
Combining Theorem Proving and Model Checking
for Certification of Behavioral Synthesis Flows

Sandip Ray
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

sandip@cs.utexas.edu

Yan Chen and Fei Xie
Department of Computer Science

Portland State University
Portland, OR 97207

{chenyan,xie}@cs.pdx.edu

Jin Yang
Strategic CAD Labs, DTS

Intel Corporation
Hillsboro, OR 97124
jin.yang@intel.com

Abstract—We develop a framework for certifying behavioral
synthesis flows. Certification is decomposed intoverified and
verifying components, which are discharged by theorem proving
and model checking respectively. The bridge between these
components is provided by a new formal structure,clocked control
data flow graph(CCDFG), that serves as the golden circuit model
used in this framework. We discuss how CCDFGs facilitate both
theorem proving and model checking. The semantics of CCDFGs
have been formalized with the ACL2 theorem prover, and the
formalization used to certify generic synthesis transformations.
Finally, we extend GSTE to model check synthesized netlistswith
respect to CCDFG specifications.

I. I NTRODUCTION

With the rapid miniaturization of VLSI technology, it is
becoming increasingly challenging to develop reliable, high-
quality systems that make effective use of all the avail-
able transistors. The complexity of modern circuits makes
it infeasible to develop reliable hand-crafted designs at gate
level or even register-transfer level. Behavioral synthesis [1],
[2], [3], [4] provides a promising solution to this problem,
namely automated synthesis of the design from a behavioral
specification. The behavioral specification is written in a high-
level language such as SystemC or C; a synthesis tool applies
a sequence of transformations to compile this description into
a hardware netlist.

In spite of its promise, behavioral synthesis has not yet
found wide acceptance in engineering practice [4]. A major
barrier is the lack of designers’ confidence in correctness
of synthesis tools. The large semantic gap between the syn-
thesized design and its behavioral description puts the onus
on synthesis to ensure that its output conforms to the spec-
ification. On the other hand, the employed transformations
include complex optimizations to satisfy diverse performance
and power metrics, making synthesis tools error-prone.

The goal of our research is to develop a scalable, mech-
anized framework for certifying behavioral synthesis flows.
Certification of a synthesis flow amounts to the guarantee that
its output preserves the semantics of its input description; thus,
the question of correctness of synthesized designs is reduced
to the question of analysis of the behavioral specification.

The analysis of a practical synthesis flow is non-trivial for
several reasons. The transformations performed by a synthesis
tool include (1) “generic compilation steps” such asloop

Netlist Level Design

Offline proof of transformation rules;
primitive transformations;
(Application of certified

Online proof of ad−hoc transformations)

(Clocked Control/Data Flow Graphs)
Golden Circuit Model

(Algorithms/heuristics/user−guidence
deciding sequence of primitive

Application of primitive transformations)

RTL Design

RTL Synthesis

transformations to be applied;

Yes/No
(Using Extended GSTE)

Equivalence Checking

Behavioral Synthesis Certified Compiler

Possibly manual netlist optimizations

Possibly manual RTL optimizations

V
erified C

om
ponent

(T
heorem

 P
roving or

D
ecision P

rocedures)

V
erifying C

om
ponent

(M
odel C

hecking)

Resource LibraryDescription
Behavioral Design

primitive transformations

Hardware

Sequence of applied

Fig. 1. Framework for Analysis of Behavioral Synthesis Flow

unrolling, code motion, and common subexpression elimina-
tion, (2) “scheduling transformations” that order operations
to meet the available resource constraints, (3) “optimizing
transformations” to achieve the overall target metric of area,
power, and efficiency, and (4) “ad hoc and manual trans-
formations” or “tweaks” are often inserted to fine-tune the
output of the automated flow to specific design metrics. A
transformation may depend implicitly on complex invariants
of other transformations in the overall flow.

Our overall analysis framework is shown in Fig. 1. In
summary, we decompose analysis of transformations into two
components,verifiedandverifying.1 A verified transformation
is formally proven once and for all to preserve the semantics
of its input. The proof is done offline and discharged by a
theorem prover. This is suitable for transformations associated
with generic and reusable compilation steps at the higher levels
of the synthesis flow, where the cost of theorem proving is
mitigated by reusability of the transformations. Averifying
transformation is not itself verified, but each instance of its
application is accompanied by a justification of correspon-
dence. Since the obligations are discharged for each instance,
the verification must be automatic; theverifying component is
implemented by model checking.

The framework requires a smooth interface between the
verified and verifying components. In our approach, this

1The terms “verified” and “verifying” as used here have been borrowed
from analogous notions in the compiler certification literature [5], [6].

interface is provided by a formal graph-based design repre-
sentation, namelyclocked control data flow graph(CCDFG).
The CCDFG for a design can be derived from its behavioral
description and can be viewed as the formal representation
of the golden circuit model. A CCDFG can be viewed as
a formal rendition of control data flow graph (CDFG) —
used as an intermediate representation in many synthesis
tools — augmented with the notion of a schedule. Compiler
transformations are viewed as transformations of CCDFG,
and theverified component involves proof that the CCDFG
generated by a certified transformation is a refinement of
its input CCDFG. To facilitate such verification, we have
formalized the execution semantics of CCDFG in the ACL2
theorem prover and developed a formal notion of refinement
based on execution correspondence. Theorem proving facil-
itates the proof ofgeneric properties that can certify large
classes of similar transformation in one swoop. The explicit
representation of control and data flow enables definition of
invariants without augmenting the model with auxiliary flow
information; scheduling enables the use of CCDFGs for both
pre-scheduling and in-scheduling transformations. The trans-
formed CCDFG is used by theverifying component to derive
correspondence with the synthesized netlist. Our equivalence
checking paradigm leverages the high capacity of GSTE-style
model checking [7] and the cycle-accurate nature of CCDFGs.
The equivalence checking is conducted as a dual-rail symbolic
simulation, with the upper rail being the simulation of the
CCDFG and the lower rail being simulation of the netlist
implementation. The two rails are synchronized by clock cycle.

