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Abstract

We prove the correctness of the concurrent deque component of a recent implementation of the work-stealing
algorithm. Specifically, we prove that this concurrent deque implementation is synchronizable. Synchronizability
is a weaker condition than the more traditional notion of serializability. Our concurrent deque implementation
is not serializable, but its synchronizability makes it sufficient for use in the work-stealing algorithm. Whereas
serializability requires that concurrent method invocations appear as if they are executed atomically in some serial
order, synchronizability allows some invocations to appear as if they are executed atomically at exactly the same
time.

1 Introduction

In this paper we prove the correctness of the concurrent deque implementation given in [1] as a component of the
work-stealing thread-scheduling algorithm. This implementation is nonblocking, meaning that slow or preempted
processes cannot prevent other processes from making progress [2]. No mutual exclusion is used. This nonblocking
property makes this implementation ideal for use in multiprogrammed multiprocessors in which processes can be
preempted at arbitrary times by the operating system kernel.

A deque, or double-ended queue, is a data structure that maintains a finite sequence of items and supports
insertion or removal of an item at either end of the sequence. We refer to these two ends as bottom and top. A
deque implementation is a set of methods, one for each of the four deque operations. We refer to these methods as
pushBottom, popBottom, pushTop, and popTop. One or more processes manipulate the deque by invoking
these methods. A nonblocking concurrent deque allows the execution of two or more method invocations to be
arbitrarily interleaved.

The nonblocking concurrent deque implementation of [1] does not provide a true concurrent deque as defined in
the preceding paragraph, as it only specifies methods for three of the four deque operations, and it restricts the set of
processes allowed to invoke each of these methods. Specifically, this concurrent deque implementation is subject to
the following assumptions and limitations:

1. The set of processes allowed to access the deque consists of a single owner and some number of thieves.

2. The owner invokes the pushBottom and popBottommethods only.

3. Thieves invoke the popTop method only.

For the sake of brevity, in the rest of the paper we will use the term deque to refer to a concurrent deque subject to
the above restrictions.
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We introduce “synchronizability”, a new correctness criteria that is weaker than the more traditional notion of
serializability [3], and we prove that our nonblocking deque implementation is synchronizable. Whereas serializ-
ability requires that concurrent method invocations appear as if they are executed atomically in some serial order,
synchronizability allows some invocations to appear as if they are executed atomically at exactly the same time. The
semantics of these method invocations are defined by a synchronous specification. In the case of our deque, multiple
popTop invocations can appear to occur at exactly the same time, and when they do, our synchronous specifica-
tion dictates that if the deque is nonempty, then one of these invocations returns the topmost item and all others
return NIL, even if the deque contains more than one item. This synchronizability turns out to be sufficient for the
work-stealing algorithm [1]. Our deque implementation is not serializable, and we are not aware of a serializable
nonblocking deque implementation that is either as simple or as fast as our synchronizable one.

The remainder of this paper is organized as follows. Section 2 introduces some basic terminology. Section 3
gives two specifications of a deque: a serial specification and a synchronous specification. Section 4 presents the
nonblocking deque implementation of [1]. Section 5 proves the correctness of this implementation with respect to
the synchronous specification of Section 3.

2 Basic Terminology

In this section, we define the terms that provide the framework for our proof. We begin by defining a “program”
as a set of “methods.” In our proof, we shall be concerned with a program whose methods are pushBottom,
popBottom, and popTop. We then define an “execution” as an interleaving of method invocations by the various
processes. Next, we define a “behavior” as the observable method calls and returns in an execution. We then define
what it means for a program to be “correct” in terms of its behaviors. Finally, we provide two lemmas that are used
in our proof.

Before defining programs and methods, we first define a “system” as a set of processes and a set of states.
Each state is broken into a single shared state and one or more private states — one private state for each process.
Formally, a system � is a set of processes �������	��
�
��
������ , a set of shared-states 
	��������������� , and a set of functions
from �������	��
�
���
������ to ���	����� ��������� , where ���	����� ���!����� is a set of private-states. Such a function assigns a private
state to each process. A state of � is a shared-state and a function from �������	��
�
���
"����� to �����#���$��������� . Throughout
the remainder of the paper, we assume a fixed system � .

A program is a set of methods, and we define a method by breaking it into a set of “actions.” Each action
corresponds to a contiguous sequence of one or more instructions in the method’s implementation code. An “event”
is the execution of an action by a process, and we assume that each event is atomic. A sequence of events constitutes
a program execution. In addition to a set of actions, a method has several other components. A set of “start” states
specifies the states in which the method can be invoked. An “enabling” relation specifies which actions can be
executed by which processes in which states. A “transition” function specifies how the state is updated when an
action is executed. Finally, a method has a set of argument sequences that specify the allowable arguments.

Formally, a program % is a set of methods &'������(��
"�)%*� , and a method +-,.% is a set of start states 
��/������0+1� , a
set of actions � ���)�0��23
��0+1� , a set of argument sequences ���04�
!�0+1� , an enabling relation �2�� 5�67���8�0+1� , and a transition
function �)����23
��0+1� . The enabling relation is a relation over �!���)�0��23
"�0+1�:9;67��4�
!�)%*�:9<�������	��
�
���
������ . The set 6=��4$
!�)%>�
will be defined and the interpretation of the enabling relation will be explained shortly. The transition function
is a function from �!���)�0��23
!�0+1�>9?���04�
"�0+1� to the set of functions over �����#���$���������@9A
����$�����B����� . The transition
function specifies how the state is updated when a process executes an action with an appropriate argument sequence.
Specifically, when a process executes an action with an appropriate argument sequence, the transition function, when
applied to that action and argument sequence, gives a function over ���	����� ���!�����C9;
	��������������� . This function is then
applied to the private-state of the process and the shared-state to generate a new private-state for that process and a
new shared-state.

One action in � �(�)�)��2D
"�0+1� is designated as the input action of + . A second action is designated as the output
action of + . The input action takes a specified number of arguments; all other actions take zero arguments. The
output action may return a value; no other action returns a value. (Remark: We assume that the return value of the
output action, if any, is encoded in the state via the transition function.)
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To understand the enabling relation, we first define logs, events, and executions. The set of all logs of a program
% , denoted 6=��4$
"�)%*� , is the set of all pairs �������:� such that � is a state and � is an event sequence. An event is a tuple
�0+�� � �	�
������"� where + is a method of % ,

�
is an action of + , � is a process, � is an argument sequence of + , and  is

an optional return value. Such an event denotes the execution of action
�

from method + by process � . In addition,
if the action is the input action, then � specifies its arguments, and if the action is the output action, then  specifies
its return value (if any). An event associated with an input (resp., output) action is a prologue (resp., epilogue). Any
event that is neither a prologue nor an epilogue is a burst. A log is a state and a sequence of events. Some logs are
executions.

