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Abstract—We develop a framework for certifying behavioral
synthesis flows. Certification is decomposed intoverified and [BEEZVQSI."‘J.E?”? [Res'liiﬂewiiﬁmy}
verifying components, which are discharged by theorem proving
and model checking respectively. The bridge between these

theorem proving and model checking. The semantics of CCDFGs
have been formalized with the ACL2 theorem prover, and the
formalization used to certify generic synthesis transfornations. @@
Finally, we extend GSTE to model check synthesized netlistsith (Clocked Conrobata Flow Graph
respect to CCDFG specifications.
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With the rapid miniaturization of VLSI technology, it is . _ _ _
becoming increasingly challenging to develop reliablghhi Fig. 1. Framework for Analysis of Behavioral Synthesis Flow

quality systems that make effective use of all the avail-

able transistors. The complexity of modern circuits maké{@rolllgg,“corc]iedmlptlor: andfcommt_on s"ui:)hextprezsmn eI|m|t_na—
it infeasible to develop reliable hand-crafted designs atg ion, (2) “scheduling transformations” that order operations

level or even register-transfer level. Behavioral synth§H|, to meet th_e av:eulable resource constraints, (3) _opt|rgz|n
transformations” to achieve the overall target metric afaar

[2], [3], [4] provides a promising solution to this problem, - N
namely automated synthesis of the design from a behavi Rer. ang effl‘leency, "and (4) ad. hoc and ”?a”“a' trans-
ormations” or “tweaks” are often inserted to fine-tune the

specification. The behavioral specification is written inghh f th q fl fic desi ics. A
level language such as SystemC or C; a synthesis tool appf?é’épUt 0 t_e automate ow to_ specilic design rT‘e”"?S-
transformation may depend implicitly on complex invargant

a sequence of transformations to compile this descriptitm i . i
of other transformations in the overall flow.

a hardware netlist. . . . .
Our overall analysis framework is shown in Fig. 1. In

In spite of its promise, behavioral synthesis has not yet q sis of t ¢ i into t
found wide acceptance in engineering practice [4]. A majglummary, we decompose analysis of transtormations into two

barrier is the lack of designers’ confidence in Correcmeggmponenta/erifiedandverifying.lAverifiedtransformation .
of synthesis tools. The large semantic gap between the S f_o”'_‘a”y proven once_and for all o preserve the semantics
thesized design and its behavioral description puts thes o Its Input. TheTf]TO‘?f IS _?obr;e fofﬂ;ne a}nd d|f_charg_ed bly a
on synthesis to ensure that its output conforms to the spé eorem prover. 1his IS sultablé Tor transtormations a
ification. On the other hand, the employed transformatio th generic and reusable compilation steps at the higlvetde

include complex optimizations to satisfy diverse perfonce 0 _t_he synthesis fIOW’. where the cost of theorem proving 1S
and power metrics, making synthesis tools error-prone. mitigated by reusability of the transformations. verifying

The goal of our research is to develop a scalable meéha_msformation is not itself verified, but each instancetef i
anized framework for certifying behavioral synthesis flowé‘ppl'catg),n |stﬁccotr)rl1_pa?|ed by a:j-Jushnflcatéo? of c%rr.esr;)on-
Certification of a synthesis flow amounts to the guarantee tt nce._f_ mge N ot It?a 'O?S art; Itsluc arged for eac n:fs_an
its output preserves the semantics of its input descriptiars, e verification must be automatic; thierifying component is

the question of correctness of synthesized designs is eddugn_?_lr?m?nted by lr(nodel _checklng. th interf bet h
to the question of analysis of the behavioral specification. € Tramework requires a smoofn Intertace between he

The analysis of a practical synthesis flow is non-trivial one”f'Ed and verifying components. In our approach, this

Seve'_’al reasons. The trajnSforma.t'ons performed by a ssisthe 1The terms Verified’ and “verifying” as used here have been borrowed
tool include (1) “generic compilation steps” such B®p from analogous notions in the compiler certification litara [5], [6].



