
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

SOCCOM: Automated Synthesis of
System-on-Chip Architectures

Atul Prasad Deb Nath , Member, IEEE, Kshitij Raj, Member, IEEE, Swarup Bhunia , Senior Member, IEEE,

and Sandip Ray , Senior Member, IEEE

Abstract— We present CAD framework and EDA tool,
SOCCOM, for automated synthesis of optimized SoC architec-
tures. We delineate a disciplined and streamlined methodology
to enable automated IP integration and design optimization.
SOCCOM supports generation of a wide variety of optimized
SoCs by: 1) automating the entire process of intellectual property
(IP) standardization and integration; 2) allowing configurable
assembly of complex, scalable systems with application-specific
subsystems; and 3) enabling optimization and evaluation of gen-
erated designs based on area and power constraints. Applications
of SOCCOM include development of heterogeneous, domain-
specific SoCs, rapid register-transfer level (RTL) prototyping of
wide-varieties of SoC benchmarks, and many others.

Index Terms— Benchmarking, intellectual property (IP) stan-
dardization, system-on-chip (SoC) security, SoC synthesis.

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) architectures enable system-
level functionality on a single substrate of integrated

circuit (IC) through the integration and coordination of a set of
pre-designed hardware intellectual property (IP) cores. Modern
SoCs typically incorporate hundreds of IPs that communicate
over a variety of shared-bus and network-on-chip (NoC)
interconnects. Their design requirements vary significantly due
to the diverse nature of applications, e.g., Internet of Things
(IoTs), automotive systems, infrastructure components, and
military equipment. On the other hand, current practice relies
on manual efforts and human expertise for design insights,
optimization, and verification. In addition to being error-
prone, this methodology provides little flexibility in design
space exploration and optimization for specific applications
and target platforms. The difficulty in existing methods of
SoC integration arises from several factors, including soaring
design complexity, lack of configurability at IP and system-
level assembly, and development of SoCs within the tight
boundary of design constraints while meeting aggressive time-
to-market requirements.

In this paper, we take the position that the limitations
of existing approaches of SoC integration can be addressed
significantly by adopting the very principle of SoC design,

Manuscript received July 22, 2021; revised November 17, 2021; accepted
December 18, 2021. (Corresponding author: Atul Prasad Deb Nath.)

The authors are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: atulprasad@ufl.edu; kshitijraj@ufl.edu; swarup@ece.ufl.edu;
sandip@ece.ufl.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2022.3141326.

Digital Object Identifier 10.1109/TVLSI.2022.3141326

e.g., systematic coordination of pre-designed IP blocks that
are standardized and optimized for fast and efficient integra-
tion. We demonstrate that by enabling IP standardization and
representing the design collateral in a structured, disciplined
way, it is possible not only to overcome the major complexities
of current SoC development process but the steps of IP
integration can be automated providing flexibility in design
configuration, parametric optimization, and streamlining of
register-transfer level (RTL) prototyping.

Several tools have been developed over the years for
many-core and multicore system development [1]–[6]. These
frameworks help the users perform micro-architectural design
space exploration and develop processor and memory-based
subsystems. However, the existing development kits fail to
address the SoC integration issues in terms of flexibility in IP
and interconnect fabric selection, parametric optimization, and
generation of application-specific custom SoCs. Consequently,
generating tiled, hierarchical many-core, and multicore
systems with arbitrary topology and application-specific
subsystems is still a challenging process, and it incorporates
several ad hoc and manual steps. System-level simulators
are often employed as an alternative to developing SoCs
from the ground up [7]–[10]. The SoC simulators help the
design evaluation process by eliminating the need for RTL
implementation. However, the software models developed via
existing simulators often fail to mimic the accurate footprint
of actual SoC designs. SoC simulators can be complementary
to the development platforms, but complete reliance on the
software models can lead to inaccurate observations and
flawed conclusions [11]. While existing SoC development
platforms and simulators help study and evaluate various
aspects of the design, these are constrained by several limiting
factors and do not fully address the existing challenges of
SoC integration process.

To address these limitations, we develop a methodology that
streamlines the SoC integration process and enables designers
to generate a wide variety of optimized SoC designs. The
major contributions of our work are as following.

1) CAD Framework and EDA Tool: We develop a novel
SoC integration framework and EDA tool that supports
standardization of IPs and promotes interoperability
across open-source and industry-standard interfaces and
interconnect protocols. It enables automated assembly
and connectivity of complex, configurable systems with
flexibility in developing large-scale SoCs comprised
of application-specific subsystems. The modular frame-
work allows the designers to create single core SoCs

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0050-8379
https://orcid.org/0000-0001-6082-6961
https://orcid.org/0000-0002-8671-5052

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. High-level overview of SOCCOM usage model: SOCCOM is
provided with design specifications and it generates synthesizable Ver-
ilog/SystemVerilog RTL of SoCs. The RTL-based SoC designs can be
simulated, synthesized, and optimized for critical design parameters, i.e., area
and power.

and subsystems from the ground up and gradually build
tiled multicore and many-core systems. Our tool works
in tandem with the existing commercial design flow and
is compatible with off-the-shelf EDA tools.