Informally, a log �������:� is an execution of a program if the state � is a start state of the program, and � is an event
sequence that can be generated by processes executing the program. Formally, we define start states, executions, and
final states as follows. For any program % , we define the associated set of start states, denoted 
��/������)%*� , as the
intersection over all + in & ����������
��)%>� of 
��/������0+1� . We now inductively define both the set of executions of a
program % , denoted ���!����
!�)%*� , as well as the final state of each execution � in ���"����
!�)%*� , denoted � 2���6 �)%����1� .

� Every log ��� ��������� , where � belongs to 
��/������)%>� and � denotes the empty sequence, is an execution. For
such an execution � 2 ��6 �)%����1����� .

� For all executions ��� �������:� and all actions
�

such that � � �����	� � belongs to ��2 � 56 ���8�0+1� for some method + in
&'����������
 �)%>� , the log ������� � is an execution, where � is the event sequence obtained by appending to the event
sequence � any event of the form  !� �0+�� � �	��������"� , where � is a valid argument sequence (i.e., if

�
is an

input action then � belongs to ���04�
!�0+1� ; otherwise, � is the empty sequence) and  is an optional return value
(i.e.,  is present if and only if

�
is an output action that produces a return value, in which case the value of 

is determined by
�

and the current state). The state � 2��$6 �)%����1� is determined by updating the private-state of
� and the shared-state according to the transition function of

�
.

We can now understand the meaning of the enabling relation. For an action
�

, an execution �"� �������:� , and
a process � , if we have � � �����	�B��, ��2�� 5�67��� �0+1� , then

�
can be executed by process � in state � 2 ��6��)%����1� . In other

words, if + is the method to which
�

belongs, then for an event  �� �0+�� � �	��������"� , the log �������# 8� is an execution.
Note that we allow the enabling relation of a method to depend on the entire history of the execution. Of course, in
practice, the enabling relation of a method depends only on the current state.

A method + is defined to be feasible if and only if, for any action
�

, execution � , and process � , membership
of the triple � � �����	� � in ��2�� 5�67��� �0+1� depends only on

�
, � , and the private-state of � in �:2���6 �)%����1� . A program % is

feasible if and only if each method in &'����������
"�)%*� is feasible. In Section 5 of this paper we prove the correctness of
a feasible program by reasoning about a collection of related programs that are not feasible.

A program is “nonblocking” if every process always has an enabled action. Formally, a program % is non-
blocking if and only if, for all executions � in ���!����
!�)%*� , at least one action is enabled for each process in the state
� 2��$6 �)%����1� .

A “trace” is an event sequence that is part of some execution. Formally, the set of traces of a program % ,
denoted �)��� ����
"�)%*� , is defined as the set of all event sequences � such that ���!����
!�)%*� contains an execution of the
form ���������:� . Given two events  and $ in some trace � , we say that $ is the successor of  (resp.,  is the
predecessor of $ ) if and only if  and $ have the same associated process � and  immediately precedes $ in the
subsequence of � consisting of all events associated with process � . A trace is closed if and only if the first event
associated with any process is a prologue and the last event associated with any process is an epilogue. An execution
�������:� is closed if and only if � is closed.

We now define the “futures” of an execution and the “histories” of a trace. Informally, the futures of an execution
� are those executions that extend � with more events, and the histories of a trace � are those executions that can
precede � . Formally, for any program % and any execution �%� �������:� in ���!����
 �)%>� , we define the futures of
� , denoted &('3�	'�����
 �)%����1� , as the set of all executions �������
� � in ���!����
!�)%*� . For any program % and any trace � in
�)��� �	��
"�)%>� , we define the histories of � , denoted �"� 
��/���	�/��
��)%����:� , as the set of all executions ������� � such that ���������:�
belongs to ���"����
!�)%*� .
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We shall focus our attention on programs that are “well-formed” in the sense that their executions have the
property that the events of each process occur in a reasonable order. Formally, an execution is well-formed if and
only if the following conditions hold: the predecessor of each epilogue is either a burst or a prologue with the same
associated method; the predecessor of each burst is either a prologue or a burst with the same associated method; the
predecessor of each prologue is either an epilogue or does not exist. A program % is well-formed if and only if each
execution in ���!���
!�)%>� is well-formed.

We now define a behavior as the observable events — that is, the prologues and epilogues — in an execution.
Formally, for any execution �!� �������:� , we define the behavior of � , denoted 5������$�(�0���3���1� , as the sequence of all
prologues and epilogues in � . For any program % , we define the behaviors of % , denoted 5	������� �)���	
"�)%*� , as the
set �"5������$�(�0���D���1�����?, ���"����
!�)%*��� . A behavior is well-formed if and only if the predecessor of each epilogue is
a prologue with the same associated method and the predecessor of each prologue is either an epilogue or does not
exist. A behavior is closed if and only if it is well-formed and each prologue has a successor.

The two types of behaviors with which we are most concerned are serial behaviors and synchronous behaviors.
In a serial behavior, there is no interleaving of methods. Each prologue is followed immediately by its successor
epilogue. In a synchronous behavior, multiple invocations can be “nested.” We interpret nested invocations as
occurring at the same time, hence the term “synchronous.” Formally, we define these behaviors as follows. A
behavior is an invocation if and only if it is closed and has length 2. We inductively define the set of all nested
behaviors as follows: The empty sequence is a nested behavior, and any behavior of the form  �
$ , where  is
a prologue, � is a nested behavior, and $ is the successor of  , is a nested behavior. A behavior is serial (resp.,
synchronous) if and only if it is the concatenation of a number of invocations (resp., nested behaviors).

We define program correctness using “serializability” (resp., “synchronizability”) which is defined as the ability
to transform any behavior into a correct serial (resp., synchronous) behavior via interchanging events. The inter-
change of two adjacent events  and $ (not necessarily from the same process) in a well-formed behavior constitutes
a valid transposition if and only if the resulting event sequence is a well-formed behavior and either  is a prologue
or $ is an epilogue. Note that an interchange in which  is an epilogue and $ is a prologue is not a valid transposition,
because we do not want to change non-overlapping method invocations into overlapping ones. A serial (resp., syn-
chronous) specification defines the set of correct serial (resp., synchronous) behaviors. A behavior is serializable
(resp., synchronizable) if and only if it can be transformed to a correct serial (resp., synchronous) behavior via a
sequence of valid transpositions.