interface is provided by a formal graph-based design repsgandard arithmetic and logical operations, comparisass,
sentation, namelglocked control data flow grapfCCDFG). signments, etc. together with standard if-then-else aog lo
The CCDFG for a design can be derived from its behaviorabnstructs. Designs specifications in the language arergssu
description and can be viewed as the formal representationbe amenable to usual control and data flow analysis. The
of the golden circuit model. A CCDFG can be viewed asontrol flow is broken up into a number bhsic blockseach

a formal rendition of control data flow graph (CDFG) —with a single entry and exit. Data dependency is given by a
used as an intermediate representation in many synthésiad after write” paradigm: an operatiop; is data dependent
tools — augmented with the notion of a schedule. Compilen an operatiownp; if op; occurs aftepp; in some control flow
transformations are viewed as transformations of CCDF@ath and computes an expression over some state vatiable
and theverified component involves proof that the CCDFGhat is assigned most recently by; in the path. The language
generated by a certified transformation is a refinement isfassumed to disallow circular data dependencies.

its input CCDFG. To facilitate such verification, we hav finition 111 (Control Fl d Data Flow Graphslet

formalized the execution semantics of CCDFG in the ACLZ® "l' ion 1.1 (Control Flow an ata How >rap s)e
?x?s = {op1,...,0p,} be a set of operations over some Bet
i

theorem prover and developed a formal notion of refineme ot d inout bl d b t of basic block
based on execution correspondence. Theorem proving fal _(iae an .|npuf) varnales, a f caseto asig doc s
itates the proof ofgeneric properties that can certify Iargeeac consisting of a sequence of operations ops ata

classes of similar transformation in one swoop. The e)tplicﬂow graphGp overopsis a directed acyclic graph such that

representation of control and data flow enables definition Ch ver'|[e>t<) Olﬁij IS ahme{?bbbelr) qbpstr,lb\ cor;trofl rov;{ graph q
invariants without augmenting the model with auxiliary flow”“ r:s ‘3 a Iet? | g(]jrapthm B lemg N Sf od}()/er Ices an
information; scheduling enables the use of CCDFGs for hofirch €dge labeled with a Boolean assertion over

pre-scheduling and in-scheduling transformations. Thast An edge inG, from op; to op; represents a data dependency
formed CCDFG s used by theerifying component to derive from op; to op;, and an edge i/ from bb; to bb; indicates
correspondence with the synthesized netlist. Our equicale that »b, is a direct predecessor @b; in the control flow
checking paradigm leverages the high capacity of GSTEestyructure of the program. An assertion along an edge is a

model checking [7] and the cycle-accurate nature of CCDFGgsredicate that must hold whenever program control makes the
The equivalence checking is conducted as a dual-rail syi;mbaorresponding transition.

simulation, with the upper rail being the simulation of the
CCDFG and the lower rail being simulation of the netlisPefinition 1.2 (CDFG) Let Ops_é {Oph--A-,Opm} be a set
implementation. The two rails are synchronized by clockeyc Of operations over a set of variablés bb = {bb1, ..., bby}

The remainder of the paper is organized as follows. € @ Set of basic blocks oveps, Gp andG¢ are data and
Section Il we present the formal semantics of CCDFG. IgPntrol flow graphAs ovepps and bb respectively. ACDFG
Section Il we develop the formal notion of correspondendg the tupleGop = (Gp, Go, H), where H is a mapping
between CCDFG transformations, and discuss how to ulle: ops — bb such thatH (op;) = bb; iff op; occurs inbb;.
th.eorem proving tq verify the correct_ness of transfornetio |, ACL2, we represent sets as finite lists and the mapping
with respect to this notion. In Section IV we present oUfs an association list. A graph is represented by an associat
equivalence checking procedure and discuss its scajabMé it mapping each node to its neighbors. The syntactic &trac
discuss related work in Section V, and conclude in Sectian Mk tormalized by a predicate which checks that its argument
corresponds to the representation of a CDFG.

The order of execution of operations in a CDFG is irrelevant

In this section, we formulate the semantics of CCDF@s long as the control and data dependencies are respeloted. T
Since a CCDFG is derived from a CDFG, we first review thdefinition of microstepsbelow makes this notion explicit.
notion of CDFG; we then formalize CCDFG and define its,_,. .. . . .
execution semantics. Although the definitions presented hg)eflmuon .3 (Microstep Ordering and Partition)Let

N ) .
. . p = (G¢,Gp, H), where the set of vertices af¢ is
have been formalized in the ACL2 theorem prover, we adhef 2 (bby,... b}, and the set of vertices i6'p is ops 2

to traditional mathematical description in this preseaotat - y
P P {op1,...,op,}. For eachbb, € bb, a microstep orderings

