
Towards a Formalization of the X86 Instruction

Set Architecture

Sandip Ray

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712. USA.
sandip@cs.utexas.edu

http://www.cs.utexas.edu/users/sandip

Abstract

We present a preliminary approach to defining a formal specification
of the semantics of the X86 Instruction Set Architecture. The goal of the
formalization is to support the dual requirements of analyzing the correct-
ness of binaries executing on the architecture and investigating different
safety and security properties of the architecture itself. In particular, we
focus on the security properties of protection rings available in the X86.
A simplified version of the specification has been developed in the formal
logic of the ACL2 theorem prover together with a generic approach to
operationally define security policies. we discuss the use of our approach
in developing trusted applications.

1 Introduction

Many modern system applications contain military and commercial secrets. It
is important to ensure security properties of such applications, namely that no
unauthorized interference or eavesdropping can occur. However, the complexity
of computing systems makes it non-trivial to validate such properties either by
code inspection or by simulation and testing. Formal, mechanized reasoning
offers a promising alternative. In this approach, one models the system in some
mathematical logic and derives its desired properties as theorems about the
model, using a mechanical reasoning tool to assist in the verification process.
When applicable it provides a mathematical guarantee for the desired properties
of the system execution up to the accuracy of the model and the soundness of
the reasoning tool. The goal of our work is to develop mechanical reasoning
technology to facilitate analysis of security properties of systems based on the
IA32 instruction set architecture.

The IA32 architecture, often colloquially referred to as the X86, is one of
the most popular architectures used in microprocessor design, and is used ex-

1



tensively for developing critical software both at the system and the applica-
tion levels. The protection mechanisms afforded by the underlying architecture
therefore impacts the level of assurance that can be guaranteed by such software.

The protection mechanism provided by the X86 is the so-called protection
rings, which attempts to distinguish between codes running with different priv-
ileges. The mechanism recognizes four privilege levels, numbered 0 to 3, where
a greater number means less privilege. The code modules at a lower privilege
level can access modules of higher privilege segments by means of a tightly con-
trolled and protected interface called gate; attempts to access a higher privilege
level without passing through the protection gate results in an exception. The
ring mechanism enables development of a secure framework in which the code
supporting the architectural capabilities of the security services execute at a
higher privilege level than untrusted applications. The key properties we would
like to ensure for such a secure framework include the following properties.

Tamper resistance: There is no way for code to modify data/code of a higher
privilege level.

Non-bypassability: All accesses to system resources must be validated.

Our interest is in formal analysis of such properties for the secure ring ar-
chitecture. To this end, we use the ACL2 theorem prover and its mechanical
reasoning engine [5] to formalize and reason about the X86 architecture. ACL2
is an industrial-strength theorem prover for a first-order logic of recursive func-
tions, and has been used to reason about some of the largest computing sys-
tems designs ever to undergo formal analysis [3, 11, 8]. Our goal is to develop
techniques to reason about the ring architecture in ACL2 with reasonable au-
tomation. In addition, practical limitations require that the methodology be
amenable to the following:

Incremental reasoning: The X86 architecture is extremely complex. The
specification released by Intel Corporation [1] consists of 5 volumes each
about 500 pages. Given the size and complexity of the architecture, it is
impractical to define a relatively complete formal definition of its specifi-
cation in a single iteration. The formal specification and reasoning process
therefore must enable an incremental reasoning approach, whereby on can
start with a relatively simple machine model which can be iteratively re-
fined while preserving reuse of formal results achieved on the abstraction.

Decoupling: Formal verification of security of the ring architecture entails a
formal definition of the security policy enforced by the architecture. Once
such a policy has been formalized and verified, software running on top of
the architecture can enforce their own security mechanisms, assuming the
security of the protection mechanisms of the underlying architecture. To
facilitate this and enable reasoning about such software, it is desirable to
formalize the security policy as an intermediate abstraction insulating the
definition of the architecture implementation from the software-level view
of the protection mechanisms. This also provides the benefit of decoupling

2



the security properties of the software from the the underlying processor
implementation.

In this paper, we discuss our progress in the development of such a verifica-
tion technology. To facilitate incremental reasoning, we develop a two-pronged
approach to formally modeling the X86 ISA. We model the architecture at two
different levels of abstraction. At the lower level model, the formal definition of
the ISA accurately reflects the specifications described in the X86 reference man-
ual [1]. We have defined the semantics of 14 X86 instructions at this level; the
model is so detailed that it can execute X86 binaries on the supported instruc-
tions generated by compiling them from high-level C programs by a standard
gcc compiler. On the other hand, the details and complexity of this model
make reasoning about the protection mechanisms itself complex. We therefore
develop a much simpler model that defines the formalization at just enough de-
tail to facilitate such reasoning, while still maintaining a clear correspondence
with the lower-level model. The formalization of the intermediate abstraction
thereby factors our verification complexity, enabling us to focus on the different
aspects of the design at different levels.