A program is correct with respect to a given serial (resp., synchronous) specification if and only if it is well-
formed and for every execution � in ���!����
!�)%*� there is an execution � in &('3�	'�����
!�)%����1� such that 5�������� �)�$� ��� � is
serializable (resp., synchronizable).

For any epilogue occurring in some well-formed execution, we define the running time of the method invocation
associated with the epilogue as the least � such that the � th iterated predecessor of the epilogue is a prologue. For
any well-formed program % and any method + in &'���������
��)%*� , we define method + to be constant-time if and
only if there is a constant exceeding the running time associated with any epilogue of + occurring in any execution
in ���"����
!�)%*� . A program % is constant-time if and only if it is well-formed and every method in & ����������
 �)%>� is
constant-time. The proof of the following lemma is straightforward.

Lemma 1 A constant-time nonblocking program % is correct with respect to a given serial (resp., synchronous)
specification if every closed behavior in 5	�������(�0���	
"�)%*� is serializable (resp., synchronizable).

For any program % and any pair of executions � and � in ���!����
!�)%*� , we say that � and � are congruent with
respect to % , denoted �	�� � , if and only if

�"5	������� �)���3����
���� ��
 , &('3�	'�����
!�)%����1��� � �"5	�������(�0���3���
������
 , &�'3�	' ����
!�)%���� �����
For any program % , any trace � in �)� �!�	��
��)%>� , and any set of traces � contained in �)��� �	��
"�)%>� , we say that � is

subsumed by � with respect to % , denoted ����� , if and only if for every execution �������B� in �!�#
��/�$�	�/��
"�)%����:� there
is some � in � such that �������B� belongs to �!� 
��/�����0��
"�)%���� � and ��������� ���� ������� � � . (Remark: We define ��� � as a
shorthand for ����� ��� .) We make extensive use of the following basic lemma.
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Lemma 2 For any program % , any traces � , � , and � in �)��� ����
"�)%*� , and any set of traces � in �)� � ����
"�)%*� such that
�	� � , we have �
� � ��� � � ��� � , ��� .

3 Deque Specification

A deque is a program with three methods: pushBottom,popBottom, and popTop. The pushBottommethod
takes a single non-NIL argument and does not return a value. The popBottom and popTop methods both take
zero arguments and return a value. One process is designated as the owner of the deque; the owner invokes the
popBottom and pushBottommethods only. Every other process is a thief; thieves invoke the popTop method
only.

We now give an inductive definition of the set of correct serial behaviors of a deque. In the following, the
variables � and � denote serial behaviors.

1. The empty serial behavior is correct.

2. A serial behavior of the form ��� , where � is a pushBottom invocation, is correct if and only if � is correct.

3. A serial behavior of the form ��� , where � is a popBottom or popTop invocation, is correct if and only if
the return value of � is NIL and � is correct.

4. A serial behavior of the form ����� � , where � is a pushBottom invocation and � is a popBottom invoca-
tion, is correct if and only if the return value of � is equal to the argument of � and ��� is correct.

5. A serial behavior of the form ��� � , where � is a pushBottom invocation and � is a popTop invocation, is
correct if and only if the return value of � is equal to the argument of � and � is correct.

6. A serial behavior of the form ������� � , where � and � are pushBottom invocations and � is a popTop
invocation, is correct if and only if �����	� � is correct.

We now give an inductive definition of the set of correct synchronous behaviors of a deque.

1. Any correct serial behavior is a correct synchronous behavior.

2. A synchronous behavior of the form �# 
��$ � , where � and � are behaviors,  is a popTop prologue, � is a
popTop invocation returning a non-NIL value, and $ is the successor of  , is correct if and only if the return
value associated with $ is NIL and the synchronous behavior ��� � is correct.

4 A Deque Implementation

The deque implementation of [1] is given in Figures 1 and 2. Figure 1 shows the instance variables, and Figure 2
shows the method implementations. All instance variables reside in shared memory. The items are stored in an array
deq that is indexed from 0 and is assumed to be infinite in size. The index of the top item and the index below the
bottom item are stored in the variables top and bot respectively. An additional variable tag is a “uniquifier” and
is required for correct operation. The tag and top variables are implemented as fields of a structure age, and this
structure is assumed to fit within a single shared-memory cell that can be operated on atomically with load, store,
and compare-and-swap instructions. The compare-and-swap instruction is described below.

In addition to the shared memory, the implementation assumes that each process has a private memory (e.g., a
register file). A standard set of atomic machine instructions is assumed to be available for manipulating the contents
of the private memories.

The implementation assumes that the following atomic instructions are available to operate on shared memory:
load, store, and compare-and-swap. The compare-and-swap instruction, cas, operates as follows. It takes three
operands. The first operand is a private-memory cell addr that holds the address of a shared-memory cell. The
second and third operands are private-memory cells, old and new, holding arbitrary values. Let [addr] denote the
shared-memory cell addressed by addr. The instruction cas (addr, old, new) compares the value stored
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deq

 bot

 age

Deque

top
tag

Figure 1: A deque object contains an array deq of items, a variable bot that is the index below the bottom item, and
a variable age that contains two fields: top, the index of the top item, and tag, a “uniquifier” needed to ensure correct
operation. All of these instance variables reside in shared memory. The variable age fits in a single cell of shared memory that
can be operated on with atomic load, store, and compare-and-swap instructions.

void pushBottom (Item item)
1 load localBot � bot
2 store item � deq[localBot]
3 localBot � localBot � 1
4 store localBot � bot

Item popTop()
1 load oldAge � age
2 load localBot � bot
3 if localBot � oldAge.top
4 return NIL
5 load item � deq[oldAge.top]
6 newAge � oldAge
7 newAge.top � newAge.top � 1
8 cas (age, oldAge, newAge)
9 if oldAge � newAge
10 return item
11 return NIL

Item popBottom()
1 load localBot � bot
2 if localBot � 0
3 return NIL
4 localBot � localBot � 1
5 store localBot � bot
6 load item � deq[localBot]
7 load oldAge � age
8 if localBot � oldAge.top
9 return item

10 store 0 � bot
11 newAge.top � 0
12 newAge.tag � oldAge.tag � 1
13 if localBot � oldAge.top
14 cas (age, oldAge, newAge)
15 if oldAge � newAge
16 return item
17 store newAge � age
18 return NIL

Figure 2: The three deque methods. The deque’s instance variables, age, bot, and deq, reside in shared memory; the
remaining variables in this code reside in the process’s private memory. The load, store, and cas instructions operate
atomically. Each return statement is assumed to assign the return value to a private variable returnValue.

in [addr] with the value stored in old, and if they are equal, [addr] is swapped with new. In this case, we say the
cas succeeds. Otherwise, it loads [addr] into new without modifying [addr]. In this case, we say the cas fails.
This whole operation — comparing and then either swapping or loading — is performed atomically with respect to
all other memory operations. We can detect whether the cas fails or succeeds by comparing the value stored in old
with the value stored in new after the cas. If they are equal, then the cas succeeded; otherwise, it failed.