Remark. (Input Language Assumptions) We leave the a relation<; over ops(bby) = {op; : H(op;) = bbs} such
underlying input language unspecified, with the followinghe op, <1 opy if and only if there is a path fronop,
“well-formedness” assumptions. The language is assumedtdoop, in the subgraphGp ; of Gp induced byops(bby).
provide a partition of design variables ingiate variables A microstep partition ofoh;, under=<; is a partition M}, of
and input variables The legal expressions in the languageps(bby) satisfying the following two conditions. (1) For each
are generated by a well-defined grammar over the state and My, if op,,opy € p thenop, £ opy andopy, £i 0pg.
input variables and language constants; given a mapping(@j If p,q € My with p # ¢, op. € p, opp € ¢, and
the variables to constants, any legal expression is corfeutaop, <y opy, then for eaclop, € p andopy € q opy Ak 0pa:-
Each instruction in the language can be decomposed intdAamicrostep partition ofGop is a setM containing each
sequence gbrimitive operationsthe set of operations includesmicrostep partition\/y.

Il. SEMANTICS OFCCDFG



Since Gp is acyclic, <x is an irreflexive partial order on

ops(bby) and the notion of microstep partition above is well- MicroStep — | — b
defined. Given a microstep partitiol £ {mg,my,...} of |
Gcp eachm; is called amicrostepof Geop. It is convenient int ged (int a, int b) a<b
to view < as a partial order over the microstepsbof, and | Trug

further extend it without loss of generality to a total order do { _
Informally, if op, andop, are in the same partition, their order ~ |7_(2 = ©) swap (a, b); e
of execution does not matter; jf and ¢ are two microsteps } while (a != 0); P

wherep <, ¢, the operations ip must be executed before return b;
} al=0
I

swap (a,b)

to respect the data dependencies.

-

Remark. We formalize the execution of a computing model as Scheduing Faise

Step -~

a sequence of the underlying design states under a legal inpu
sequence; given a state and Iegal input, the semantlcs‘le;-aechg. 2. Source code for GCD and the corresponding CCDFG.drCDFG,
the next state. For a CDFG (and CCDFG), states and inpefgh while box denotes a micro step and each shaded regiastedea
are the valuation of the state and input variables; for @rcischeduling step. The primitive operations here are assighntomparison,
models (Cf. Section IV-A), states correspond to the vatuati modular division, and swap. To simplify presentation, (Im_r;ntrol dependency

. ) ) . edges are shown and data dependency edges are omitted.
of latches and inputs to the valuation of input signals. When
the underlying model is clear, we use the terms “state” aftcp, M,T), where Gop is a CDFG, M is a micro-step
“input” without qualification; when discussing correspende partition of Gop, andT is a schedule of\/.
between two different models we make the model explicit, for

instance referring to “CCDFG states” and “circuit states”. Fig. 2 shows the relation between a high-level GCD pro-

gram and a corresponding CCDFG. Note that the CCDFG
In the following definition, we leave the result of executingorresponds closely to the high-level description.

individual operations unspecified, but assume that it can beWWe need the following two definitions for CCDFG execution

derived from the input language. In ACL2, this is formalize§emantics. The first formalizes the criterion for a sequerice

through encapsulation [8], which allows introduction oféa Microsteps to respect a schedule. The second formalizes the

tions with constraints rather than full definitions; theeeffof notion that the inputs at the same scheduling step are fixed.

executing the operations is represented as a constrained fuhqfinition 1.6 (Microstep Sequence Consistencyet M be
tion, but the constraints include the semantics of assiginme, microstep partition of a CDFGI be a schedule of\/

comparison, and swap instructions. The result of executing 2 mo,m1, ... be a sequence of microsteps &of, and N
a microstepm;

from states under inputi is a computable o 5 mapping that assigns a natural number to each microstep

function f; that computes the valuation of the state variables p e say thatP is consistentwith 7' under N if the
updated by the constituent operations; since there is r® dfﬂllowing conditions hold. (1) form;,m; € P if i < j then
dependency among these operations, the order of evaluat}@@n‘) < N(my); and (2) if N(m ‘Z)’ —JN(m-H) then m..