2) Optimized Design Composition: Our work enables
design space exploration and parametric optimization in
terms of area and power constraints. The tool exhaus-
tively generates SoC variants based on designer spec-
ifications and delivers area and power optimized SoC
designs. The streamlined methodology of fast RTL
prototyping facilitates rapid design evaluation and opti-
mization for targeted applications such as the IoT and
automotive systems.

3) SoC Benchmark Generation: An upshot of exploiting
our framework for SoC synthesis is that the designer
can generate a large number of SoC benchmarks with
minimal effort. Our tool is capable of generating a wide
class of flexible, highly configurable SoC benchmarks,
including hierarchical shared-bus based SoCs and sub-
systems, and tiled many-core and multicore complex
SoCs with NoC interconnect fabric. It also incorporates
an easily extendable, open-source IP library that contains
the major building blocks of present-day commercial
SoCs.

The remainder of the article is organized as follows.
Section II provides a comparative overview with existing
literature. Section III illustrates the usage model from the
SoC designer’s standpoint. Section IV describes the modular
building blocks of SOCCOM tool from the developer’s per-
spective. Examples of SOCCOM generated illustrative SoCs
are presented in Section V. Section VI shows how optimized
SoC designs can be generated via SOCCOM. The usage of
SOCCOM in standardized benchmark generation is described
in Section VII. Section VIII illustrates the use cases of the
tool in SoC security and validation. We discuss the application
space of our work in Section IX. We conclude the article in
Section X.

II. RELATED WORK

The current approaches of SoC architecture research and
development can be broadly classified into two categories.

The first category consists of open-source SoC platforms
and design kits that help to develop RTL-based designs.
The second category relies on system level simulators to
develop abstract SoC models via software modeling. In this
section, we provide an overview of existing literature in each
categories.

A. Frameworks for SoC Development and Architectural
Design Space Exploration

In recent years, there has been significant work on
various open-source multicore and many-core systems,
processor-based subsystems, and design space exploration
platforms [1]–[6]. Parulkar et al. [1] introduced OpenSPARC,
a pioneering open-source hardware development initiative that
focused on building open-source microprocessors. 32- and
64-bit SPARC processors are developed in this project with
simulation tools and verification suites. These designs are
optimized for field-programmable gate array (FPGA) syn-
thesis. While OpenSPARC developed openly available multi-
threaded multicore designs, the scope of the project is limited
to micro-processor architectures with specific designs such
as multilevel caches and crossbars. Fatollahi-Fard et al. [2]
developed OpenSoC Fabric, a parameterizable NoC tool that
enables the generation of connected networks containing
processors and memory modules. The tool generates software
models of C++ and Verilog hardware models by leveraging
Chisel HDL. This work is constrained by generated Verilog
models that are only suitable for synthesis. Such Verilog
models are not human readable and not amenable to changes
by SoC designer. Also, the framework only supports AXI-Lite
bus standard for ARM and ARM compatible devices and
the NoC generated by the tool supports a limited set of
topology; thus, it limits the designer’s flexibility in devel-
oping heterogeneous SoC designs with diverse architectures
and interconnect fabric. Kinsey et al. [5] developed Heracles,
a functional and parameterizable multicore system tool kit
developed for RTL-based design space exploration. It allows
flexibility to the designer in terms of processor core parameter-
ization, memory organization, and network topology selection.
The application of the Heracles toolkit, however, is con-
fined to MIPs ISA-based subsystem exploration. The work of
Kinsey et al. [5] is further extended to RISC-V- based ISA by
Bandara et al. [4] to generate similar configurable processor-
based subsystems. Asanovic et al. [6] presented Rocket chip
generator that generates synthesizable RTL by compiling SoC
designs written in Chisel HDL. Rocket chip includes a library
of generators for cores, caches, and interconnects. However,
it is quite difficult for SoC designers to analyze and make
changes to the generated Verilog because of poor readability;
thus, Rocket chip offers very limited design flexibility. It is
possible to extend the Rocket chip generated SoCs with
custom accelerators through instruction set extension or as co-
processors. However, it suffers from the limitations of complex
IP integration and interface standardization. The scope of the
chip generator is also limited by its lack of configurability
in interconnect topology. It uses generated ON-chip networks
for computing tiles and allows extension of the design with
peripheral through shared-bus crossbar. Wallentowitz et al. [3]

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 3

TABLE I

COMPARATIVE OVERVIEW OF SOCCOM WITH EXISTING SOC AND CONFIGURABLE PROCESSOR DESIGN FRAMEWORKS

developed a library-based tool to generate tiled platforms,
named, open tiled many-core system-on-chips (OpTiMSoC).
The tool allows tile layouts with shared and distributed
memory systems. The generated tiles are connected through
ON-chip interconnect fabric. The ON-chip network supports
only a set of specific topology including mesh and ring.
The limitations of many-core, multithreaded designs have
been addressed by Xiao et al. [12] by introducing a novel
methodology that employs complex network theory of social
communities. It models the dynamic execution of applications
and partitions the applications to an optimal number of clusters
for parallel execution. The high scalability of the approach
makes it a promising modality for enabling automation in
software designs. A novel approach of brain-inspired plasticity
is introduced in [13] that exploits the fractal traits of high level
programs (HLPs). The work presents plasticity-on-chip (PoC)
by enabling plasticity into artificial brains through distributed
reinforcement learning. The exploitation of similarity in the
data communicated between processing elements and NoCs
shows a significant performance improvement of 7×.