The start states are those states in which bot � age.top �	� and no process has an outstanding deque method
invocation.
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Color Thief Program Counter Levels
�

No outstanding popTop invocation � � ��������
Line 1 of popTop � � ���	�
��
Line 2 of popTop � � � ���
Line 5 of popTop � � � ����
Line 8 of popTop � � � ����
Epilogue of popTop � � � ���

Table 1: Colors corresponding to particular thief program counter values.

5 Proof of Correctness

Let ��� denote the deque of Section 4. The goal of the present section is to prove the correctness of ��� with respect to
the synchronous specification of Section 3. It is straightforward to prove that � � is constant-time and nonblocking.
Thus, by Lemma 1, it remains only to prove that every closed behavior in 5�������� �)�$��
"������� is synchronizable.

The sequence of events corresponding to the execution of any method consists of a prologue followed by a
sequence of bursts followed by an epilogue. The bursts execute the method body. For each method in &'���� ����
"������� ,
there is an action corresponding to each individual instruction of the method body, that is, each burst executes a
single instruction. The fine-grained nature of the actions of � � allows for a large number of possible interleavings
of concurrent method invocations.

Instead of reasoning directly about the deque ��� , we find it convenient to define a sequence of “new” deques
��� , ����������� , each of which is based on the code of Figure 2, but where the granularity of the actions associated
with each successive ��� increases as a function of � . Our proof then proceeds in two stages. In the first stage, we
show that every closed behavior of deque ��� is a closed behavior of ���! #" , �$�%�'&(��� . In the second stage, we
prove the correctness of � "*) . The second stage is straightforward due to the appropriately large-grained atomicity
of � "*) .

For the sake of brevity, we refer to the actions, events, traces and executions associated with ��� as � -actions,
� -events, � -traces, and � -executions, respectively, ���+�,����� . We use the term � -congruent (resp., � -subsumed) as
a shorthand for the phrase “congruent (resp., subsumed) with respect to ��� .”
5.1 Process colors in a � -execution

For any thief � and execution � � �������:� in ���!���
!���-� � , we now inductively define the count of � with respect to � .
If � is the empty trace, then the count of � with respect to � is ./� . Otherwise, � is of the form �� for some trace �
and event  and, letting � 
 (resp., � ) denote the count of � with respect to �������:� (resp., ������� � ), � 
 is determined from
� as follows: if � �0.1� and  is a burst associated with � that executes the load instruction on line 1 of popTop,
then � 
 � � ; if � � � and  writes the shared variable age, then � 
 � �324� ; if  is an epilogue associated with � , then
� 
 �5.1� ; otherwise, � 
 � � .

We now define a set of colors. Table 1 (resp., Table 2) defines a set of colors corresponding to particular thief
(resp., owner) program counter values. Table 3 (resp., Table 4) defines the remaining thief (resp., owner) colors;
note that each of the latter color symbols corresponds (by removal of the subscript) to a unique thief (resp., owner)
program counter value. Furthermore, each of the colors in Tables 3 and 4 has an associated list of assertions. (See
Table 5 for the definitions of these assertions.)

Table 5 defines the state predicates 687 , �9� �:�5��; , and the execution predicates <�� and < " . In general, we say
that a state predicate 6 holds for a process � with respect to a given � -execution � if and only if 6 holds for � in
state � 2 ��6������ ���1� .

Note that the assertions associated with thief colors are the state predicates 6=7 , �>� �1�@? , and the execution
predicate < � . We say that < � ��� � holds for a thief � with respect to a given � -execution � if and only if the count of
� with respect to � is equal to � . For any thief � and � -execution � , we say that � has color A with respect to � if
and only if the program counter of � is consistent with A , and any assertions associated with color A hold for � with
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Color Owner Program Counter Interval
�

No outstanding popBottom or pushBottom invocation � � � ����
Line 1 of popBottom � � � ����
Line 6 of popBottom � � � ����
Line 10 of popBottom � � � ����
Line 13 of popBottom � � � ����
Line 17 of popBottom � � � ����
Epilogue of popBottom � � � ����
Line 1 of pushBottom � � � ����
Line 4 of pushBottom � � � ���	
Epilogue of pushBottom � � � ���

Table 2: Colors corresponding to particular owner program counter values.

Thief Color Assertions Interval
� � 6 � � ��; �������� " 
 6 � � ��; �������� ��� � 6 � , 6 " , <��$� ��� � � ����;��� ��� " 
 6 � , 6 " , < � � ��� � � ����;��� 7 , �� � 6�� , < ����� � ��� �������� 7�� � , �� � 6�� , 6�� , < �$����� � � ������ 7�� " , �� � 6�� , 
 6�� , <�������� � � ����� � 6 " , 6�� , < � � ��� � � ������� 7 , �� � 6�� , < ����� � � � �������� � 6 " , 6��$� ��� , 6 ) , 6�� , < ��� ��� � � ������ 7 , �� � 6�� , < ����� � � � ������ � 6�� � � �������� " 
 6 � � � �������

Table 3: The remaining thief colors. The assertions are defined in Table 5.
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Owner Color Assertions Interval
� ��� � 6��$� ��� , 6 " � , 6 " " � ��� , < " � � �������� � 6��$� ��� , 6 " " � ��� , 6 " � , < " � � �������� 7 , �� � 6 � � ��� , 6 " " ��� � � � �������� ��� � 6��$� ��� , 6 " � , 6 " " � ��� , < " � � �������� � 6��$� ��� , 6 " " � ��� , 6 " � , < " � � �������� 7 , �� � 6���� ��� , 6 " " ��� � � � �������� � 6 � � ��� , 6 " " � .1��� , 6 " � � ��� , < " � � �������� " 6��$� ��� , 6 " " � ��� , 6 " �$� ��� � � ��� � �� 7 , ���� 6��$� ��� , 6 " " ��� . ��� , 6 " � � ��� � � ��� ���� � 6��$� ��� , 6 " " � .1��� , 6 " �$� ��� , 
 6 " � , < " � � � � �� " 6 " , 6 � , 6 � � ��� , 6 " � � ��� , 6 " � � � � ?��� � 6���� ��� , 6��$� ��� , 6 " � , 
 6 " � , 6 " � , < " � � ��� �� " 6 " , 6��$� ��� , 6�� , 6��$� ��� , 6 " � , 6 " � , 6 " � � � � ���� � 6��$� ��� , 6���� ��� , 6 " � , 6 " � , < " � � � ;��� ��� � 
 6 � , 6��$� ��� , 6 " � , 6 " " � ��� , < " � � �������� ��� " 6 � , 6��$� ��� , 6 " � , 6 " " � ��� , < " � � �������� � 6 � , 6��$� ��� , 6 " " � ��� , 6 " � , < " � � �������� 7 , ��	� 6 � , 6��$� ��� , 6 " " ��� � � � �������� � 6�� , 6��$� ��� , 6 " " � ��� , < " � � �������� 7 , �� � 6�� , 6��$� ��� , 6 " " ��� � � � �������� � 6��$� ��� , 6 " " � ��� , 6 " �$� ��� , < " � � � �
�� 7 , �� � 6��$� ��� , 6 " " ��� � , 6 " �$� ��� � � � �
�	 � 6��$� ��� , 6 " " � ��� , 6 " � , < " � � �������	 7 , ��	� 6���� ��� , 6 " " ��� � � � �������

Table 4: The remaining owner colors. The assertions are defined in Table 5.
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Predicate Definition

6 � bot  age.top
6 " age � oldAge
6�� age  oldAge
6 � bot  oldAge.top
6 � deq � age.top���� NIL
6������ � newAge.tag � oldAge.tag 2 �
6 ) newAge.top � oldAge.top 2 �
6 � item �� NIL
6 � returnValue �� NIL
6������ � deq � � ���� NIL, � � age.top ���9& bot 2 �
6 " � bot � �
6 " " ��� � bot � age.top 2 �
6 " � age.top  �
6 " �$��� � localBot � bot 2 �
6 " � localBot � age.top
6 " � newAge.top � �
< ����� � this thief has count �
< " no thief has color

� � , � ��� � ,  � , or
� �

Table 5: List of the predicates appearing in Tables 3 and 4. The predicate ��� should be interpreted as � age.tag �
oldAge.tag �	� age.tag � oldAge.tag 
 age.top � oldAge.top ��� .

respect to � .
The assertions associated with the owner colors are the state predicates 6 " , 6�� , and 6 7 , � � ��� ��; , and the

execution predicate < " . (Remark: It can be shown that, unlike <�� , < " is logically equivalent to a state predicate.
Having introduced the machinery of execution predicates to handle < � , we find it convenient to treat < " as an
execution predicate.) For any � -execution � , we say that the owner has color A with respect to � if and only if the
owner program counter is consistent with A , and any assertions associated with color A hold for the owner with
respect to � .

5.2 A sequence of deques

The goal of this section is to define the set of � -actions associated with deque ��� , � �+� � ��� .
Table 6 defines a number of symbols corresponding to particular code blocks. We now define a set of special

actions and associate a unique identifying symbol with each such special action. The code blocks of the special thief
(resp., owner) actions are defined in the second column of Table 7 (resp., Table 8).

The guard of each special action will be defined momentarily. For the moment we simply point out that the guard
of each special action

�
is at least as strong as the guard of the � -action corresponding to the first instruction in the

code block of
�

. In other words, a special action
�

is enabled for a given process � only if the program counter of �
points to the first instruction of the code block of

�
. It follows that a special action is enabled in a given state only

if a corresponding sequence of � -actions is applicable in that state. Using this observation inductively, we conclude
that every execution involving only special actions corresponds to a unique � -execution. For each � , �,�+� � ��� , we
will define the set of � -actions as some subset of the set of special actions. Thus each � -execution corresponds to a
unique � -execution, and we can extend the color definitions of Section 5.1 to � -executions as follows: The color of
a process � with respect to an � -execution is defined as the color of � in the corresponding � -execution.

Having extended the notion of process color to � -executions, we are now able to define the guard of each special
action. A special action

�
is enabled for a process � with respect to a given � -execution � if and only if the color of

� with respect to � is equal to the color specified in the third column Table 7 (resp., Table 8)
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Symbol Code Block

[ popTop prologue
� Line 1 of popTop

�
Lines 2 to 4 of popTop

� Lines 5 to 7 of popTop
�

Lines 8 to 11 of popTop
] popTop epilogue

�
popBottom prologue

� Lines 1 to 5 of popBottom
�

Lines 6 to 9 of popBottom
� Lines 10 to 12 of popBottom

�
Lines 13 to 16 of popBottom

	 Lines 17 to 18 of popBottom



popBottom epilogue
� pushBottom prologue

� Lines 1 to 3 of pushBottom
�

Line 4 of pushBottom
� pushBottom epilogue

Table 6: List of symbols denoting particular code blocks.

Action Code Block Guard bot age deq Interval

[ [
� � � �������

� � �
R � � �������

� 
 � � � � � � � R R/W R � ��; �������
� 
 " � � � � � " R R � ��; �������

� � �
R � � ��� �

� ��� � � � ��� � R � � �������
� ��� " � � � � ��� " R � � ����;��

� 7�� � , �� � � � 7�� � R � � �����
� 7�� " , �� � � � � � 7�� " R � � �����

� 
 ��� � � � � � ��� � R R/W R � ��� ����;��
� 
 " � � � � " R R R ��� �������

� 
7 , �� � � � � � 7 R R R ��� ���	�
�
� � 

R � � ��� �
� 7 , � � � �  7 R � � �����

� 
 � � �  � R/W R ��� �������
� 
7 , �� � � �  7 R R ��� �������

� � �
R/W � � ��� �

� � � � � R/W � � �����
� 7 , �� � � � 7 R � � �����

] ]
� � � �������

Table 7: The special thief actions.
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Action Code Block Guard bot age deq Interval
� � � � � �������

� � �
R/W � � ��� �

� ��� � � � � � 	 � ��� � R � � �������
� � � � � R/W � � �������
� " � � " R/W � � �������

� 7 , �� � � � 7 R/W � � ��� ���
� 
 � � � � � 	 � � R/W R/W R � ��� �������
� 
 " � � � � 	 � " R/W R/W R � � � �������

� 
7 , �� � � � � � 	 � 7 R/W R R � � � �������
� � �

R R � � ��� �
� � � � � R R � � � � �
� " � � " R R � � � ?��

� 7 , �� � � � � 	 � 7 R R � � ��� ���
� 
 � � � � 	 � � W R R � � �������
� 
 " � � � 	 � " W R/W R � ? ��� � �

� � �
W � � ��� �

� � � � � W � � ��� �
� " � � " W � � � ���
� 
 � � � 	 � � W � � � � �
� 
 " � � 	 � " W R/W � � � ?��

� � �
R/W � � ��� �

� � � � � � � � ;��
� " � 	 � " R/W � � � ���
� 
 � � 	 � � W � ; ��� �

	 	 �
W � � � ;��


 
 � � � �������
� � � � � �������

� � �
R W � � ��� �

� 7 , � � � � � 7 R W � � � �
�
� 
7 , � � � � � � 7 R/W W � � �������

� � �
W � � ��� �

� 7 , � � � � � 7 W � � � �
�
� � 	 � � �������

Table 8: The special owner actions.
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� �
-Outgoing

�
-Incoming

� � � � � � � � � � � � � � � � � � � � see caption
� � � 7 � � 7 ��� �	� � � � 
7 ��� � � �
� � � 7�� � � � 7�� " ���� � � � � 
7 ����	� �
� � � 7 � � 7 ��� � � � � � 
7 ��� � � �
; � � � � 	 � � � 
 � �
� � � " � � " � � � 
 " �
� � � � � � 
 � � � � 
 � �
? � � " � � 
 " � � � 
 " �� � � � � � 
 � � � � 
 � �
� � � � 7 � � 7 ���� � � � � 
7 ������ �
� � � � 
 " � � � 
 " �
��� � � � � � " � � 
 � � � � 
 � �
��� � � ��� � ��� � � 
7 ��� � � � � � 
 ��� � �
�	� � � 
7 ���� � �
��; � � 
 ��� � � � ��� " � � � 
 � � � 
 " �

Table 9: The � -outgoing and � -incoming � -actions, � �������
	 . The set of � -incoming � -actions is too large to fit in the table;
it consists of all special actions for which the associated symbol is subscripted and unprimed.

�
Increment Unemptying Decrement Emptying Reset Aging Steal

� � 7 , � � � � � � 7 , � � � � " � � , � " � 
 � , � � , � " , 	 � 
 � , � �
� � 7 , � � � � � � 7 , � � � � " � � , � " � 
 � , � " , 	 � 
 �
� � 
7 , � 7 , � �	� � 
� , � � � 7 , � � � � " � � , � " � 
 � , � " , 	 � 
 �
; � 
7 , � � � � 
� � 7 , � � � � " � � , � " � 
 � , � 
 � , � " , 	 � 
 �
� � 
7 , � � � � 
� � 7 , � � � � " � � , � " , � 
 " � 
 � , � 
 " , � 
 � , � " � 
 �
� � 
7 , � � � � 
� � 7 , � � � � " � � , � 
 � , � 
 " � 
 � , � 
 � , � 
 " , � 
 � � 
 �
? � 
7 , � � � � 
� � 7 , � � � � " � 
 " , � 
 � , � 
 " � 
 � , � 
 " , � 
 � , � 
 " � 
 �� � 
7 , � � � � 
� � 7 , � � � � " � 
 � , � 
 " , � 
 � � 
 � , � 
 � , � 
 " , � 
 � � 
 �
� � � 
7 , � � � � 
� � � , � " , � 7 , � 
7 , ���� � " � 
 � , � 
 " � 
 � , � 
 � , � 
 " � 
 �
� � � 
7 , � � � � 
� � � , � " , � 
7 , �� � � " , � 
 " � 
 " , � 
 � , � 
 " � 
 � , � 
 " , � 
 � , � 
 " � 
 �
��� � 
7 , � � � � 
� � � , � " , � 
7 , � � � � " , � 
 " � 
 � , � 
 " , � 
 � � 
 � , � 
 � , � 
 " , � 
 � � 
 �
��� � 
7 , � � � � 
� � 
7 , � � � � 
 " � 
 � , � 
 " � 
 ��� � , � 
 � , � 
 � , � 
 " � 
 ��� � , � 
 �
�	� � 
7 , � � � � 
� � 
7 , � � � � 
 " � 
 � , � 
 " � 
 ��� � , � 
 � , � 
 " � 
 ��� �
��; � 
7 , � � � � 
� � 
7 , � � � � 
 " � 
 � , � 
 " � 
 � , � 
 ��� � , � 
 � , � 
 " � 
 � , � 
 ��� �
��� � 
7 , � � � � 
� � 
7 , � � � � 
 " � 
 � , � 
 " � 
 � , � 
 � , � 
 " � 
 �

Table 10: Certain distinguished sets of � -actions, � ��� ���	 .

The bot (resp., age) column of Tables 7 and 8 indicates whether there exists an execution in which the associ-
ated action reads/writes the shared variable bot (resp., age). The deq column of Tables 7 and 8 indicates whether
there exists an execution in which the associated action reads/writes some location of the shared array deq.

Note that Tables 7 and 8 define an interval for each special action. A special action
�

is an � -action if and only
if � belongs to the interval of

�
. An � -action is � -outgoing (resp., � -incoming) if and only if it is not an � � 25��� -

action (resp., � �,. ��� -action). For the sake of convenience, Table 9 lists the � -outgoing and � -incoming � -actions,
� � �,& ��� .

For � � �,� ��� , Table 10 defines the set of increment (resp., decrement, emptying, reset, aging, steal) � -actions.
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Code Block Current Color New Color

[
� �

� � 7 , � � �:� � � ��� 7
� � � � � 7 , � � �:� � � 7

� � 7�� � , � � �  7
� � � � ��� � � �
� � � � 7�� � , � 2 �  � � "

�  7 , � � � � 7
� �  � � �
� �  7 , �� � � "

� � � � �
� � 7 , �� � � "
]

� �

Table 11: This table shows the effect on the color of a thief � of a burst associated with � for which the associated code block
is as specified in the first column. Remark: A thief with color � (resp., � ) either has color ��� or ��� (resp., ��� or �	� ).