1) = 7/ 3/ J J

does not matter. andm;, belong to the same group undgr

Definition 1.4 (Execution Semantics of CDFG)Given a e say thatV is awitnessto consistency of?. A microstep
CDFG, Gep, a microstep partitionV! of Gop, and a se- sequencéP is consistentwith 7 if there is a mappingV such
quence of inputsy, iy, ..., an execution ofG_CD is a state thatP is consistent witHl” underN.

sequence £ sg, sy, ... satisfying the following conditions. o

(1) There exists a sequence of microst@4 mo, m, ... of Dgfmmon 1.7 _(!nput Sequence Conformancd)et M be a
Gep such thats;;, is the result of executingy; from states; ~Microstep partition of a CDFGI" be a schedule o/, and
under inputi;. (2) if m;,m; 1 € bby, then ()m;1 A my;, P = mo,my, ... be a sequence of microsteps fravh that is
and (ii) there is N € bby, such thatm; < p andp < m; 1. consistent withl” under a witnessV. Then an input sequence
(3) If m; € bb, andm;1 € bby, k # I, then (i) for each 10,91, - - - i; conformanlwith P underN andT if, for each;

p € bby, andq € bb; m; Ax p andq A mj41, and (i) there Such thati; # i;41, N(mji1) = N(m;) + 1.

is an edge in G from bby. to bb;, and (iii) the assertion on  \we now formalize the semantics of CCDFG execution.
e evaluates to true under staig and inputi;. We call P the o ) ] N
inducing sequencef &. Definition 11.8 (Execution Semantics of CCDFG)et G =

(Gep, M, T) be a CCDFG, an® be a sequence of microcode
We now formulate CCDFG, by augmenting a CDFG witlgonsistent withI” under a witnessV. Then& £ sq, s1,... IS
a schedule. Consider a microstep partitidh of Gep. A anexecutionof G if the following hold. (1)€ is an execution
scheduleT of M is a partition orgrouping of M; for of G-p corresponding to some input sequeficé ig, i, .. ..
mi,mg € M, if m; andmy are in the same group if", (2) P is an inducing sequence &t (3) Z is conformant with
we say thatn; andm, belong to the same scheduling step? under N andT.

Definition 1.5 (CCDFG) A CCDFG is a tuple G & Thus each execution of a CCDFG is an execution of the under-



lying CDFG but not vice versa; the conformance requiremettt G only if G has a specific structural characteristic; fur-
restricts the sequence of legal inputs and hence executionshermore the result of application might produce a CCDFG
Finally, we consideputputsandobservation An outputof with a characteristic that facilitates the subsequentiegtidn
a CCDFGQG is some computable functiof of (a subset of) of another transformation. To make explicit the notion of
state variables off; informally, f corresponds to some outputapplicability of a transformation on a CCDFG, it is convartie
signal in the netlist synthesized fro6i. To formalize this in to view a transformation as a “guarded command” [13], [14]
ACL2's first order logic, the output is restricted to a Boalear = (pre, T, post). Informally, 7 is applicable to a CCDFG
expression of the state variables; the domain of each stateich satisfiespre and produces a CCDFG which satisfies
variable itself is unrestricted, which enables us to remmes post This notion is formalized below.
programs such as the GCD example that do not return Bool
values. For each stateof GG, the observationcorresponding
to an outputf at states is the valuation off unders. Given
a setF' of output functions, any sequenéeof states ofG
induces a sequence of observati@iswe refer toO as the  The following theorem is trivial by induction on the se-
observable behavioof £ underF. guence of transformations and justifies decomposition of a
transformation into a sequence of primitive transformagio

Bfinition 111.3 (Transformation Correctnessh transforma-
tion 7 £ (pre, T, post), is correctif the result of applyingZ
to any CCDFGG satisfyingpre refinesG and satisfiegost.

[1l. CERTIFIED COMPILATION .
Theorem 1.1 (Correctness of Transformation Sequences)

We now discuss theerified component of the framework, Let 7y, 71,...,7, be a sequence of correct transformations,
namely certification of transformations using theorem prgy wherer; = (pre;, T;, post,). Furthermore, for each < i < n,
in Section IV we will consider theverifying component. post; = pre; . Then the transformatiofpre,, 7, post,,) is
The central element of theerified component is the defini- correct.