A major limitation in existing SoC design and evaluation
platforms is the lack of flexibility in terms of IP and intercon-
nect selection, system-level configuration and topology forma-
tion, and more importantly, design optimization. We address
the limitations of current approaches by developing a compre-
hensive framework that offers adequate flexibility to the user
in the aforementioned design aspects and enables automated
synthesis of a wide variety of benchmarks including SoC
models capable of scaling to complexity of tasks and realizing
system functionalities efficiently. Table I provides a compar-
ative overview of our work with existing design frameworks
available in the literature. The comparison is performed based
on the salient features of these frameworks such as core
support, compatible fabric, i.e., bus and ON-chip network,
open-source/3PIP compatibility, employed HDL, and finally
the ability to generate area and power-optimized designs
with potential to integrate security features. OpenSparc is
one of the pioneers in open-source hardware development
that supported shared-bus and UltraSPARC processor core
written in Verilog. OpenSoC focused on ON-chip fabric-
based many-core designs with ARM cores generated from
Chisel. Comparatively newer suites of platform develop-
ment such as RocketChip, Heracles, and BRISC-V deliver
RISC-V-based designs with shared-bus and ON-chip network
support. RocketChip delivers Verilog-based designs generated
from Chisel whereas Heracles and BRISC-V adopts Ver-
ilog for RTL designs. OptimSoC generates OpenRISC-1000

processor-based SoCs with bus and NoC fabric and all designs
are developed in Verilog. In comparison to existing literature,
SOCCOM provides enhanced flexibility to the SoC designers
by delivering a diverse, extended IP library of Verilog and
SystemVerilog-based RISC-V cores, memory modules, I/O
peripherals, and a broad spectrum of hardware accelerators
for application-specific SoC designs. As it does not employ
Chisel-generated HDL, the generated RTL designs are highly
customizable in nature. SOCCOM further overcomes the lim-
itations of contemporary works by enabling selection of area
and power-optimized IPs as per design needs and augmenta-
tion of generated SoCs with a diverse set of security features
with the ease of plug-n-play-based standardized security IP
and wrapper support.

B. System-Level Simulation Platforms

System-level simulators have become a promising modality
for architecture research and product development since they
eliminate the need of developing RTL designs. The complexity
of IP integration and SoC architecture development usually
leads researchers to adopt simulators for rapid design evalua-
tion and feasibility analysis of their work.

Binkert et al. [7] introduced gem5, an architectural mod-
eling tool that offers the flexibility of simulating different
CPU models, memory systems, and system modes. The salient
features of gem5 include homogeneous and heterogeneous
cores, interchangeable CPU models, multiple ISA support,
and event-driven memory systems. It provides workload sim-
ulation and performance analysis with full system support
for several architectures including ARM, RISC-V, and x86.
Agarwal et al. [8] augmented gem5 with an NoC simula-
tor, namely GARNET, that aids the designers to develop a
detailed NoC model inside gem5’s full system simulator. It is
a cycle accurate simulator that allows the users of gem5
to leverage and customize the micro-architecture of routers
and system-level topology. Hence, the users can conduct
the performance evaluation of their designs by generating
various traffic scenarios of ON-chip interconnect. Li et al. [9]
developed McPAT, a simulator for modeling timing, power,
and area of multicore and many-core processors. The simulator
supports modeling of multiprocessors, NoCs, and integrated
memory controllers at micro-architectural abstraction level.
It also supports circuit-level modeling including critical-path
timing, area, and leakage power modeling. McPAT is fur-
ther extended as GPGPU-Sim by Bakhoda et al. [14] for
system-level modeling of GPUs. Leng et al. [10] introduced
a simulator named GPUWatch to develop GPU power models

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

through cycle-level calculations that are compatible with the
GPGPU-Sim developed by [14].

Existing simulators provide a varied range of modeling
options to evaluate and validate architectures on different
levels of abstractions. From the early days of SimpleScalar
to modern state-of-the-art simulators such as gem5, the sim-
ulators have become more sophisticated and detailed as they
provide cycle accurate performance estimates. However, the
problem with ubiquitous application of the simulators is that
these are often over-fit for validation, i.e., the parameters
of the simulators are only optimized for a small set of
benchmarks and configuration parameters. Such over-fitting
leads to generalization of different architectures and causes
several pitfalls.

The abstraction used by most of the simulators is usually at a
very higher level as these act as first-order models. Despite the
abstract modeling, the simulators are often labeled as detailed
simulation platforms. The decisions of modeling some parts
of architecture in detail and abstracting out the rest are made
at the sole discretion of designers. Such ad hoc nature of
the development process often limits the functional efficacy
of the platform as these can neither deliver accurate, detailed
results, or efficient abstraction of unnecessary details. On the
other hand, the simulators are often treated as black boxes
by the users and hence, the possibility of bugs being present
in the platforms is overlooked. Consequently, the validation
results obtained from the simulators provide a false sense of
confidence on the designs. Lack of understanding about the
underlying mechanism of validation techniques employed by
the simulator can lead the users to wrongfully assume that
change of parameter at some other design point will help to
keep the accuracy similar. However, most simulators work by
fitting design parameters to specific validation targets while
disregarding the accuracy of the modeling for an individual
architectural phenomena or interaction among system compo-
nents. It is of utmost importance to choose the right platform
for architectural evaluation based on the footprints of the
designs rather than relying on simulators to perform quantita-
tive observations. Generalized approaches of evaluation based
on common practice can lead to erroneous and false validation
results. We believe our framework is complementary to the
existing simulators and it can be utilized alongside simulators
to obtain accurate results through design space exploration and
evaluation of diverse architectural schemes.