5.3 Establishing � -congruence of � -executions

Tables 1, 2, 3, and 4 define an interval for each color. A color A is an � -color if and only if � belongs to the interval
associated with A . It is straightforward to prove that for any � -execution � , each process has at most one � -color with
respect to � . An � -execution � is � -nice if and only if each process has an � -color with respect to � . The assignment
of colors to processes induced by an � -nice � -execution � is called the � -coloring of � . The following lemma is
straightforward to prove.

Lemma 3 Every � -execution is � -nice, � � �,� ��� .

In order to carry out the full details of many of our proofs, such as the proofs of Lemmas 3 and 4, it is useful
to understand the relationship between the � -coloring of an � -execution �������:� and the � -coloring of an “extended”
� -execution �������
 � , where  is an � -event. This relationship is summarized in Tables 11, 12, 13, 14, and 15.

Two � -executions � and � are compatible if and only if the � -coloring of � is equal to the � -coloring of � ,
5	������� �)���3���1� � 5	�������(�0���3��� � , and each of the following has the same value in � 2 ��6 ���-�(���1� as in �:2���6 ����� ��� � : bot,
age, and any private variable or deq array entry that is asserted to be non-NIL by some process (via the assertions
associated with the � -coloring).

We omit the proof of the following lemma, which is a straightforward (albeit lengthy) proof by induction.

Lemma 4 Any pair of � -compatible � -executions are � -congruent, �,� � � ��� .

We will also need to establish � -congruence of certain pairs of � -executions. The following trivial lemma is
sufficient for our purposes.

Lemma 5 Any pair of � -executions � and � such that 5	������� �)���3���1��� 5	��� ���(�0���3��� � and � 2���6 ����� ���1���!� 2��$6 ����� ��� �
are � -congruent.

Lemma 5 is used in the proof of the following lemma. We omit the proof of Lemma 6, which is straightforward.

Lemma 6 Every closed � -trace is � -subsumed by a closed � -trace.

Our main technical lemma follows.

Lemma 7 Every closed � -trace is � -subsumed by a set of closed � � 2 ��� -traces, � � �,& ��� .
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Code Block Current Color New Color
� � ��� � � ��� �
� � 7 , � � � � 7

� � � � 	 � ��� � � ��� �
� � 7 , � � � � 7

� � � � 	 � 7 , ��� �8��� � ��� 7
� � � � 	 � 7 , �� � � 7�� "

� � � � �
� � " � "

� � � 	 � 7 , ��� �:� � � ��� 7
� � � 	 � 7 , �� � � 7�� "

� � 7 , �9� � � � � 7
� � 	 � 7 , �9� � � � � ��� 7

� � � � �
� 	 � 7 , � � � � � � ��� 7

	 � � � ��� �

 � ��� � or

� ��� " � ��� �

 � 7 , �� � � 7
� � ��� � � �
� � 7 , �� � � 7

� � 7 , � � � � 7
� � � 7 , � � � 	 7  #"

� � 7 , � � � 	 7  #"
� 	 7 , � � � � 7

Table 12: This table shows the effect on the color of the owner of a burst for which the associated code block is as specified in
the first column.
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Thief Color Unemptying Emptying Reset Aging
� � � � �
� � � � �
� � � " � � or

� "� " � � � " � "� ��� � � ��� " � " � � or
� " � "� ��� " � ��� � � ��� " � " � " �  �  �  " 7 , �� �  7  7  7  7  #"� � � � � � � "� 7 , ��	� � 7 � 7 � 7 � 7  #"� 7 , � � � � � � 7 � 7 � 7 � 7

Table 13: For � � � � �
	 and
�

an � -color appearing in the first column, this table is useful for determining the effect on
the � -color

�
of a thief � of an � -event � associated with another process. Let � denoted the action associated with � . If � is

not an unemptying, emptying, reset, or aging action, then it has no effect on the � -color of � . If � is an unemptying action, the
effect is shown in the second column. If � is an emptying action and not a reset action, then it is not an aging action and the
effect is shown in the third column. If � is an emptying action and a reset action, then it is also an aging action and the effect
is given by the composition of the third, fourth, and fifth columns (applying emptying first, reset second, and aging third). If

� is a reset action and not an aging action, then it is not an emptying action and the effect is given by the fourth column. If
� is a reset action and an aging action but not an emptying action, then the effect is given by composing the fourth and fifth
columns (applying reset first and aging second). If � is an aging action but not a reset action, then it is not an emptying action
and the effect is given by the fifth column. Blank entries assert that certain situations cannot arise; for example, if some thief
has � -color � � , then an event associated with an unemptying action cannot occur.

Thief Color Increment Decrement Reset Aging
� 7 , �� � � 7 � 7 � 7 � 7  #"� 7�� � , �� � � 7�� � � 7�� � or

� 7�� " � 7�� " � 7  #" � �� 7�� " , �� � � 7�� � or
� 7�� " � 7�� " � 7�� " � 7  #" � "

Table 14: For � � � � �
	 and
�

an � -color appearing in the first column, this table is useful for determining the effect on
the � -color

�
of a thief � of an � -event � associated with another process. Let � denoted the action associated with � . If � is

not an increment, decrement, reset, or aging action, then it has no effect on the � -color of � . If � is an increment action, the
effect is shown in the second column. If � is a decrement action and not a reset action, then it is not an aging action and the
effect is shown in the third column. If � is a decrement action and a reset action, then it is also an aging action and the effect is
given by the composition of the third, fourth, and fifth columns (applying decrement first, reset second, and aging third). If �
is a reset action and not an aging action, then it is not a decrement action and the effect is given by the fourth column. If � is a
reset action and an aging action but not a decrement action, then the effect is given by composing the fourth and fifth columns
(applying reset first and aging second). If � is an aging action but not a reset action, then it is not a decrement action and the
effect is given by the fifth column.
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Owner Color Steal
� ��� �� �� 7 , ��	� � 7 � "� ��� �� �� 7 , �� � � 7 � "� �� 7 , �� � � 7 � "� �� " � �� �� " � �� �� ��� 7 , � � �:� �� ��� "� �� 7 , �� � � 7 � "� �� 7 , �� � � 7�� "� �� 7 , ��	� � 7 � "	 �	 7 , �� � 	 7 � "

Table 15: For � � � � �
	 and
�

an � -color appearing in the first column, this table is useful for determining the effect on the
� -color

�
of the owner of an � -event � associated with a thief. Let � denoted the action associated with � . If � is not a steal

action, then it has no effect on the � -color of the owner. If � is a steal action, the effect is shown in the second column. Blank
entries assert that certain situations cannot arise; for example, if the owner has � -color � ��� � , then � cannot be a steal action.
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Proof: Fix � , �'�5��& ��� , let � denote the set of rewrite rules specified by Tables 16 and 17 for this value of � ,
and let � denote an arbitrary closed � -trace. It is straightforward to prove that a finite sequence of applications of
the rewrite rules in � can be used to obtain a set of closed � -traces � such that � is � -subsumed by � and no action
associated with an event in a trace of � is � -outgoing. The claim then follows immediately, since a (closed) � -trace
containing no � -outgoing actions is also a (closed) � � 2 ��� -trace.