tion of the notion of correspondence used to relate the inw{ﬁemark For the reader familiar with ACL2, it is instructive
and output transformations. Note that for scalability, tlb&ion o unde.rstand how Theorem N1 is form:allized Note that

must b(_a reusabl_e over compiler transform_atlons wh|ch d.'per?he statement of the theorem involves an arbitrary sequence
on designs at different levels of abstraction. We achiei@ th

through a notion of correspondence loosely basestottering of pre and_ post predlcatgs_. A cIosed—form_ rend|t|0_n of the

) > NN statement involves quantification over functions, whichruz
trace containmen9], [10].” The notion is inspired by work be expressed in the first-order logic of ACL2. Instead, we
on well-founded bisimulations (WEBs) [11], [12] in ACL2 X §

proofs of correctness of reactive systems, Roughly, a CCD malize the statement asverification templateas follows.
X . . " T Sing encapsulation, we introduce two pairs of guardedstran
G’ refines@ if for each execution oy’ there is an execution of 9 b b 9

- formations T t,) and 75 t,) with the
G that produces the same observable behavior up to stuttenngS . {pres, 1, O3 1) <pr.62’ 2, Posty)
. . . associated constraints that each induces a correct transfo

We formalize this notion below. - e
mation, andpost, = pre;. Then we prove the transitivity
Definition 11l.1 (Compressed Execution).et £ £ sg,s,,... theorem(pre,,7T;, post,), which is easy in ACL2. Finally, we

be an execution of a CCDF@ and F' be a set of output develop a macro, which, given a sequence of concrete guarded
functions overG. The compressionof £ under F is the transformations, repeatedly instantiates the trangittieorem

subsequence of obtained by removing eack; such that through functional instantiation.

f(si) = f(sip1) forevery f € F. Our approach to ameliorate the cost of theorem proving
Definition 111.2 (Trace Equivalence and CCDFG Refinement)s to identify and derivegeneric theoremshat can certify a
Let G and G’ be two CCDFGs on the same set of statelass of similar transformations. As a simple example, icans
and input variablesf and £’ be executions ofZ and G’ any transformation that refines the schedule. The following
respectively, and” be a set of output functions. We say thatheorem states that each such transformation is correct.

£ is trace equivalento &£’ if the observable behavior of the
compression of€ under F' is the same as the observabl
behavior of the compression éf under F'. We say thatG’
refinesG if for each executiort’ of G’ there is an execution
£ of G such that€ is trace equivalent t&”.

Theorem IIl.2 (Correctness of Schedule Refinementgt
C 2 (Gep, M, T) andG’ 2 (Gep, M, T') be CCDFGs such
that for any two microsteps:;, m; € M if T" assignsn; and
m; the same group then so do&s ThenG’ is a refinement
of G.

Informally, our goal in certifying that a behavioral syntie Although the statement of the theorem is simple, the formal

transformation s to show that applying it on CCDEGresults Lproof of its correctness is somewhat nontrivial. The reason

in a refinement of;. However, we must additionally accoun is that the formalization requires viewing the transforiorat

for the possibility that a transformation may be apphcablgS a graph manipulation. As is well-known, reasoning about

2 . ) i i properties of graph manipulation is complicated [15]. We

We say “loosely” since stuttering trace containment isitiaaally defined | b h . f . h
in terms of infinite traces, while our current formalizationly allows finite must also reason a _OUt the mapping o ODerat'P_nS to grap
executions of CCDFGs. nodes, and the relation between graph reachability and flow



IV. MODEL CHECKING

/x Qriginal =/ /* Transformation 1 x/

} while (a != 0);
return b;

I+ Transformation 2 x*/

/+ Transformation 3 x*/

do { do{ We now discuss theerifying component of our framework,
if (a<b) _ if (a<b) _ namely checking equivalence between a CCDFG and the syn-
a :sv;/a(% é?’ b): a :svava[Q) é?’ b); thesized circuit. We first formulate the notion of equivalen
} while (a != 0); if (! (a!= 0)) between a CCDFG and a circuit. We then discuss our approach
return b; __return b; for checking this equivalence.
if (a<b)
a ZSV;""(Q, é?’ b); A. Circuit Model

We represent a circuit as a Mealy machine specifying the
updates to the state elements (latches) in each clock cycle.
Our formalization of circuits is typical in traditional rdware

do { do { verification, but we make combinational nodes explicit to
swap (a, b); a=a%b, facilitate correspondence with CCDFGs.
§1=aA)b, if (! (a!l= 0))
if r(étéfn!z_ 0)) o :rgt;)”;_b? Definition IV.1 (Circuit). A circuit is a tupleM¢c = (I, N, F)
swap (a, b): if (1 (b != 0)) where I is a vector of input signalsN is a pair (N., Ng)
a=a%b; return a; where N, is a set ofcombinational nodesnd N, is a set