III. SOCCOM USAGE MODEL

An overview of SOCCOM usage model is shown in
Fig. 1. It depicts the high-level usage of the tool from an
SoC designer’s perspective while disregarding the intricacies
of implementation. SOCCOM enables design configurabil-
ity at varying granularity of abstraction levels, including
system-level assembly and connectivity to IP-level micro-
architecture. The tool is built with modular components to
facilitate configurable IP integration. The primary compo-
nents of the workflow include user-defined design specifica-
tions, SOCCOM IP library, and area and power constraints
as optional optimization parameters. The automated design
process starts with the procurement of design specifications in

the form of standardized files for storing simple data structures
and objects such as JSON files. These files define the SoC
architecture in terms of SoC components and topology. The
global (system-level) and local (IP-level) parameters of the
SoC platform, including the area and power constraints, are
also described in these files.

SOCCOM analyzes the design specification files (JSON)
to generate a graphical representation of the overall system
topology. Each entity, e.g., an IP or a router is considered
a node in the system graph, and the connection among the
nodes is portrayed as the edges, e.g., the links of the NoC
fabric. Note that the very notion of organizing these building
blocks of SoC design in a well-defined, structured way, such as
the nodal graph, makes it feasible to streamline the SoC inte-
gration process and automate the entire flow. The optimized
design generation features of SOCCOM allow the designers
to develop SoCs with optimally chosen IP blocks from the
standard library, based on the pre-specified design constraints.
The tool exhaustively generates all possible designs, and
reports area and power-optimized designs with a standardized
metric.

The end products of SOCCOM are automatically gener-
ated SoC models in the form of synthesizable Verilog and
SystemVerilog RTL designs. SOCCOM also generates corre-
sponding configuration files based on the user description of
respective modules, e.g., memory-mapped hardware accelera-
tors, peripherals, and I/Os, accordingly. Functional validation
of the generated RTL-based SoC designs is performed with
commercial off-the-shelf and open-source simulation tools.
Furthermore, the RTL designs are synthesized via existing
tools to develop FPGA and ASIC-oriented SoC prototypes.

IV. SOCCOM PLATFORM

In this section, we delineate SOCCOM from a developer’s
perspective and provide a detailed discussion on the major
building blocks of the SOCCOM platform including the
algorithms used for architecture composition. The workflow
of the tool is shown in Fig. 2. At first, the compatibility
and availability of the IPs are checked based on design
specifications. For instance, all IP must be compatible to
Wishbone interface for further enhancement to AXI or ON-
chip network protocol. Then, SOCCOM proceeds with the
selected interconnect type, i.e., bus or NoC, to standardize
the interface of IPs. In shared-bus-based designs, the IPs are
connected to target cross-bars (e.g., AXI4 and Wishbone) to
form the single-bus SoC or a subsystem that connects to the
primary bus on a multibus SoC. In NoC-based designs, the
IPs are connected to network adapters to form tiles. Compute
tiles are generated with processors whereas peripheral tiles
are generated with peripherals and hardware accelerators, and
system tiles are generated with multiple IPs connected through
a shared bus which act as a separate subsystem. All different
tiles are connected to routers in accordance with the design
topology to develop the NoC-based design. The generated
designs are evaluated for the area and power overhead by
invoking the off-the-shelf design tool and an optimized design
report is generated that ranks the SoCs in a standardized
scoring format.

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 5

Fig. 2. SOCCOM work flow. Based on the design specifications and architecture definitions provided via JSON script, the tool generates SoCs with bus and
NoC interconnects including single and hierarchical bus-based SoCs and NoC-based systems with diverse subsystems. The generated designs are analyzed
and optimized for area and power overhead with the help of off-the-shelf design tools.

A. HDL Analyzer

IP standardization is a critical step in SoC integration. This
step facilitates the design process by ensuring that all IPs
and interconnect components are integration-ready. The HDL
analyzer module of SOCCOM is developed to standardize and
formalize the IPs for streamlined connectivity. In particular,
it enables a systematic approach to extract and aggregate IP
integration criteria as design metadata. Extraction of metadata
from each component of the design is a key step in enabling
IP interoperability across various interconnect protocols.