The remainder of the paper is organized as follows. In
Section II we present the formal semantics of CCDFG. In
Section III we develop the formal notion of correspondence
between CCDFG transformations, and discuss how to use
theorem proving to verify the correctness of transformations
with respect to this notion. In Section IV we present our
equivalence checking procedure and discuss its scalability. We
discuss related work in Section V, and conclude in Section VI.

II. SEMANTICS OF CCDFG

In this section, we formulate the semantics of CCDFG.
Since a CCDFG is derived from a CDFG, we first review the
notion of CDFG; we then formalize CCDFG and define its
execution semantics. Although the definitions presented here
have been formalized in the ACL2 theorem prover, we adhere
to traditional mathematical description in this presentation.

Remark. (Input Language Assumptions). We leave the
underlying input language unspecified, with the following
“well-formedness” assumptions. The language is assumed to
provide a partition of design variables intostate variables
and input variables. The legal expressions in the language
are generated by a well-defined grammar over the state and
input variables and language constants; given a mapping of
the variables to constants, any legal expression is computable.
Each instruction in the language can be decomposed into a
sequence ofprimitive operations; the set of operations includes

standard arithmetic and logical operations, comparisons,as-
signments, etc. together with standard if-then-else and loop
constructs. Designs specifications in the language are assumed
to be amenable to usual control and data flow analysis. The
control flow is broken up into a number ofbasic blocks, each
with a single entry and exit. Data dependency is given by a
“read after write” paradigm: an operationopj is data dependent
on an operationopi if opj occurs afteropi in some control flow
path and computes an expression over some state variablev

that is assigned most recently byopi in the path. The language
is assumed to disallow circular data dependencies.

Definition II.1 (Control Flow and Data Flow Graphs). Let
ops , {op1, . . . , opn} be a set of operations over some setV

of (state and input) variables, andbb be a set of basic blocks
each consisting of a sequence of operations overops. A data
flow graphGD over ops is a directed acyclic graph such that
each vertex ofGD is a member ofops. A control flow graph
GC is a labeled graph withbb being the set of vertices and
each edge labeled with a Boolean assertion overV .

An edge inGD from opi to opj represents a data dependency
from opi to opj , and an edge inGC from bbi to bbj indicates
that bbi is a direct predecessor ofbbj in the control flow
structure of the program. An assertion along an edge is a
predicate that must hold whenever program control makes the
corresponding transition.

Definition II.2 (CDFG). Let ops , {op1, . . . , opm} be a set
of operations over a set of variablesV , bb , {bb1, . . . , bbn}
be a set of basic blocks overops , GD andGC are data and
control flow graphs overops and bb respectively. ACDFG
is the tupleGCD , 〈GD, GC , H〉, whereH is a mapping
H : ops → bb such thatH(opi) = bbj iff opi occurs inbbj .

In ACL2, we represent sets as finite lists and the mappingH

as an association list. A graph is represented by an association
list mapping each node to its neighbors. The syntactic structure
is formalized by a predicate which checks that its argument
corresponds to the representation of a CDFG.

The order of execution of operations in a CDFG is irrelevant
as long as the control and data dependencies are respected. The
definition of microstepsbelow makes this notion explicit.

Definition II.3 (Microstep Ordering and Partition). Let
GCD , 〈GC , GD, H〉, where the set of vertices ofGC is
bb , {bb1, . . . , bbl}, and the set of vertices inGD is ops ,

{op1, . . . , opn}. For eachbbk ∈ bb, a microstep orderingis
a relation≺k over ops(bbk) , {opi : H(opi) = bbk} such
the opa ≺k opb if and only if there is a path fromopa

to opb in the subgraphGD,k of GD induced byops(bbk).
A microstep partition ofbbk under≺k is a partitionMk of
ops(bbk) satisfying the following two conditions. (1) For each
p ∈ Mk, if opa, opb ∈ p then opa 6≺ opb and opb 6≺k opa.
(2) If p, q ∈ Mk with p 6= q, opa ∈ p, opb ∈ q, and
opa ≺k opb, then for eachopa′ ∈ p andopb′ ∈ q opb′ 6≺k opa′ .
A microstep partition ofGCD is a setM containing each
microstep partitionMk.

Since GD is acyclic, ≺k is an irreflexive partial order on
ops(bbk) and the notion of microstep partition above is well-
defined. Given a microstep partitionM , {m0, m1, . . .} of
GCD eachmi is called amicrostepof GCD. It is convenient
to view ≺k as a partial order over the microsteps ofbbk, and
further extend it without loss of generality to a total order.
Informally, if opa andopb are in the same partition, their order
of execution does not matter; ifp and q are two microsteps
wherep ≺k q, the operations inp must be executed beforeq
to respect the data dependencies.

Remark. We formalize the execution of a computing model as
a sequence of the underlying design states under a legal input
sequence; given a state and legal input, the semantics specifies
the next state. For a CDFG (and CCDFG), states and inputs
are the valuation of the state and input variables; for circuit
models (cf. Section IV-A), states correspond to the valuation
of latches and inputs to the valuation of input signals. When
the underlying model is clear, we use the terms “state” and
“input” without qualification; when discussing correspondence
between two different models we make the model explicit, for
instance referring to “CCDFG states” and “circuit states”.