} while (a 1= 0); } while (1); of latches and F is a pair (F,, F;) where F, maps each

combinational node: € N, to a Boolean expression over

Fig. 3. An example of certifiable transformation sequendee $equence N U I. and for each latchl € Ny, F; maps each latchl

includes (1) unrolling the loop once, (2) interpreting thé™operation to show
that @ < b) holds after the assignmeat=a % b, and (3) loop transformation

to a noden € N where Fy; is a delay function which takes

through interpretation ofwap operation. Due to space limitation, we use cthe current value of. to be the next-state value df
code instead of the CCDFGs to represent the transformation.

A circuit stateis an assignment to the latches My; we

structure of the underlying program execution. Nevertgle assume a pre-assigniaitial state, corresponding to the values
we believe that the generic nature of the statement amt®raof the latches at reset. Given a circuit state and a valuation
the verification cost. Furthermore, much of the infrastieet the input signald, we compute theircuit transition at each
developed in the process is reusable for verification of rothelock cycle as follows. The output of each combinationalerod
transformations. For instance, one side effect is a reasablc N, is the valuation of the functiod,(c) on the current
library of lemmas about graph operations.
Consider the sequence of transformations shown in Figl@chd € Ny is the valuation ofFy;(d). Combinational nodes

for our GCD example. The transformed code conducts tvage updated at the beginning of a clock cycle and the latches
modular divisions in one cycle, thus speed up the compugre updated at the end; the state updates are thus delayed to
tion of GCD. Note that the transformations involved includeeflect propagation of signals through circuit wires.

generic properties of loop unrolling and code motion, thget

circuit state and the input valuation; the next state of each

We now formalize circuit executions. Given a sequence of

with partial interpretation of two operations; these pmtigs Vvaluations to the input signal&, i, ..., a circuit trace of
can be easily stated using ACL2. We are currently working aif is the sequence of states, si,..., where (1)sq is the
certifying this sequence. The transformations appliedhis t initial state and (2) for eacti > 0, the states; is obtained
step may affect the complexity of equivalence checkingrlatby updating the elements iN; given the state valuatiosy;_;

(See Section V).

We end the discussion of theerified framework with one

and input valuatiorn;_;.
Fig. 4 shows a synthesized circuit derived from the CCDFG

other observation. Since the logic of ACL2 is executablé#) Fig. 2. Note that FSM is the control component of the
pre and postcan be efficiently executed for a given concretgircuit, which contains both combinational nodes and lesch
transformation. Thus’ a transformati@rﬁ <p’f’€, T’ p05t> can Given any circuit state, FSM will decide all control Signfﬂs

be app"edeven before Verificatiomy using pre and post the CirCUit, and f|na”y when Computation ﬁnishes, the resul
for runtime checks: if a CCDF@G, indeed Satisﬁe$)re and will be available inT€SUZt, anddone Signal is set to true.

the application ofr on G results in a CCDFG satisfying
post then theinstance of application of  on G can be

B. Correspondence between CCDFGs and Circuits

composed with other compiler transformations; furthemnor Given a CCDFGG and a synthesized circult/, how do

the expense of the runtime assertion checking can be dkeviawe define execution correspondence? Note that we can define
by generating @roof obligation for a specific instancehich a natural mapping between the inputs @f and the input

is normally more tractable than a monolithic generic proof signals ofM¢. It is thus tempting to define the correspondence
the correctness of. This provides a trade-off between theébetweenG and M as follows: (1) establish a mapping
computational expense of runtime checks and verification loétween the state variables 6fand the latches id/., and
individual instances with a (perhaps deep) one-time prdof (2) stipulate an execution @f to be equivalent to an execution
the correctness of a transformation.

of M if they have the same sequence of observable behaviors.



[xo, 1,29, ...] Of G that is generated by an input sequence
[io,i1,42,...] and by the executionty,t,...] of G, and
state sequencgso, s1, s2,...] of M generated by the input
sequencell Map(ig), IMap(i1), IMap(iz),...], zr and s

are equivalent with respect tQ underiy, k > 0.