To achieve decoupling, we formalize the security policy of the ring architec-
ture as an abstract state machine constrained to respect the privilege levels of
the underlying architecture. We achieve this using the encapsulation mechanism
of the ACL2 theorem prover [2] which enables us to specify a function by merely
axiomatizing certain properties. The security policy can be used by a software
to implement its own security mechanism without concern for the processor im-
plementation. Furthermore, we develop mechanical proofs with ACL2 showing
that under certain conditions, the security policy ensures non-bypassability, and
also that the simplified processor model respects the policy.

More concretely, the following are the key contributions from this project:

1. A formal accurate model of a small subset of the X86 architecture.

2. A simplified processor model for studying the ring architecture and its
protection mechanisms.

3. A formal definition of the security policy enforced by the ring architecture.

4. A mechanical proof of security requirements for our simplified processor
model.

In the remainder of the paper, we discuss these contributions in some detail.
We discuss some aspects of our processor models in Section 2 and the security
policy in Section 3. In Section 4 we lay out the basic approach to verify the
security properties of the processor design. We conclude in Section 5 with a
discussion of future directions.

3



2 Processor Models

In this section, we discuss the two levels of ISA models for the X86, that we
have developed in ACL2. Both models are defined operationally; that is, we
define a representation of the processor state as a formal object (tuple) in the
ACL2 logic and define how each instruction manipulates this formal object [10].
Thus the formal models also act as an executable simulator for the processor
architecture. The key difference between the two processor models is in the level
of detail at which the different state components are modeled and the updates
specified by the formal definition.

2.1 A Low-level X86 Specification

At the lowest level we model the processor to accurately reflect the specifications
in the Intel X86 manual [1]. Only a small subset of 14 instructions has been
modeled currently at this level; the effect of each instruction is defined by for-
malizing its effect on the machine state. The state is formalized as a record [7]
which represents the evaluation of the program registers (EAX, ECX, EDX, EBX,
ESI, EDI, ESP, and EBP, the instruction pointer EIP, the EFLAGS register, the
segment registers, and the memory. The instruction format is also faithful to
the manual, although we do not model the 64-bit modes. For each instruction
inst, we define a function execute-inst that captures its effect. To illustrate
the detail at which the instructions are modeled, we show a tiny fragment of
the definition of the execute-ADD instruction:

(defun execute-ADD (inst s)
(let* ((opcode (getByte 0 inst))

(ModR/M (getByte 8 inst)))
(case (hex opcode)
;; 04 ADD AL,imm8 - Add imm8 to AL
(04
(let* ((imm (imm8 (- (len inst) 8)

inst))
(AL (g :AL s))
(nat-AL (bv-to-nat AL))
(nat-imm (bv-to-nat imm))
(int-AL (bv-to-int AL))
(int-imm (bv-to-int imm))
(nat-sum (+ nat-AL nat-imm))
(nat-result (nat-to-bv 8 nat-sum))
(int-sum (+ int-AL int-imm))
(result (int-to-bv 8 int-sum))
(ZF (if (equal int-sum 0) T

NIL))
(OF (getOF result int-sum))
(SF (car result))

4



(num-one (t-count result))
(PF (if (evenp num-one) T

NIL))
(CF (getCF nat-result

nat-sum))
(AF (getAF AL imm))
(eip (g :eip s))
(nat-eip (bv-to-nat eip))
(len-inst (/ (len inst) 8))
(new-eip (+ nat-eip len-inst))
(next-eip (nat-to-bv 32

new-eip)))
(>s :AL result

:ZF zf
:PF pf
:OF of
:SF sf
:CF cf
:AF af
:EIP next-eip)))

;; 05 ADD EAX,imm32 - Add imm32 to EAX
(05 ...)

...)))

We have skipped most of the formal definitions and showed only a fragment of
the definition, but this should provide an idea of the details of the model. Using
these operational definitions of the individual instructions, we model the state
transition of the ISA as a function that fetches and executes one instruction
(pointed to by the EIP) at each step. The semantics of the 14 instructions
together constitute about 5000 lines of formal definitions in ACL2, in addition
to generic libraries of bit vector operations used to support the definitions. The
model can act as a simulator for X86 binaries, and has been used to simulate
binaries directly generated from high-level C-code by the gcc compiler for simple
programs such as the factorial and Fibonacci computations.

