a store, and (12) a client performs a load.

The coherence property we proved for this system is the same as that for ESI (Fig. 2). Although this
system is more elaborate than ESI (and hence an inductive invariant, if manually constructed, is very
different), the rules from our libraries (including the set and record rules mentioned in Section 4.1) are
directly applicable. Further, a lesson learned from the ESI model is reused and we test membership in sets
(ch2-ex c n) and (excl c n) using in1. A similar rule is used to cause a case split on the record access
operations for (invalid c n). With these rules, our procedure can prove coherence along with the bounded
channel invariant. The abstraction graph for coherence is defined by 46 state and 117 input predicates. The
reachability check explores 7000 nodes and about 300 thousand edges, and the proof is completed in less
than 2 minutes on a modern desktop machine running Linux. The proof of the bounded channel invariant
completed in less time on a smaller abstraction graph.

5 Comparison with Related Work

Our method generates predicate abstractions using rewriting. Predicate abstraction involves creating an
abstract model whose state variables correspond to predicates in the concrete system. The idea is derived
from the more general notion of abstract interpretations [15]. Graf and Saidi [1] made the idea explicit
and used it to verify communication protocols in PVS. Predicate abstractions have been used recently in
SLAM [16] and BLAST [17] to verify device drivers and C programs, and in UCLID [18, 14] to verify
unbounded state systems.

The key difference between these approaches and ours is in the method employed for predicate discovery,
that is, computation of the predicates necessary for construction of the abstract model. Predicate discovery
in PVS [1, 19] involves on-the-fly validity checks using the theorem prover. While this allows specification

10



of arbitrary formulas as predicates, it can be prohibitively expensive. Other predicate abstraction methods
employ a more computational approach. SLAM and BLAST use boolean programs with a control-flow
skeleton similar to the original system, UCLID uses weakest liberal preconditions and index variables, and
Das and Dill [20] use counterexample analysis. To our knowledge, all these methods enforce some restriction
on the language to express systems and target properties. Our method, on the other hand, is motivated
to exploit the expressiveness afforded by allowing predicates to be arbitrary first-order formulas, while still
being efficient in practice. In our method, predicate discovery is based on instantiation of previously proven
rewrite rules. Proving rewrite rules involves human effort; but such proofs are done “off line” and do not
contribute to the cost of predicate computation. With an effective library of rules, our method is efficient
in practice. Our approach also disentangles heuristics for predicate discovery from the predicate abstraction
process. However, the process might need user interaction to determine the necessity of a new rule or
definition. We note that while predicate abstractions have been used both in our work and UCLID to verify
versions of the German protocol, the difference in expressive power of the two logics makes it difficult to
compare them directly. Our method requires user-provided rewrite rules, but also affords greater control
over the structure and form of the system definition and the efficiency of predicate discovery.

Our approach is similar in concept to the work of Namjoshi and Khurshan [21]. This method computes
predicates by applying syntactic transformations to a formula that represents weakest liberal preconditions;
it is also the basis of indexed predicate discovery in UCLID [14]. Our approach can be viewed as a focused and
scalable implementation of this method using term rewriting for syntactic transformation, with extensions
and heuristics to facilitate generation of effective abstractions as required for practical application.

6 Conclusion

We have presented a method for automating deductive proofs of invariants for reactive systems. Our method
reduces an invariant proof to the reachability analysis of an abstraction graph which is a form of predicate
abstraction of the original system. Manual definition of inductive invariants is not necessary. This makes
invariant proofs robust against changes arising from design evolution. The novelty of our method is in the
use of term rewriting to discover relevant predicates for the construction of the abstraction graph. Since the
method is based on symbolic manipulation of terms, it is relatively insensitive to state explosion. Further,
our implementation provides features to facilitate control over the search cost of the abstraction graph.

Our approach affords flexibility in predicate discovery by allowing the user to “plug in” different libraries
of rewrite rules. This makes it suitable for the verification of a large class of systems, without imposing
restrictions on the language used. A key advantage of using deductive reasoning over automatic decision
procedures is the expressiveness of the logic. Expressiveness affords succinct system definitions and powerful
proof techniques. Our work is geared towards exploiting this advantage, while still providing substantial
automation in practice. In our work, we found that most of the rules necessary for effective application
of our tool are generic theorems about functions used in modeling the target system, and, in the context
of ACL2 proofs, available in existing libraries. Further, the concepts behind necessary “system-specific”
abstractions can also be reused for similar systems. Note, however, that the target system must be modeled
with some discipline so that rules can be designed to normalize terms built out of functions used in the
model. If a component is modeled at a “low level” with functions for which rules are difficult to design, then
it might be necessary to provide a more disciplined alternative definition. However, such low-level models
are rarely designed manually, but rather are generated by compilers for higher-level languages. Our method
is applicable to systems at the level at which they are modeled.