Note that the initial statesy and so of G and Mo are
irrelevant in that the operations in the first scheduling ste
of G (or, respectively, the corresponding circuit nodes\éf
underIMap, respectively) depend oy (or IMap(ip)), but
not xy (or sg). Therefore,xy and sy, can be arbitrary while
the requirement that, andsq are equivalent with respect to
to underig are still satisfied.

Finally note that, not all combinational nodes in the citcui
have their corresponding operations in CCDFG. For example,
the mux nodes and FSM in the circuit are not represented in
Fio. 4. Svnthesized Circut for GED and it y ciation with the CCDFG. These unobservable parts constitute the control
iy Syriesizes Creut or GCD and s operaton nagpelalon it _ gomponent generated by synthesis to preserve the contol an
nodesa, a’, b, b’ are latches. The dotted lines represent the mapping frofata dependencies of the CCDFG, and their correctness is

operations of CCDFG to combinational nodes of circuit. Wasider a wire implied by the equivalence of observable nodes.
to be a combinational node.

d

5|

| FSM
False

‘ return’b <,T/> ) @ © done

result

. Dual-Rail Simulation for Sequential Equivalence Chegki

C
However, equivalence based on fixed mappings of variables
does not work in general. Although there are fixed mappings

To check the above equivalence between a CCDEG,

between input variables in the CCDFG and input signals of tR&d & circuit,A/, we propose a dual-rail symbolic simulation

circuit, the mappings between internal variables and &sc

pscheme shown in Fig. 5. The upper rail simulatésvhile the

may be different in each clock cycle. We address this bg’cw@_.
)

introducing mappings between the CCDFgperationsand

Single Clock Cycle
Simulation of CCDFG

Report
Error

the combinational nodes in the circuit: each operatigpn
is mapped to the set of combinational nodes that together :

Egivalence

implementop; note that this mapping is independent of clock

cycles. !
We formalize these mappings by the definitionsidf ap }

Yes

Yes. Fixed Point Computation, Real

Violation?,

Input

No
i 7)
Constraints quivalent?
i

No

and N Map below. Suppose> is a CCDFG with a set of

Y
Ccircuit )—v

Single Clock Cycle
Simulation of Circuit

Conduct
Refinement

input variablesV; and a set of operationsps and Mo =
(I,N,F) is a circuit. ThenIMap : V; — I is a one-to-
many mapping from the input variables 6f to the input
signals of M; for each input variable ob of G, IMap(v)
returns the corresponding set of input signals\fy. Finally,
NMap : ops — N, is a mapping from the operations
of G to the combinational nodes af/-, which determines
how each operation is implemented M. For the GCD
example, since variables, b are the input of CCDFG, we
defineIMap(a) = A and IMap(b) = B (cf. Fig. 4). Each
CCDFG operation corresponds to a combinational node.
We now define the equivalence between a CCDFG state of
G and a circuit state of/~ with respect to a given scheduling 2)
step of G and under the equivalent inputs.

1)

Definition 1V.2. A CCDFG statex of GG is equivalent to
a circuit states of Mg with respect to an inpui and a
microstep partitionV/, if for each operatiomp in ¢, the inputs
to op according tox and i are equivalent to the inputs to
N Map(op) according tos and I Map(i), i.e., the values of
an input toop and the corresponding input t&% Map(op)
are equivalent, and the outputs gf are equivalent to the
outputs of NMap(op). Given a CCDFGG and a circuit
Mc¢, G is equivalent toM if and only if for any execution

3)

Fig. 5.
lower rail simulatesM. The two rails are synchronized by
clock cycle, and follow an abstraction/refinement paradigm
The equivalence checking scheme for clock cyklean be
roughly summarized as follows:

Dual-Rail Simulation Scheme for Equivalence Chegki

The current CCDFG state;,, and circuit states;, are
checked to see whether for the inpiy, the inputs

to each operatiorop in the scheduling step, are
equivalent to the inputs to its corresponding circuit nodes
in NMap(op). If the inputs are equivalent, go to Step
2; otherwise, go to Step 3.

G is simulated by executing, on z; underi; to obtain
state z,1, recording the outputs of eactp € iy.
Correspondingly,M is simulated for one clock cycle
from s, under the input/ Map(i;) to obtain circuit
state s;+1. The outputs of eaclvp are checked for
equivalence underV Map against the outputs of the
nodes in N Map(op). If the inputs are equivalent, go
to Step 4; otherwise, go to Step 3.