In the following definition, we leave the result of executing
individual operations unspecified, but assume that it can be
derived from the input language. In ACL2, this is formalized
through encapsulation [8], which allows introduction of func-
tions with constraints rather than full definitions; the effect of
executing the operations is represented as a constrained func-
tion, but the constraints include the semantics of assignment,
comparison, and swap instructions. The result of executing
a microstepmj from states under inputi is a computable
function fj that computes the valuation of the state variables
updated by the constituent operations; since there is no data
dependency among these operations, the order of evaluation
does not matter.

Definition II.4 (Execution Semantics of CDFG). Given a
CDFG, GCD, a microstep partitionM of GCD, and a se-
quence of inputsi0, i1, . . ., an execution ofGCD is a state
sequence,E , s0, s1, . . . satisfying the following conditions.
(1) There exists a sequence of microstepsP , m0, m1, . . . of
GCD such thatsj+1 is the result of executingmj from statesj

under inputij . (2) if mj , mj+1 ∈ bbk, then (i)mj+1 6≺k mj,
and (ii) there is nop ∈ bbk such thatmj ≺k p andp ≺k mj+1.
(3) If mj ∈ bbk and mj+1 ∈ bbl, k 6= l, then (i) for each
p ∈ bbk and q ∈ bbl mj 6≺k p and q 6≺l mj+1, and (ii) there
is an edgee in Gc from bbk to bbl, and (iii) the assertion on
e evaluates to true under statesj and inputij . We callP the
inducing sequenceof E .

We now formulate CCDFG, by augmenting a CDFG with
a schedule. Consider a microstep partitionM of GCD. A
scheduleT of M is a partition or grouping of M ; for
m1, m2 ∈ M , if m1 and m2 are in the same group inT ,
we say thatm1 andm2 belong to the same scheduling step.

Definition II.5 (CCDFG). A CCDFG is a tuple G ,

i n t gcd (i n t a , i n t b)
{

do {
i f (a < b) swap (a , b) ;
a = a % b ;

} while (a != 0) ;
return b ;

}

a=A

b=B

swap (a,b)

a=a%b

True

False

a < b

return b

a!=0

False

True

Micro Step

Scheduling

Step

Fig. 2. Source code for GCD and the corresponding CCDFG. In the CCDFG,
each while box denotes a micro step and each shaded region denotes a
scheduling step. The primitive operations here are assignment, comparison,
modular division, and swap. To simplify presentation, onlycontrol dependency
edges are shown and data dependency edges are omitted.

〈GCD, M, T 〉, where GCD is a CDFG,M is a micro-step
partition of GCD, andT is a schedule ofM .

Fig. 2 shows the relation between a high-level GCD pro-
gram and a corresponding CCDFG. Note that the CCDFG
corresponds closely to the high-level description.

We need the following two definitions for CCDFG execution
semantics. The first formalizes the criterion for a sequenceof
microsteps to respect a schedule. The second formalizes the
notion that the inputs at the same scheduling step are fixed.

Definition II.6 (Microstep Sequence Consistency). Let M be
a microstep partition of a CDFG,T be a schedule ofM ,
P , m0, m1, . . . be a sequence of microsteps ofM , andN

be a mapping that assigns a natural number to each microstep
in P . We say thatP is consistentwith T under N if the
following conditions hold. (1) formi, mj ∈ P if i < j then
N(mi) ≤ N(mj); and (2) if N(mj) = N(mj+1) then mj

andmj+1 belong to the same group underT .

We say thatN is a witnessto consistency ofP . A microstep
sequenceP is consistentwith T if there is a mappingN such
thatP is consistent withT underN .

Definition II.7 (Input Sequence Conformance). Let M be a
microstep partition of a CDFG,T be a schedule ofM , and
P , m0, m1, . . . be a sequence of microsteps fromM that is
consistent withT under a witnessN . Then an input sequence
i0, i1, . . . is conformantwith P underN andT if, for eachj

such thatij 6= ij+1, N(mj+1) = N(mj) + 1.

We now formalize the semantics of CCDFG execution.

Definition II.8 (Execution Semantics of CCDFG). Let G ,

〈GCD, M, T 〉 be a CCDFG, andP be a sequence of microcode
consistent withT under a witnessN . ThenE , s0, s1, . . . is
an executionof G if the following hold. (1)E is an execution
of GCD corresponding to some input sequenceI , i0, i1,
(2) P is an inducing sequence ofE . (3) I is conformant with
P underN andT .

Thus each execution of a CCDFG is an execution of the under-

lying CDFG but not vice versa; the conformance requirement
restricts the sequence of legal inputs and hence executions.

Finally, we consideroutputsandobservation. An outputof
a CCDFGG is some computable functionf of (a subset of)
state variables ofG; informally, f corresponds to some output
signal in the netlist synthesized fromG. To formalize this in
ACL2’s first order logic, the output is restricted to a Boolean
expression of the state variables; the domain of each state
variable itself is unrestricted, which enables us to represent
programs such as the GCD example that do not return Boolean
values. For each states of G, the observationcorresponding
to an outputf at states is the valuation off unders. Given
a setF of output functions, any sequenceE of states ofG
induces a sequence of observationsO; we refer toO as the
observable behaviorof E underF .