In future work, we plan to apply this method to verify more detailed systems. In particular, we are
working on applying the method to verify invariants of a pipelined implementation of the Y86 processor [22]
developed at CMU.

11



Acknowledgments

We thank Jared Davis, Robert Krug, Wilfred Legato, J Strother Moore, Erik Reeber, and Thomas Wahl for
several comments and suggestions.

References

[1] Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In Grumberg, O., ed.: Computer-
Aided Verification. Springer LNCS 1254 (1997) 72–83

[2] Kaufmann, M., Sumners, R.: Efficient Rewriting of Data Structures in ACL2. In Borrione, D., kauf-
mann, M., Moore, J.S., eds.: 3rd ACL2 Workshop. (2002)

[3] Davis, J.: Finite Set Theory based on Fully Ordered Lists. In Kaufmann, M., Moore, J.S., eds.: 5th
ACL2 Workshop. (2004)

[4] Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers (2000)

[5] Russinoff, D.: A Case Study in Formal Verification of Register-Transfer Logic with ACL2: The Floating
Point Adder of the AMD Athlon Processor. In: Formal Methods in Computer-Aided Design. Springer
LNCS 1954 (2000) 3–36

[6] Brock, B., Kaufmann, M., Moore, J.S.: ACL2 Theorems about Commercial Microprocessors. In:
FMCAD 1996. Springer LNCS 1166 (1996) 275–293

[7] (http://www.cs.utexas.edu/users/sandip/)

[8] The VIS Group: VIS: A system for Verification and Synthesis. In Alur, R., Henzinger, T., eds.:
Computer Aided Verification. Springer LNCS 1102 (1996)

[9] McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)

[10] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model Verifier. In:
Computer-Aided Verification. LNCS 1633 (1999) 495–499

[11] Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisible Invariants. In Margaria,
T., Yi, W., eds.: Tools and Algorithms for Construction and Analysis of Systems. Volume Springer
LNCS 2031. (2001) 82–97

[12] Emerson, E.A., Kahlon, V.: Exact and Efficient Verification of Parameterized Cache Coherence Pro-
tocols. In: Correct Hardware Design and Verification Methods. Volume Springer LNCS 2860. (2002)
247–262

[13] Lahiri, S.K., Bryant, R.E.: Constructing Quantified Invariants via Predicate Abstraction. In Stefen,
B., Levi, G., eds.: Verification, Model Checking and Abstraction. Springer LNCS 2937 (2004) 267–281

[14] Lahiri, S.K., Bryant, R.E.: Indexed Predicate Discovery for Unbounded System Verification. In:
Computer-Aided Verification. Springer LNCS 3117 (2004) 135–147

[15] Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Pro-
grams by Approximation or Analysis of Fixpoints. In: Principles of Programming Languages, ACM
Press (1977) 238–252

[16] Ball, T., Rajamani, S.K.: Automatically Validating Temporal Safety Properties of Interfaces. In
Dwyer, M.B., ed.: 8th International SPIN Workshop on Model Checking of Software. Springer LNCS
2057 (2001) 103–122

12



[17] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Principles of Programming
Languages, ACM Press (2002) 58–70

[18] Lahiri, S.K., Bryant, R.E., Cook, B.: A Symbolic Approach to Predicate Abstraction. In: Computer-
Aided Verification. Springer LNCS 2275 (2003) 141–153

[19] Saidi, H., Shankar, N.: Abstract and model check while you prove. In: Computer-Aided Verification.
Springer LNCS 1633 (1999) 443–453

[20] Das, S., Dill, D.L.: Counter-example Based Predicate Discovery in Predicate Abstraction. In: FMCAD
2002. Springer LNCS 2517 (2002) 19–32

[21] Namjoshi, K.S., Khurshan, R.P.: Syntactic Program Transformations for Automatic Abstraction. In:
Computer-Aided Verification. Springer LNCS 1855 (2000) 435–449

[22] Bryant, R.E., O’Hallaron, D.R.: Computer Systems: A Programmer’s Perspective. Prentice Hall (2003)

13