At first, the HDL analyzer procures the SoC components,
essentially the IPs and interconnect fabric components, from
SOCCOM IP library, based on the architecture definition pro-
vided in the data store/exchange (JSON) file. Then, it employs
various pre-defined functions on the retrieved IP blocks
to obtain corresponding metadata. The extracted metadata
include port definitions, i.e., functional inputs and outputs,
port types and width, clocks and resets, interrupt signals, local
and global parameters (specific to SystemVerilog designs), and
headers such as define, import, and include of each IP, network
adapter, router, and shared-bus crossbar. SOCCOM supports
the integration of memory modules to SoC designs as dedi-
cated instruction and data memory. The configuration of the
memory modules can be specified as parameters, i.e., memory
size, single port, and dual port through the JSON file used for
architecture definition. Cache hierarchy via user specifications
is not supported in the current implementation of the tool.
The metadata is utilized to generate a compatible interface
for each IP with respect to the components of interconnect
fabric (e.g., network adapters and routers) and shared-buses
(e.g., crossbars). The algorithm employed by HDL analyzer
is illustrated in Algorithm 1. It adopts regular expressions to
analyze the IP source files and extracts the required infor-
mation (port definitions, IO, port types and widths, clock,
resets, etc.) for integration. It uses Python built-in libraries and
regular expression patterns to extract the targeted metadata by
performing pattern matching to match and store the extracted
data from the source files. These matched patterns are then

sorted and stored in a centralized local database based on their
type identification like type of IO, clock, reset, etc. Several
pre-defined classes and methods are used to post-process the
matched patterns.

Fig. 3 shows a simplistic version of JSON configuration
file with only two routers, a RISC-V core, and an AES slave
IP. R_0 is the configuration of Router 0, with its neighbor
being Router 1, and Endpoint 0, i.e., the RISC-V Core. The
field IP_type shows the class of IP followed by its mode
of operation, i.e., slave or master. The neighboring IPs are
listed in the corresponding tuple along with the fabric type
and additional configurations specific to particular IPs. For
instance, the configuration “RV32I” for the processor core
represents that it supports the basic integer RISC-V ISA
whereas the “128b” configuration of the AES core means that
it supports 128 bits of encryption mode. It also shows the
base address and offset of memory-mapped slaves as shown
in Fig. 3 for the AES core.

B. Hierarchical SoC Generator

The SoC generator module helps generate SoC designs with
shared-bus architectures. These designs can be shared-bus-
based SoCs or modular subsystems for complex, multicore,
and many-core systems. It currently supports the generation
of single and hierarchical multibus SoCs with Wishbone B3
and AMBA AXI4 bus standards. The SoC generation process
starts with processing the metadata obtained by HDL analyzer.
The generator procures the IP metadata from the HDL analyzer
and utilizes the information to generate compatible interfaces
and connectivity for all the masters and slaves connected to
the crossbar. It employs design parameters such as address
bus width, data bus width, memory size allocation, memory-
mapped I/O, and peripheral address size and ranges, etc.
to generate the top-level RTL of the SoC that instantiates the
IPs with corresponding wire and register declarations.

Multibus SoCs: The SoC generator module supports the
generation of SoCs with hierarchical multibus interconnects.
It enables augmentation of Wishbone-based subsystems with

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm 1 HDL Analyzer

AXI4 compatible bus bridge. The standard bus-bridge estab-
lishes inter-bus, i.e., AXI4 to Wishbone, communication.
Hence, the Wishbone-based subsystems can be connected as
additional slaves to the main AXI4 bus of the SoC. The multi-
bus structure introduces flexibility in integrating open-source
Wishbone bus compatible IPs and subsystems to the industry
standard AXI4 bus and thus, enhances interoperability in
hierarchical designs. Moreover, the hierarchical bus architec-
ture enables the designers to create modular subsystems and
reuse them based on application requirements.

C. Many-Core System Generator

The system generator module of the framework is designed
to generate many-core SoCs with NoC fabric. The scalable
architecture of many-core SoCs facilitates the integration of
hundreds of IPs to build large-scale, complex SoC designs.
The system generator enables the generation of NoC-based
SoCs with processors, peripherals, and system tiles. The
processor and peripheral tiles are augmented versions of the
cores and hardware accelerators with bus wrappers, respec-
tively, which are integrated with network adapters for NoC
compatibility. The system tiles incorporate multiple IPs con-
nected via an internal shared-bus for local communication.
The system generator supports the development of SoCs with
application-specific subsystems in which several functional IPs
(e.g., processors, memory IPs, accelerators, etc.) are clustered
together and connected to the ON-chip fabric through dedicated
routers. The module analyzes the design specification file
provided by the user and utilizes HDL analyzer and SoC

Fig. 3. Sample snippet of JSON configuration file with two routers, a RISC-V
Core, and an AES crypto core in a NoC-based SoC architecture.

generator modules to generate many-core NoC-based SoCs.
The workflow of the system generator incorporates several key
steps, including network adapter integration, tile generation,
router topology formation, configuration file creation, and
top-level system RTL generation.

Once the design specifications are provided to the system
generator, it invokes the HDL analyzer to analyze the IPs,
and builds processor and peripheral tiles, and the system tiles
with the help of SoC generator module of the SOCCOM.
The generated tiles incorporate the network adapters for router
connectivity. The system generator then assembles the routers
(and connected tiles) in the pre-specified topology and creates
the top-level RTL module. Since the framework is designed
to represent the router connectivity as a nodal graph with
endpoints, it is amenable to any arbitrary topology formation.
The top-level RTL contains all required parameters, headers,
packages, and configurations for system funtionality. Addi-
tional system configuration files are generated for the user to
configure the peripheral mapping. The algorithm employed by
system generator is shown in Algorithm 2.