We check if the failure on equivalence check is a false
negative caused by abstraction. If there is no false nega-
tive, the problem is reported; otherwise, the abstraction



TABLE | TABLE I

EQUIVALENCE CHECKING RESULTS FORGCD UNDER SCHEDULE EQUIVALENCE CHECKING RESULTS FORGCD UNDER LOOP UNROLLING
REFINEMENT OPTIMIZATION
Circuit Before schedule refn{| After schedule refn. Before trans. seq. in Fig. 3 After trans. seq. in Fig. 3
Bit # of Time BDD Time BDD Bit |[|Circuit| # of| Time | BDD [|Circuit| # of | Time | BDD
Width | Nodes (Sec.) Nodes (Sec.) Nodes Width|| Nodes| Stepg (Sec.) | Nodes || Nodes|Steps (Sec.) | Nodes
96 0.02 503 0.02 783 96 20 | 0.02 503 135 | 16 | 0.02 | 560
164 0.05 4772 0.07 11113 164 | 33 | 0.05 | 4772 240 | 22 | 0.04 | 5542
246 0.11 42831 0.24 20937 246 | 48 | 0.11 | 42831 || 373 | 34 | 0.11 | 55646
342 0.59 16244 1.93 99723 342 | 63 | 0.59 [ 16244 [ 534 | 40 | 0.79 [ 90599

452 | 78 | 12,50 | 39968 || 723 | 58 | 17.78 | 51977
576 | 93 | 369.31| 220891|| 940 | 70 | 376.48| 84834
714 | 108 [6850.561197604| 1185 | 82 [5798.03589557

452 12.50 39968 27.27 118346
576 369.31 220891 383.98 | 164613
714 6850.56 | 1197604 || 3471.74| 581655

OO N[ O O B W] N
00| N O O B W| N

is refined. The report is associated with an error tragmint is computed based micro-steps. However, since wekchec
that contains the CCDFG state sequence, the executthe CCDFG-circuit equivalence cycle by cycle, the number of
of GG, and the circuit state sequence bf- up to the cycles that the circuit is simulated doubles. The runninggti

current clock cycle. after schedule refinement is about two times slower than that

4) The scheduling stepy.1 is determined based on thebefore for small bit widths. However, for large bit widthhgt

control flow. If ¢, has multiple outgoing control edgesrunning time is dominated by the complexity of the CCDFG
the last microstep of;, executed in the simulation abovesimulation instead of the circuit simulation. The decrease

is identified. The outgoing control edge from this microrunning time with the increase in bit width from 7 to 8 are
step whose condition evaluates to be true leads.te@. likely due to BDD variable reordering by Forte.

The simulation proceeds cycle-by-cycle until either (i@ th Table Il shows the equivalence checking results for GCD
equivalence check fails, or (i) a fixed point is reached ari¢nder the transformation sequence in Fig. 3. It is intemgsti
there is no observable inconsistency between CCDFG and &-note that the number of steps performed for equivalence
cuit. The scheme is analogous to but extends traditionalEsSTchecking provides a good estimation for the effectiveness
style model checking [16] in the following sense. Like GSTEOf the transformation — the fewer number of steps needed
the simulation is guided by a graph, namely the CCDFG, af@l reach fixed-point, the more likely the circuit can run in
the simulation complexity largely depends on that of theppra less time. However, the performance gain in real circuitsdoe
since the fixed-point computation is conducted on the CCDF®@®t necessarily imply the performance improvement in equiv
and only the current circuit state is kept; on the other han@lence checking, because the transformation also ingease
CCDFGs provide richer information thaassertion graphs the number of circuit nodes, therefore, increasing theudirc
employed by GSTE, with explicit specification of valuatiorsimulation time.
of state variables which can be symbolically simulated to

generate state sequences. In contrast, assertion grags edg V. RELATED WORK

are only labeled with preconditions and postconditions. An early effort [18] on verification of high-level synthe-
. . _ sis targets the behavioral portion of VHDL [19]. A formal
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exponentially when the bit width increases. For &Heit GCD, piler for an simple assembly language. Compiler certiftoati
the equivalence checking finished within 2 hours and tlierms a critical component of the Verisoft project [26], a
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