2.2 A More Abstract Model

The low-level model above is a step towards defining a faithful formalization of
the X86 ISA. However, the complexity of the model makes the direct verification
of security properties difficult and cumbersome. To factor out the complexity,
we define a much simpler abstract ISA, while still preserving correlation with
this complex architecture. This enables us to make progress on the security
verification by focusing on the protection mechanisms of the ISA without getting
distracted by extraneous details.

Our abstract model is inspired by the Y86 processor developed at Carnegie-
Mellon University by Bryant and O’Hallaron [4]. Although inspired by the X86,

5



the processor has fewer data types and instructions. In addition, some of the
instructions are simplified; for instance the MOVL instruction is split into four
instructions RRMOVL, IRMOVL, RMMOVL, and MRMOVL, explicitly representing the
source and the destination of the operation. The simplicity of the model makes
it an ideal medium for extension to study and analyze the memory protection
mechanisms of the architecture.

We have extended the basic Y86 processor to formalize protection mecha-
nisms. Our model (referred to as Y86+) defines two modes of operation (real-
address and protected), supports segmentation, Local and Global Descriptor
Tables, call-gate, and near and far procedure calls.1 Some exceptions (for in-
stance general protection exception) are formalized, and we formalize segment
access rights, four privilege levels of the ring architecture, and segment confor-
mance. The processor faithfully models the Intel specification with respect to
memory references. Nevertheless, the model is severely simplified. SMM, PM,
and virtualization mechanisms are ignored. The processor description, devel-
oped operationally as a formal simulator, involves about 1500 lines of formal
definition.

3 Security Policy

Recall that the key focus of our work is in the verification of the security prop-
erties of the ring architecture. Reasoning about security requires a precise,
unambiguous characterization of the security policy enforced by the architec-
ture. We now describe how we develop an abstract specification of the security
policy in the logic of ACL2.

The key logical feature we use is encapsulation. Encapsulation is an extension
principle which allows definition of partial functions by specifying a collection
of constraints. For instance, we can constrain a function axiomatized merely
to return a natural number (without specifying the return value). Kaufmann
and Moore [6] show that the encapsulation principle introduces axioms that
are conservative. Furthermore, ACL2 provides a derived inference rule called
functional instantiation [2] which enables one to lift a theorem about constrained
functions to concrete functions which satisfy the constraints.

The formal security policy is modeled by a collection of constrained func-
tions. Here we describe some of the functions and their intuitive semantic
descriptions. Here st represents the current processor state.

• (segs st) returns the set of memory segments.

• (current-segment st) returns the currently executing segment.

• (eip st) returns the instruction pointer.

• (privilege st) returns the current access privileges and is constrained
to return a number between 0 and 3.

1In our current model we only support segmentation, but not paging. We are extending
the model to incorporate paging.

6



• (next st) returns the next processor state.

• (accessible-p inst st privilege) holds if the privilege permits ex-
ecution of the memory segment called by inst (if inst is a (far) call
instruction).

• (inv st) is an invariant of the current state.

• ...

The set of constraints precisely characterize the conditions under which the
processor enables execution of the current instruction. For instance one of the
constraints is specified below:

(let ((inst (current-inst (fetch (eip st) (current-segment st)))))
(implies (and (call-instp inst)

(inv st)
(not (accessible-p inst st (privilege st)))

(exception-p (next st))))

The constraint says that if the current instruction inst (fetched from the current
segment from the address pointed to by the eip is a (far) call instruction and
the destination of inst is not accessible according to the current privileges then
the transition causes an exception.

The security policy involves 15 constrained functions and about 36 con-
straints similar to above. The policy is inspired by and similar in spirit to the
separation kernel security policy developed for the Rockwell-Collins AAMP7TM

separation kernel security policy, but is much more elaborate to account for
the eccentricities of the X86 architecture. Nevertheless the policy completely
insulates the state representation of the underlying models.

4 Mechanical Reasoning

Mechanical reasoning on the processor models has focused on four main thrust
areas:

1. Determine conditions under which the security policy outlined above in-
sures tamper-resistance and non-bypassability.

2. Determine the key invariants under which the Y86+ model implements
the security policy.

3. Develop techniques for reasoning about software running on the low-level
X86 model.

4. Mechanically relate the low-level X86 model with Y86+.

We now outline our progress in the above thrust areas.