V. SOCCOM GENERATED REPRESENTATIVE SOC MODELS

In this section, we describe various kinds of SoC models
generated by SOCCOM. By SoC models, we refer to the
various SoC designs generated by SOCCOM. The models
are architected with many substantial SoC components and

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 7

Fig. 4. Illustrative SoC with single shared-bus architecture. The SoC can
incorporate an AXI4 or Wishbone bus.

reflects relevant features and complexities of shared-bus and
NoC-based industrial SoC designs, including standard hard-
ware accelerators, hierarchical bus designs, tree topology in
ON-chip network, a mix of high-speed and low-speed IPs,
and large-scale many-core system with application-specific
subsystems. SOCCOM generated representative SoC models
are available in [15].

A. SoCs With Shared-Bus Interconnect

The users can generate single shared-bus-based SoCs via
SOCCOM. The shared-bus SoC can incorporate any IP from
the SOCCOM library including processor cores, memory IPs,
crypto and DSP accelerators, and IPs for external connectivity.
The baseline requirement for IP integration is Wishbone bus
compatibility. SOCCOM extends Wishbone compatible IPs
with standardized bus wrappers for connectivity to AXI4-
based SoCs Fig. 4 shows an example SoC with Wishbone
/AXI4 interconnect with a diverse set of functional IPs.
Multibus SoCs can be generated in SOCCOM by integrating
Wishbone-based subsystems to AXI4 interconnect. Fig. 5
shows a multibus SoC model with hierarchical subsystems
connected to the primary bus. Three Wishbone-based subsys-
tems of crypto, DSP, and connectivity IPs are connected to the
SoC bus via standardized bridges.

B. SoCs With Network-on-Chip Interconnect

Here, we describe two specific NoC-based SoC models
generated via SOCCOM.

1) ClusterSoC: The ClusterSoC design consists of the
processor and peripheral tiles generated by SOCCOM. The
processor tiles incorporate a register-based L1 cache as a rep-
resentation of distributed memory architecture. The memory
tiles work as the system memory modules. ClusterSoC
includes a 32-bit, size-optimized RISC-V CPU, single and
dual port SRAMs integrated as memory modules. Three crypto
modules, i.e., AES-128, DES3, and SHA-256 are included
for generic cryptographic operations. It also features three
high-performance DSP blocks, including FFT, IDFT, and FIR.
An SPI controller and a UART module are integrated for
external communication. The IPs are segregated into two
clusters, inspired by the topology realistic industrial SoC
designs for mobile and IoT devices. The North cluster includes
the high-speed IPs (e.g., CPU and DSP accelerators) and
the South cluster incorporates crypto engines and external
communication IPs.

Algorithm 2 Manycore System Generator

Fig. 5. Multibus SoC: this SoC model has an AXI4 interconnect as the
primary bus and three Wishbone buses as subsystem interconnect.

2) AutoSoC: The AutoSoC model is inspired by commer-
cial NoC-based automotive SoCs with separate application-
specific subsystems. As with realistic implementations, it has
a much larger number of IPs. The IPs are organized into
a number of subsystems. The SoC incorporates four 32-bit
RISC-V cores with variations in instruction set support. These
cores are size-optimized implementations of RISC-V proces-
sors. The crypto subsystem is augmented with RSA and MD5,
DSP subsystem with DFT and IIR, the memory subsystem
with DMA controller, and the connectivity subsystem with an
Ethernet controller and a toy GPS IP.

Both SoC models incorporate a modular and configurable
open-source network-on-chip, named LiSNoC, as the inter-
connect fabric [3]. It supports wormhole-based flow control.
The basic routing algorithm is dimension-ordered, deadlock-
free XY-routing. The number of input ports, output ports, and
allocation of virtual channels (VCs) to input–output ports are
parameterizable. The flit transfer occurs through a handshaking
protocol implemented with the ready and valid signals of each
VC. The associated network adapters feature DMA engines
and message passing functionalities. The IPs are wishbone-bus

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6. ClusterSoC: representative IoT SoC model.

compatible. The network adapter facilitates their compatibility
with NoC protocol.

C. Design Verification

All IPs in SOCCOM library are obtained from various open-
source repositories. These designs are written in Verilog and
SystemVerilog RTL. The functional testing of individual IP
is performed at the unit-level and bus interface. The RTL
simulation of the SoC models along with unit and bus level
testing of individual IPs are performed in Xilinx Vivado
simulator and Verilator. In particular, the bus-level simulation
of standalone IPs is performed in Verilator by augmenting
the RTL testbenches with C++ wrappers. The routers and
network adapter IP are tested with random traffic simulated via
RTL testbench. The system-level simulation of SoC models is
performed with basic RISC-V firmware and RTL testbenches.
The tests include RISC-V ISA compliance test, register access
test, and system memory read/write operations. In addition,
the control and status register (CSR) read/write tests on the
peripherals of the SoC models are performed via RISC-V
firmware. The simulation time taken for functional verification
and testing varied in the order of microseconds (RTL test-
bench) to several minutes (bare-metal test firmware). The users
can develop elaborate test cases for the generated SoCs by
writing bare-metal RISC-V firmware and RTL testbench and
perform use case-specific simulations. Note that the simulation
time for elaborate test cases will vary in accordance to targeted
test coverage and constraints of RTL simulation or/and FPGA
emulation. In addition to functional verification, the use cases
will enable the designers to perform SoC level timing and
power analysis for targeted use cases. The maximum clock
frequency of the SoC can be set through the JSON scripts.
However, the critical path delay varies from design to design
and SOCCOM currently does not support user-specified critical
path delays. The SoC models described in this section are
synthesized for FPGA mapping via Xilinx Vivado Design
Suites. The resource utilization report for the hierarchical
multibus SoC, ClusterSoC, and AutoSoC on Xilinx Zynq
UltraScale + MPSoCs FPGA is reported in Table II.