III. C ERTIFIED COMPILATION

We now discuss theverified component of the framework,
namely certification of transformations using theorem proving;
in Section IV we will consider theverifying component.

The central element of theverifiedcomponent is the defini-
tion of the notion of correspondence used to relate the input
and output transformations. Note that for scalability, thenotion
must be reusable over compiler transformations which operate
on designs at different levels of abstraction. We achieve this
through a notion of correspondence loosely based onstuttering
trace containment[9], [10].2 The notion is inspired by work
on well-founded bisimulations (WEBs) [11], [12] in ACL2
proofs of correctness of reactive systems. Roughly, a CCDFG
G′ refinesG if for each execution ofG′ there is an execution of
G that produces the same observable behavior up to stuttering.
We formalize this notion below.

Definition III.1 (Compressed Execution). Let E , s0, s1, . . .

be an execution of a CCDFGG and F be a set of output
functions overG. The compressionof E under F is the
subsequence ofE obtained by removing eachsi such that
f(si) = f(si+1) for everyf ∈ F .

Definition III.2 (Trace Equivalence and CCDFG Refinement).
Let G and G′ be two CCDFGs on the same set of state
and input variables,E and E ′ be executions ofG and G′

respectively, andF be a set of output functions. We say that
E is trace equivalentto E ′ if the observable behavior of the
compression ofE under F is the same as the observable
behavior of the compression ofE ′ underF . We say thatG′

refinesG if for each executionE ′ of G′ there is an execution
E of G such thatE is trace equivalent toE ′.

Informally, our goal in certifying that a behavioral synthesis
transformation is to show that applying it on CCDFGG results
in a refinement ofG. However, we must additionally account
for the possibility that a transformation may be applicable

2We say “loosely” since stuttering trace containment is traditionally defined
in terms of infinite traces, while our current formalizationonly allows finite
executions of CCDFGs.

to G only if G has a specific structural characteristic; fur-
thermore the result of application might produce a CCDFG
with a characteristic that facilitates the subsequent application
of another transformation. To make explicit the notion of
applicability of a transformation on a CCDFG, it is convenient
to view a transformation as a “guarded command” [13], [14]
τ , 〈pre, T , post〉. Informally, τ is applicable to a CCDFG
which satisfiespre and produces a CCDFG which satisfies
post. This notion is formalized below.

Definition III.3 (Transformation Correctness). A transforma-
tion τ , 〈pre, T , post〉, is correct if the result of applyingT
to any CCDFGG satisfyingpre refinesG and satisfiespost .

The following theorem is trivial by induction on the se-
quence of transformations and justifies decomposition of a
transformation into a sequence of primitive transformations.

Theorem III.1 (Correctness of Transformation Sequences).
Let τ0, τ1, . . . , τn be a sequence of correct transformations,
whereτi , 〈prei, Ti, post i〉. Furthermore, for each1 ≤ i < n,
post i ⇒ prei+1. Then the transformation〈pre1, T , postn〉 is
correct.

Remark. For the reader familiar with ACL2, it is instructive
to understand how Theorem III.1 is formalized. Note that
the statement of the theorem involves an arbitrary sequence
of pre and post predicates. A closed-form rendition of the
statement involves quantification over functions, which cannot
be expressed in the first-order logic of ACL2. Instead, we
formalize the statement as averification templateas follows.
Using encapsulation, we introduce two pairs of guarded trans-
formations 〈pre1, T1, post1〉 and 〈pre2, T2, post2〉 with the
associated constraints that each induces a correct transfor-
mation, andpost2 ⇒ pre1. Then we prove the transitivity
theorem〈pre1, T1, post2〉, which is easy in ACL2. Finally, we
develop a macro, which, given a sequence of concrete guarded
transformations, repeatedly instantiates the transitivity theorem
through functional instantiation.

Our approach to ameliorate the cost of theorem proving
is to identify and derivegeneric theoremsthat can certify a
class of similar transformations. As a simple example, consider
any transformation that refines the schedule. The following
theorem states that each such transformation is correct.

Theorem III.2 (Correctness of Schedule Refinement). Let
G , 〈GCD, M, T 〉 andG′ , 〈GCD, M, T ′〉 be CCDFGs such
that for any two microstepsmi, mj ∈ M if T ′ assignsmi and
mj the same group then so doesT . ThenG′ is a refinement
of G.

Although the statement of the theorem is simple, the formal
proof of its correctness is somewhat nontrivial. The reason
is that the formalization requires viewing the transformation
as a graph manipulation. As is well-known, reasoning about
properties of graph manipulation is complicated [15]. We
must also reason about the mapping of operations to graph
nodes, and the relation between graph reachability and flow

/∗ O r i g i n a l ∗ /
do {

i f (a < b)
swap (a , b) ;

a = a % b ;
} while (a != 0) ;
return b ;

/∗ Transformat ion 1 ∗ /
do{

i f (a < b)
swap (a , b) ;

a = a % b ;
i f (! (a != 0))

return b ;
i f (a < b)

swap (a , b) ;
a = a % b ;

} while (a != 0) ;
return b ;

/∗ Transformat ion 2 ∗ /
do {

swap (a , b) ;
a = a % b ;
i f (! (a != 0))

return b ;
swap (a , b) ;
a = a % b ;

} while (a != 0) ;

/∗ Transformat ion 3 ∗ /
do {

a = a % b ;
i f (! (a != 0))

return b ;
b = b % a ;
i f (! (b != 0))

return a ;
} while (1) ;

Fig. 3. An example of certifiable transformation sequence. The sequence
includes (1) unrolling the loop once, (2) interpreting the “%” operation to show
that (a < b) holds after the assignmenta = a % b, and (3) loop transformation
through interpretation ofswap operation. Due to space limitation, we use C
code instead of the CCDFGs to represent the transformation.

structure of the underlying program execution. Nevertheless,
we believe that the generic nature of the statement ameliorates
the verification cost. Furthermore, much of the infrastructure
developed in the process is reusable for verification of other
transformations. For instance, one side effect is a reusable
library of lemmas about graph operations.