In Lemmas 8 and 9 below, we use the term “synchronizable” to mean “synchronizable with respect to the
synchronous specification of Section 3.” The following lemma is straightforward to prove using the three rewriting
rules in Table 18.

Lemma 8 Every closed behavior in 5	�������(�0���	
"��� "*) � is synchronizable.

Lemmas 6, 7, and 8 together imply the following result.

Lemma 9 Every closed behavior in 5	�������(�0���	
"���-� � is synchronizable.

As observed at the beginning of this section, Lemma 9 implies our main result.

Theorem 10 The deque of Section 4 is correct with respect to the synchronous specification of Section 3.
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�
Rewriting Rule Conditions

� � � � � 7�� � ��� � � � �9���9� � �
� � � � 7���� � � �
� � � � 7 ��� � � �
� � � � ��� � � � � � 7 ��� � � �
� ��� � 7 ��� � � �
� ��� � � � � " �
� � � � � � � " �

� ��� � 7 ��� � � �
� � � � 7���� � � �

� � 7 � 7 � � 
7 � �	�
� 7 � � � � 7 � �	� , 
 ��4$��2"4 � � �
� 7 � � � � 7  #" � �	� , ��4$��2"4 � � �

� � 7�� " � � 
7 ��	�
� 7�� � � 
7 � � 
7 ��	�� � 
7 � � 
7 � ��	� , 
 ��4$��2"4 � � �� � 
7 � � 
7 � " � ���� , ��4$��2"4 � � �

� � 7 � 7 � � 
7 � �	�
� 7������ � 7 � �	� , 
 ��4$��2"4 ���:�
� 7 � 
 � � � 
 � � 7 � " ��	�

; � � 	 � � 
 �� ������� � �
� " � 
 � � � 
 � � �

� � " � " � � 
 "
� " ����� � " 
 �(4$��2"4 ���:�
� " � 
 � � � 
 � � �

� � � � 
 � � � 
 �
� � ����� � � 
 �(4$��2"4 ���:�

? � " � 
 " � � 
 "� " ����� � " 
 �(4$��2"4 ���:�
� " � 
 � � � 
 � � �� � � � 
 � � � 
 �� ������� � �

� � � 7 � 7 � � 
7 ����
� 7������ � 7 ���� , 
 ��4$��2"4 ���:�
� 7 � 
 � � � 
 � � 7 � " ����

Table 16: Rewriting rules used in the proof of Lemma 7. For a given value of � , each rule of the form � ��� (resp., � �
	 )
signifies that the trace � is � -subsumed by the trace � (resp., set of traces 	 ). Each owner action appearing in a trace denotes
a burst associated with the owner. Each thief action appearing in a trace denotes a burst associated with an arbitrary thief.
The action variable � denotes a thief action. Some of the rules involve more than one thief action; in such cases, we rely on
the following conventions to indicate whether two actions are intended to be associated with the same thief, or with different
thieves: (i) the action variable � , when used to denote a thief action, corresponds to a different thief than any other symbol
in the trace, (ii) multiple explicitly specified thief actions appearing in the same rule (including the conditions portion of the
rule) are understood to be associated with the same thief, except that a “hat” superscript denotes a different thief. Finally, the
predicate ������� � � � holds if and only if � is an aging � -action. See Table 10 for a list of aging � -actions.
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�
Rewriting Rule Conditions

� � � " � 
 " � � 
 "
� � 
 " � � 
 " � ���,�� � � � ��� " ��� � � 
7 � � 
7 ���� � �� ��� " � 
 " � � 
 " � 
 "� 
7 � 
 " � � 
 " � 
7  #" ��	�

� 
7 � 
 " � � 
 " � 
7  #" ��	�
� � 
 " � 
 " � � 
 " � � ��� "� � 
7 � � 
7 � ��	� , 
 ��4$��2"4 � � �� � 
7 � � 
7 � " � ���� , ��4$��2"4 � � �

��� � � � 
 � � � 
 �
� " � 
 � � � 
 � � �
� � 
 � � � 
 � � ���,�� � � � ��� " � � 
 � ���	� � 
7 � � 
7 ����	� �� ��� " � 
 � � � 
 � � 
 "
� � 
 � � 
 � � � 
 � � 
 � � � �����

� 
7 � 
 � � � 
 � � 
7  #" ��	�
� 
7 � 
 � � � 
 � � 
7  #" ��	�
� � 
 � � 
 " � � 
 � � � ��� "
���� 
 � � 
 � � 
 � � �� 
 � � 
 � � � ��� "� � 
7 � � 
7 � ��	� , 
 ��4$��2"4 � � �� � 
7 � � 
7 � " � ���� , ��4$��2"4 � � �

��� � ��� � � 
 � � � 
 ��� �� � 
7 � � 
7 � � �	� , 
 ��4$��2"4 � � �� � 
7 � � 
7 � " � ���� , ��4$��2"4 � � �
� ��� � � � � � ��� � 
 ��4 �#2�4 � � �
� ��� � � � 
 " � � � 
 " ��4 �#2"4 � � �

�	� � � 
7 � � 
7 � ��	� , 
 ��4$��2"4 � � �� � 
7 � � 
7 � " � ���� , ��4$��2"4 � � �
��; � � 
 ��� � � � 
 �

� � ��� " � � 
 "
� � � � � 
 ��4 �#2�4 � � �

Table 17: Additional rewriting rules used in the proof of Lemma 7. See the caption of Table 16 for some notational remarks.

Rewriting Rule Conditions
� � � � � 
 ��4$��2"4 � � �� � 
 " � � 
 " � 
 ��4$��2"4 � � �
� � � 
 " � � 
 " � ,�� � 
 � � � 
 " �

Table 18: Rewriting rules used in the proof of Lemma 8. See the caption of Table 16 for some notational remarks.
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