Fig. 7. AutoSoC: representative automotive SoC model with application-
specific subsystems.

TABLE II

AREA AND POWER OVERHEAD ESTIMATION OF VARIOUS SOC MODELS

The area and power overheads of multibus SoC are signifi-
cantly lower compared to that of ClusterSoC and AutoSoC due
to the number and scale of IPs integrated into these designs.
ClusterSoC and AutoSoC are NoC-based architectures and
have a multitude of IPs, whereas multibus SoCs are bus-
based designs, with a comparatively conservative number of
IPs. In particular, the significant difference in area and power
come from the number of additional subsystems in ClusterSoC
and AutoSoC. Between Cluster and AutoSoC, the former
has a relatively smaller design with cluster-based topology
inspired by realistic industrial SoC designs for mobile and IoT
devices. On the other hand, the AutoSoC model is inspired
by commercial NoC-based automotive SoCs with separate
application-specific subsystems. Due to the larger scale of
IPs and an overall increase in the number of subsystems, the
area and power overhead of AutoSoC is relatively higher. The
overhead results of SOCCOM SoC models presented here are
not optimized for area and power constraints. We discuss opti-
mized design generation feature of SOCCOM in Section VI.

We generate a wide variety of SoCs via SOCCOM. The
SoCs vary from smaller single bus-based designs to complex
NoC-based designs with compute tiles, peripheral tiles, and
system tiles which in turn contain several IPs with shared
buses. We presented experimental results on the area and
power overhead as well as optimization scores of repre-
sentative SoC models in terms of the overhead. However,
we found that an apples-to-apples overhead comparison of
SOCCOM generated SoCs to designs available in the literature
is not feasible due to their stark differences in architectural
definitions and design components. Though there are CPU-
based subsystem [4]–[6] and mesh topology-based scalable

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 9

SoCs [3] available in the literature, we could not find compa-
rable designs of multibus SoC, ClusterSoC, and AutoSoC for
overhead comparison.

VI. OPTIMIZED DESIGN COMPOSITION

Multiobjective design optimization is crucial for the efficient
deployment of SoC designs in various domains. Design over-
head analysis via current frameworks requires manual develop-
ment of individual RTL model or exhaustive analysis of each
model via simulator. This problem can be partly alleviated
by enabling the tradeoff analysis between multiple design
objectives in terms of critical parameters (e.g., area and power)
through a streamlined design flow. Such an approach will
significantly eliminate the manual steps involved in the SoC
development and evaluation process, and deliver improved
efficiency in multiobjective design optimization. We address
the limitation of multiobjective design optimization in SoC
platforms by enabling SOCCOM as an EDA tool for auto-
mated, optimized design composition.

Optimization With SOCCOM: SOCCOM supports automatic
generation of designs optimized against multiple objectives.
In particular, it generates a comprehensive set of SoC models
based on user-provided design specifications and reports the
most area and power-optimized designs along with other
variants within the boundary of design constraints. SOCCOM

algorithm exhaustively generates all possible combinations
of designer-specified SoCs with varying IP and system-level
parameters, IP variants, interconnects, and streamlines the area
and power estimation of individual designs with the existing
commercial design tool.1 Consequently, it reports SoC variants
within the boundary conditions set by the designer and delivers
a wide variety of SoC designs across the range of pre-specified
constraints. It uses a standardized area and power metric to
help the user quantify implementation overhead in terms of
target platform resources. SOCCOM uses a metric ranging over
1 – 10 to denote the area and power score from low to high.
The higher scores of area and power basically represent the
low area and power values of the design compared to other
variants with the high area and power overhead.

SOCCOM reports SoC variants that are configured with IP
specific, i.e., local and system level, i.e., global parameters
to meet the area and power preferences of the designer.
An example of local parameterization is configuring the
RISC-V processor to support-specific instruction set archi-
tectures (ISAs). SOCCOM facilitates the implementation of
different RISC-V ISA including integer (RV32I), compressed
(RV32IC), multiply and divide (RV32IM), and extended ISA
(RV32E). The modular framework allows the user to configure
the RISC-V cores to support optional ISAs in tandem with
the mandatory integer ISA implementation. Note that this

1Obviously, the set of SoC variants generated would be exponential in
the number of configurable parameters. However, in practice, we found
that in the context of optimization of power and area on the SoCs we
experimented, the set of design constraints keeps the number of variants
manageable. Furthermore, as our experiments show, each synthesis run is
efficient. Consequently, we can “get away” with an exhaustive enumeration
of variants as reported here. However, in future work, we plan to integrate
more tunable parameters which can result in the explosion of the number of
variants and consequently, heuristics to effectively explore the variant space.

custom ISA extension is supported by the RISC-V cores
available in the IP library. The user specifies the desired ISA
extension through the JSON script as a design parameter to
configure it in the core. Similarly, based on user-provided
metric, SOCCOM presents SoC variants optimized in terms of
global parameters such as enabling/disabling direct memory
access of IPs, NoC VCs, and message passing via network
adapters, optimized sizes of distributed local and shared global
memory, etc.