Consider the sequence of transformations shown in Fig. 3
for our GCD example. The transformed code conducts two
modular divisions in one cycle, thus speed up the computa-
tion of GCD. Note that the transformations involved include
generic properties of loop unrolling and code motion, together
with partial interpretation of two operations; these properties
can be easily stated using ACL2. We are currently working on
certifying this sequence. The transformations applied in this
step may affect the complexity of equivalence checking later
(See Section IV).

We end the discussion of theverified framework with one
other observation. Since the logic of ACL2 is executable,
pre and post can be efficiently executed for a given concrete
transformation. Thus, a transformationτ , 〈pre, T , post〉 can
be appliedeven before verificationby using pre and post
for runtime checks: if a CCDFGG indeed satisfiespre and
the application ofτ on G results in a CCDFG satisfying
post then the instance of application of τ on G can be
composed with other compiler transformations; furthermore,
the expense of the runtime assertion checking can be alleviated
by generating aproof obligation for a specific instance, which
is normally more tractable than a monolithic generic proof of
the correctness ofτ . This provides a trade-off between the
computational expense of runtime checks and verification of
individual instances with a (perhaps deep) one-time proof of
the correctness of a transformation.

IV. M ODEL CHECKING

We now discuss theverifying component of our framework,
namely checking equivalence between a CCDFG and the syn-
thesized circuit. We first formulate the notion of equivalence
between a CCDFG and a circuit. We then discuss our approach
for checking this equivalence.

A. Circuit Model

We represent a circuit as a Mealy machine specifying the
updates to the state elements (latches) in each clock cycle.
Our formalization of circuits is typical in traditional hardware
verification, but we make combinational nodes explicit to
facilitate correspondence with CCDFGs.

Definition IV.1 (Circuit). A circuit is a tupleMC = 〈I, N, F 〉
where I is a vector of input signals;N is a pair 〈Nc, Nd〉
where Nc is a set ofcombinational nodesand Nd is a set
of latches; and F is a pair 〈Fc, Fd〉 where Fc maps each
combinational nodec ∈ Nc to a Boolean expression over
N ∪ I. and for each latchd ∈ Nd, Fd maps each latchd
to a noden ∈ N whereFd is a delay function which takes
the current value ofn to be the next-state value ofd.

A circuit state is an assignment to the latches inNd; we
assume a pre-assignedinitial state, corresponding to the values
of the latches at reset. Given a circuit state and a valuationof
the input signalsI, we compute thecircuit transition at each
clock cycle as follows. The output of each combinational node
c ∈ Nc is the valuation of the functionFc(c) on the current
circuit state and the input valuation; the next state of each
latch d ∈ Nd is the valuation ofFd(d). Combinational nodes
are updated at the beginning of a clock cycle and the latches
are updated at the end; the state updates are thus delayed to
reflect propagation of signals through circuit wires.

We now formalize circuit executions. Given a sequence of
valuations to the input signalsi0, i1, . . ., a circuit trace of
M is the sequence of statess0, s1, . . ., where (1)s0 is the
initial state and (2) for eachj > 0, the statesj is obtained
by updating the elements inNd given the state valuationsj−1

and input valuationij−1.
Fig. 4 shows a synthesized circuit derived from the CCDFG

in Fig. 2. Note that FSM is the control component of the
circuit, which contains both combinational nodes and latches.
Given any circuit state, FSM will decide all control signalsfor
the circuit, and finally when computation finishes, the result
will be available inresult, anddone signal is set to true.

B. Correspondence between CCDFGs and Circuits

Given a CCDFGG and a synthesized circuitMC , how do
we define execution correspondence? Note that we can define
a natural mapping between the inputs ofG and the input
signals ofMC . It is thus tempting to define the correspondence
betweenG and MC as follows: (1) establish a mapping
between the state variables ofG and the latches inMC , and
(2) stipulate an execution ofG to be equivalent to an execution
of MC if they have the same sequence of observable behaviors.

mux mux

a b

A B

<

mux mux

%

a’ b’

!=

FSM

result

swap

done

reset

start

(1)

(1) (2) (3)

(1)

(2) (2)

(3) (3)

a=A

b=B

swap (a,b)

a=a%b

True

False

a < b

return b

a!=0

False

True

Fig. 4. Synthesized Circuit for GCD and its operation mapping relation with
CCDFG in Fig. 2.A, B, reset, start are the input nodes, and the shaded
nodesa, a′, b, b′ are latches. The dotted lines represent the mapping from
operations of CCDFG to combinational nodes of circuit. We consider a wire
to be a combinational node.

However, equivalence based on fixed mappings of variables
does not work in general. Although there are fixed mappings
between input variables in the CCDFG and input signals of the
circuit, the mappings between internal variables and latches
may be different in each clock cycle. We address this by
introducing mappings between the CCDFGoperationsand
the combinational nodes in the circuit: each operationop

is mapped to the set of combinational nodes that together
implementop; note that this mapping is independent of clock
cycles.