7



• We have shown that the security policy above guarantees non-bypassability
under a certain invariant. We have also defined a predicate which guar-
antees that Y86+ implements the security policy. We are currently ana-
lyzing conditions under which the predicate defined is an invariant, which
will complete the proof of non-bypassability of Y86+. We are also ana-
lyzing the invariants under which the security policy guarantees tamper-
resistance. We anticipate to complete these proofs in the near future.
Tamper-resistance has already been proven for a slightly stronger security
policy which involves two (rather than four) privilege levels as necessary
for the ring architecture; we plan to lift this proof to the full ring.

• We have recently completed a methodology based on cutpoints to auto-
mate proofs of JVM bytecodes by symbolic simulation [9]. We are adapt-
ing the approach to the X86 model.

• We are developing a formal characterization of trace equivalence to relate
the high and low-level X86 model. This is currently in very early stages of
understanding. However, since trace equivalence preserves security prop-
erties of execution traces we believe a proper formalization will enable us
to lift Y86+ proofs to the low-level X86 model.

5 Conclusion and Future Work

We have outlined initial progress in formally reasoning about security properties
of the X86 ring architecture. To this end, we have formalized an abstract model
Y86+ and an encapsulated security policy. We have proven that the security
policy guarantees non-bypassability and identified invariants in Y86+ which
must be preserved to demonstrate that the processor implements the security
policy. We have also been working on developing a low-level accurate model of
the X86 ISA and are investigating approaches to show formal correspondence
between this low-level model and Y86+.

The work reported is a result of about three months of research by the author
working about 60% of time on the project. The initial results indicate that it
is possible to analyze the security properties of the X86 ring architecture with
reasonable effort. Nevertheless it should be clarified that we have only scratched
the surface so far. The X86 model is one of the most elaborate processor models
and substantial work remains both to formally specify the architecture and
lift our results to this model. We are currently working on proving tamper-
resistance on Y86+. Eventually we anticipate refining and elaborating the low-
level X86 model and lifting the security proofs to this model by showing a
correspondence with Y86+.

8



Acknowledgements

The research has been supported in part by DARPA and National Science Foun-
dation under Grant No. CNS-0429591. Matt Kaufmann provided numerous
insights including suggestion of a formal approach to formalize properties like
non-bypassability in ACL2. Ravi Kolli did initial work on developing the de-
tailed model described in Section 2.1.

References

[1] IA-32 Intel Architecture Software Developers’ Manual. See URL http://-
www.intel.com/design/pentium4/manuals/index new.htm.

[2] R. S. Boyer, D. Goldshlag, M. Kaufmann, and J S. Moore. Functional
Instantiation in First Order Logic. In V. Lifschitz, editor, Artificial Intelli-
gence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pages 7–26. Academic Press, 1991.

[3] B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commer-
cial Microprocessors. In M. Srivas and A. Camilleri, editors, Proceedings
of the 1st International Conference on Formal Methods in Computer-Aided
Design (FMCAD 1996), volume 1166 of LNCS, pages 275–293. Springer-
Verlag, 1996.

[4] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice-Hall, 2003.

[5] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, Boston, MA, June 2000.

[6] M. Kaufmann and J S. Moore. Structured Theory Development for a Mech-
anized Logic. Journal of Automated Reasoning, 26(2):161–203, 2001.

[7] M. Kaufmann and R. Sumners. Efficient Rewriting of Data Structures in
ACL2. In D. Borrione, M. Kaufmann, and J S. Moore, editors, Proceed-
ings of 3rd International Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2 2002), pages 141–150, Grenoble, France, April 2002.

[8] H. Liu and J S. Moore. Executable JVM Model for Analytical Reason-
ing: A Study. In ACM SIGPLAN 2003 Workshop on Interpreters, Virtual
Machines, and Emulators, San Diego, CA, June 2003.

[9] J. Matthews, J S. Moore, S. Ray, and D. Vroon. Verification Condition
Generation via Theorem Proving. In M. Hermann and A. Voronkov, editors,
Proceedings of 13rd International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2006), November 2006.

9



[10] J. McCarthy. Towards a Mathematical Science of Computation. In Pro-
ceedings of the Information Processing Congress, volume 62, pages 21–28.
North-Holland, August 1962.

[11] J. Sawada and W. A. Hunt, Jr. Trace Table Based Approach for Pipelined
Microprocessor Verification. In O. Grumberg, editor, Proceedings of the
9th International Conference on Computer-Aided Verification (CAV 1997),
volume 1254 of LNCS, pages 364–375. Springer-Verlag, 1997.

10