We formalize these mappings by the definitions ofIMap

and NMap below. SupposeG is a CCDFG with a set of
input variablesVI and a set of operationsops, and MC ,

〈I, N, F 〉 is a circuit. ThenIMap : Vi → I is a one-to-
many mapping from the input variables ofG to the input
signals ofM ; for each input variable ofv of G, IMap(v)
returns the corresponding set of input signals ofMC . Finally,
NMap : ops → Nc is a mapping from the operations
of G to the combinational nodes ofMC , which determines
how each operation is implemented inMC . For the GCD
example, since variablesa, b are the input of CCDFG, we
defineIMap(a) = A and IMap(b) = B (cf. Fig. 4). Each
CCDFG operation corresponds to a combinational node.

We now define the equivalence between a CCDFG state of
G and a circuit state ofMC with respect to a given scheduling
step ofG and under the equivalent inputs.

Definition IV.2. A CCDFG statex of G is equivalent to
a circuit states of MC with respect to an inputi and a
microstep partitionM , if for each operationop in t, the inputs
to op according tox and i are equivalent to the inputs to
NMap(op) according tos and IMap(i), i.e., the values of
an input to op and the corresponding input toNMap(op)
are equivalent, and the outputs ofop are equivalent to the
outputs of NMap(op). Given a CCDFGG and a circuit
MC , G is equivalent toM if and only if for any execution

[x0, x1, x2, . . .] of G that is generated by an input sequence
[i0, i1, i2, . . .] and by the execution[t0, t1, . . .] of G, and
state sequence[s0, s1, s2, . . .] of M generated by the input
sequence[IMap(i0), IMap(i1), IMap(i2), . . .], xk and sk

are equivalent with respect totk underik, k ≥ 0.

Note that the initial statesx0 and s0 of G and MC are
irrelevant in that the operations in the first scheduling step
of G (or, respectively, the corresponding circuit nodes ofM

underIMap, respectively) depend oni0 (or IMap(i0)), but
not x0 (or s0). Therefore,x0 and s0 can be arbitrary while
the requirement thatv0 ands0 are equivalent with respect to
t0 underi0 are still satisfied.

Finally note that, not all combinational nodes in the circuit
have their corresponding operations in CCDFG. For example,
the mux nodes and FSM in the circuit are not represented in
the CCDFG. These unobservable parts constitute the control
component generated by synthesis to preserve the control and
data dependencies of the CCDFG, and their correctness is
implied by the equivalence of observable nodes.

C. Dual-Rail Simulation for Sequential Equivalence Checking

To check the above equivalence between a CCDFG,G,
and a circuit,M , we propose a dual-rail symbolic simulation
scheme shown in Fig. 5. The upper rail simulatesG while the

Circuit
Refinement

Conduct

Real

Error
Report

Mapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

No

Yes

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Violation?
Equivalent?

Fig. 5. Dual-Rail Simulation Scheme for Equivalence Checking

lower rail simulatesMC . The two rails are synchronized by
clock cycle, and follow an abstraction/refinement paradigm.
The equivalence checking scheme for clock cyclek can be
roughly summarized as follows:

1) The current CCDFG statexk and circuit statesk are
checked to see whether for the inputik, the inputs
to each operationop in the scheduling steptk are
equivalent to the inputs to its corresponding circuit nodes
in NMap(op). If the inputs are equivalent, go to Step
2; otherwise, go to Step 3.

2) G is simulated by executingtk on xk underik to obtain
state xk+1, recording the outputs of eachop ∈ tk.
Correspondingly,M is simulated for one clock cycle
from sk under the inputIMap(ik) to obtain circuit
state sk+1. The outputs of eachop are checked for
equivalence underNMap against the outputs of the
nodes inNMap(op). If the inputs are equivalent, go
to Step 4; otherwise, go to Step 3.

3) We check if the failure on equivalence check is a false
negative caused by abstraction. If there is no false nega-
tive, the problem is reported; otherwise, the abstraction

TABLE I
EQUIVALENCE CHECKING RESULTS FORGCD UNDER SCHEDULE

REFINEMENT

Circuit Before schedule refn. After schedule refn.
Bit # of Time BDD Time BDD

Width Nodes (Sec.) Nodes (Sec.) Nodes
2 96 0.02 503 0.02 783
3 164 0.05 4772 0.07 11113
4 246 0.11 42831 0.24 20937
5 342 0.59 16244 1.93 99723
6 452 12.50 39968 27.27 118346
7 576 369.31 220891 383.98 164613
8 714 6850.56 1197604 3471.74 581655

is refined. The report is associated with an error trace
that contains the CCDFG state sequence, the execution
of G, and the circuit state sequence ofMC up to the
current clock cycle.

4) The scheduling steptk+1 is determined based on the
control flow. If tk has multiple outgoing control edges,
the last microstep oftk executed in the simulation above
is identified. The outgoing control edge from this micro-
step whose condition evaluates to be true leads totk+1.

The simulation proceeds cycle-by-cycle until either (i) the
equivalence check fails, or (ii) a fixed point is reached and
there is no observable inconsistency between CCDFG and cir-
cuit. The scheme is analogous to but extends traditional GSTE-
style model checking [16] in the following sense. Like GSTE,
the simulation is guided by a graph, namely the CCDFG, and
the simulation complexity largely depends on that of the graph
since the fixed-point computation is conducted on the CCDFG
and only the current circuit state is kept; on the other hand,
CCDFGs provide richer information thanassertion graphs
employed by GSTE, with explicit specification of valuation
of state variables which can be symbolically simulated to
generate state sequences. In contrast, assertion graph edges
are only labeled with preconditions and postconditions.

D. Experimental Results and Discussion

We implemented the above equivalence checking algorithm
in the IntelForte environment [17]. The equivalence checking
is based on symbolic simulation; symbolic states are repre-
sented at bit level using BDDs. We checked the equivalence
between a set of CCDFGs of GCD (the original and several
transformed versions) and their synthesized circuits. To better
comprehend the complexity of equivalence checking, we con-
duct the experiments without any abstraction. All experiments
were conducted on a workstation with3GHz Intel Xeon
processor with2GB memory.

Table I shows the equivalence checking results for GCD
under schedule refinement (Theorem III.2). Since we bit-blast
all the operations in the CCDFG, the running time grows
exponentially when the bit width increases. For the8-bit GCD,
the equivalence checking finished within 2 hours and the
number of BDDs required is not prohibitive. The schedule
refinement partitions the loop body into two clock cycles and
it does not change the fixed-point computation since the fixed-

TABLE II
EQUIVALENCE CHECKING RESULTS FORGCD UNDER LOOP UNROLLING

OPTIMIZATION

Before trans. seq. in Fig. 3 After trans. seq. in Fig. 3
Bit Circuit # of Time BDD Circuit # of Time BDD

Width Nodes Steps (Sec.) Nodes Nodes Steps (Sec.) Nodes
2 96 20 0.02 503 135 16 0.02 560
3 164 33 0.05 4772 240 22 0.04 5542
4 246 48 0.11 42831 373 34 0.11 55646
5 342 63 0.59 16244 534 40 0.79 90599
6 452 78 12.50 39968 723 58 17.78 51977
7 576 93 369.31 220891 940 70 376.48 84834
8 714 108 6850.56 1197604 1185 82 5798.03 589557

point is computed based micro-steps. However, since we check
the CCDFG-circuit equivalence cycle by cycle, the number of
cycles that the circuit is simulated doubles. The running time
after schedule refinement is about two times slower than that
before for small bit widths. However, for large bit widths, the
running time is dominated by the complexity of the CCDFG
simulation instead of the circuit simulation. The decreases in
running time with the increase in bit width from 7 to 8 are
likely due to BDD variable reordering by Forte.

Table II shows the equivalence checking results for GCD
under the transformation sequence in Fig. 3. It is interesting
to note that the number of steps performed for equivalence
checking provides a good estimation for the effectiveness
of the transformation — the fewer number of steps needed
to reach fixed-point, the more likely the circuit can run in
less time. However, the performance gain in real circuit does
not necessarily imply the performance improvement in equiv-
alence checking, because the transformation also increases
the number of circuit nodes, therefore, increasing the circuit
simulation time.

V. RELATED WORK

An early effort [18] on verification of high-level synthe-
sis targets the behavioral portion of VHDL [19]. A formal
semantics based on CSP [20] was established for behavioral
VHDL. A translation from behavioral VHDL to dependence
flow graphs [21] was verified by structural induction based
on the CSP semantics. Recently, there has been research on
certified synthesis of hardware from formal languages such as
HOL [22] in which a compiler that automatically translates
recursive function definitions in HOL to clocked synchronous
hardware has been developed. A certified hardware synthesis
from programs specified in Esterel, a synchronous design
language, has been also been developed [23] in which a variant
of Esterel was embedded in HOL to enable formal reasoning.

Dave [24] provides a comprehensive survey of compiler
verification. One of the earliest work on mechanized compiler
verification was the Piton project [25], which verified a com-
piler for an simple assembly language. Compiler certification
forms a critical component of the Verisoft project [26], a
pervasive formal verification project aimed at ensuring cor-
rectness of implementations of critical computing systemswith
both hardware and software components. The Verifix [27] and

CompCert [28] projects have explored a general framework
for certification of compilers targeting various C subsets [29],
[30]. There has also been work on averifying compiler, where
each instance of a compiler transformation generates a proof
obligation discharged by a theorem prover [31].

There has been much research on sequential equivalence
checking (SEC) between RTL and gate-level hardware de-
signs [32], [33]. Research has also be done on combinational
equivalence checking between high-level designs in software-
like languages (e.g., SystemC) and RTL-level designs [34].
There has also been effort for SEC between software speci-
fications and hardware implementations [35]: GSTE assertion
graphs were extended so that an assertion graph edge have
pre and post condition labels, and also associated assignments
that update state variables. These extended assertion graphs
motivated our formulation of CCDFGs, which preserve both
control/data flows and the scheduling information. There has
also been work on equivalence checking with other graph
representations, e.g., Signal Flow Graph (SFG) [36].

VI. CONCLUSION

We have described a framework for certifying behavioral
synthesis flows. The framework includes a combination of
verified and verifying paradigms: high-level transformations
are certified once and for all by theorem proving, while low-
level tweaks and optimizations can be handled through model
checking. We demonstrated the efficacy of the CCDFG struc-
ture as an interface between the two components. Certification
of different compiler transformations is uniformly specified by
viewing them as manipulation of CCDFGs. One key benefit
of the approach is that it obviates the need for developing
formal semantics for each different intermediate representation
generated by the compiler. The transformed CCDFG can then
be used for equivalence checking with the synthesized design.

It must be admitted, however, that certification of practical
synthesis flows is a substantial enterprise. Significant further
research is necessary to facilitate the verification of a practical
synthesis flow such as SPARK [4] or xPilot [3]. In theverified
component, we are formalizing other generic transformations
including code motion across different loop iterations. Inthe
verifying component, we are considering three approaches for
complexity reduction: (i) use theorem proving to partitiona
CCDFG into smaller independent CCDFGs and check them
individually; (ii) find an efficient symbolic indexing scheme
for CCDFG to reduce the number of symbolic variables used
in BDD-based equivalence checking; (iii) lift part of the
operations into word-level to further reduce the complexity.

REFERENCES

[1] “Forte Design Systems. Behavioral Design Suite,” see URL:
http://www.forteds.com.

[2] Celoxica, “DK design suite,” see URL: http://www.celoxica.com.
[3] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Behavioral and

Communication Co-Optimizations for Systems with Sequential Com-
munication Media,” inDAC, 2006.

[4] D. Gajski, N. D. Dutt, A. Wu, and S. Lin,High Level Synthesis:
Introduction to Chip and System Design. Norwell, MA: Kluwer
Academic Publishers, 1993.

[5] X. Leroy, “Formal Certification of a Compiler back-end, or: Program-
ming a Compiler with a Proof Assistant,” inPOPL, 2006.

[6] “Cryptol: The Language of Cryptography,” see URL:
http://www.cryptol.net.

[7] J. Yang and C.-J. H. Seger, “Generalized symbolic trajectory evaluation
— abstraction in action,” inFMCAD, November 2002.

[8] M. Kaufmann and J. S. Moore, “Structured Theory Development for a
Mechanized Logic,”Journal of Automated Reasoning, vol. 26, no. 2,
pp. 161–203, 2001.

[9] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, May 1991.

[10] L. Lamport, “What Good is Temporal Logic?”Information Processing,
vol. 83, pp. 657–688, 1983.

[11] P. Manolios, K. Namjoshi, and R. Sumners, “Linking Model-checking
and Theorem-proving with Well-founded Bisimulations,” inCAV, 1999.

[12] R. Sumners, “An Incremental Stuttering Refinement Proof of a Concur-
rent Program in ACL2,” inACL2 Workshop, Austin, TX, Oct. 2000.

[13] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–583, 1969.

[14] E. W. Dijkstra, “Guarded Commands, Non-determinacy and a Calculus
for Derivation of Programs,”Communications of the ACM, vol. 18, pp.
453–457, 1975.

[15] J. S. Moore, “An Exercise in Graph Theory,” inComputer-Aided
Reasoning: ACL2 Case Studies, M. Kaufmann, P. Manolios, and J. S.
Moore, Eds. Boston, MA: Kluwer Academic Publishers, June 2000,
pp. 31–58.

[16] J. Yang and C.-J. H. Seger, “Introduction to generalized symbolic
trajectory evaluation,”Transaction on VLSI Systems, vol. 11, no. 3, June
2003.

[17] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C. Barrett,
and D. Syme, “An industrially effective environment for formal hardware
verification,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 9, 2005.

[18] R. O. Chapman, “Verified high-level synthesis,” Ph.D. dissertation,
Ithaca, NY, USA, 1994.

[19] IEEE, “IEEE Std 1076: IEEE standards VHDL language reference
manual.”

[20] Communicating Sequential Processes. Prentice-Hall, 1985.
[21] R. Johnson and K. Pingali, “Dependence-based program analysis,” in

PLDI, 1993, pp. 78–89.
[22] M. Gordon, J. Iyoda, S. Owens, and K. Slind, “Automatic formal

synthesis of hardware from higher order logic,”Electr. Notes Theor.
Comput. Sci., vol. 145, pp. 27–43, 2006.

[23] K. Schneider, “A verified hardware synthesis for Esterel,” in Workshop
on Distributed and Parallel Embedded Systems (DIPES), F. Rammig,
Ed. Kluwer, 2000, pp. 205–214.

[24] M. A. Dave, “Compiler verification: a bibliography,”SIGSOFT Software
Engineering Notes, vol. 28, no. 6, p. 2, 2003.

[25] J. S. Moore, Piton: A Mechanically Verified Assembly Language.
Kluwer Academic Publishers, 1996.

[26] T. V. Consortium, “The verisoft project,” http://www.verisoft.de.
[27] “The verifix project,” http://www.info.uni-karlsruhe.de/ verifix.
[28] “The compcert project,” http://pauillac.inria.fr/ xleroy/compcert.
[29] D. Leinenbach, W. J. Paul, and E. Petrova, “Towards the formal

verification of a C0 compiler: Code generation and implementation
correctnes,” inSEFM, 2005, pp. 2–12.

[30] X. Leroy, “Formal certification of a compiler back-end or: programming
a compiler with a proof assistant,” inPOPL, 2006, pp. 42–54.

[31] L. Pike, M. Shields, and J. Matthews, “A Verifying Core for a Crypto-
graphic Language Compiler,” inACL2 Workshop, 2006.

[32] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen,
“Scalable sequential equivalence checking across arbitrary design trans-
formations,” in International Conference on Computer Design, 2006.

[33] D. Kaiss, S. Goldenberg, Z. Hanna, and Z. Khasidashvili, “Seqver: A
sequential equivalence verifier for hardware designs,” inInternational
Conference on Computer Design, 2006.

[34] A. J. Hu, “High-level vs. RTL combinational equivalence: An introduc-
tion,” in International Conference on Computer Design, 2006.

[35] X. Feng, A. J. Hu, and J. Yang, “Partitioned model checking from
software specifications,” inASP-DAC, 2005, pp. 583–587.

[36] L. Claesen, M. Genoe, and E. Verlind, “Implementation/specification
verification by means of SFG-Tracing,” inCHARME, 1993.