The SOCCOM tool works in tandem with Xilinx Vivado
design suite to streamline the SoC generation and subsequent
design synthesis process. In particular, we extend the frame-
work to invoke the Vivado design suite upon generation of
SoC variants and initiate the synthesis process. Once Vivado
delivers the synthesis report, the tool parses the results and
ranks the designs accordingly (as shown in Table III). Note
that pre-synthesized results of all IPs are stored in the IP
library to reduce the computational overhead and perform
sanity check on the initial overhead constraints provided by
the user. For instance, if the user selected IPs and desired
area and power overhead numbers are less than the minimum
estimated values of the SoC then the tool informs the user to
increase area and power overhead values. The synthesis report
of Vivado design suite shows static and dynamic power, and
FPGA resource utilization in terms of LUTs, registers, and
MUXs. The synthesis report generated by the Vivado design
suite is highly comparable to actual physical mapping as it
provides the closest estimation of power consumption and
resource utilization on target FPGA.

We demonstrate the generation of optimized SoC com-
positions with multiobjective design goals in SOCCOM via
ClusterSoC, as a proof-of-concept implementation. SOCCOM

design space consists of a large number of processor cores,
memory modules, routers, network interfaces, shared bus
crossbars, I/O peripherals, and hardware accelerators. All these
types of IPs come with varying specifications. Among all IPs,
we chose 5 IPs of ClusterSoC and exhaustively generated
SoC variants by employing all variations of these selected
IPs. We kept the number of IPs decent (five in this case) to
reduce computational complexity of exhaustively synthesizing
every possible combination of SoC designs with variants of
each IP component. The IP variants include five variants of
RISC-V cores including basic integer (I), extended (E), and
multiply and divide (M) ISA support; three AES cores of
128-, 192-, and 256-bits; six fully streaming DFT and IDFT
DSP cores of 32-, 64-, and 128-bits; and three different sizes
ON-chip RAMs of 8, 16, and 32 Mb, that results in a design
space of 270 SoCs. Generating these 270 SoC variants takes
about 3 s in SOCCOM. So, it takes 0.012 s for SOCCOM to
generate a valid design with this given set of IP variants. This
number scales linearly when SOCCOM exhaustively searches
the design space. However, the synthesis process via Vivado
design suite is expensive in terms of latency overhead as it
takes about 300 per design. We ran SOCCOM and the Xilinx
Vivado Design Suite on a system with a Core i7 processor, 16
GB of RAM, and an NVIDIA RTX 2070 graphics processor.
While synthesis of large-scale SoCs is an inherently time-
consuming process, SoCCom works with the state-of-the-art

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III

OPTIMIZED SOC COMPOSITION RESULTS: CASE STUDY ON CLUSTERSOC

FPGA synthesis tool, i.e., Vivado Design Suite for efficient
synthesis of generated designs. Optimization of RTL design
synthesis time in off-the-shelf, commercial tools is beyond the
scope of the SoCCom framework.

Table III illustrates ten different variants of ClusterSoC
with varying IPs, and associated area and power scores that
cover the entire spectrum of design constraints. We reported
the area and power overhead of the designs based on the
resource utilization at the target platform, i.e., a Xilinx Zynq
UltraScale + MPSoCs FPGA in the given experimental set-
up. We chose Xilinx ZynqUltraScale + MPSoCs FPGA as
the target platform since it offers the maximum resources.
SOCCOM reports the resource utilization of the FPGA model
in terms of MUXes, registers, and ALUs. The power analysis

on potential FPGA mapping is reported through the ON-chip
power broken down into dynamic and static power. As shown
in Table III, variants 1 and 2 are the most power and area
optimized SoCs, respectively, among the generated designs
while variants 8, 9, and 10 are scored low since they consume
comparatively higher area and power. In this work, we present
a streamlined approach to generate area and power-optimized
SoCs via parametric variations. Our tool currently reports the
optimized designs in a standardized scoring format. However,
we plan to address the area, power, and security aspects of
generated design through mathematical optimization in the
future as an extension of the current framework. The over-
arching goal of the extension is to pose the power, area, and
security features of generated SoCs through a well-formulated

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 11

mathematical problem and achieve design optimization via an
efficient solution.

VII. STANDARDIZED BENCHMARK GENERATION

An upshot of automated SoC synthesis process is the
ease and flexibility in benchmark generation. Here we
describe the application of SOCCOM as an SoC benchmarking
platform.

A. Scalable and Flexible SoC Benchmarks

Lack of open-source, standardized benchmarks is a major
obstacle for SoC architecture research. Such scarcity makes
it challenging to evaluate novel architectural schemes against
a diverse set of SoC benchmarks. We fill up this void by
employing SOCCOM as an automated benchmark generation
suite. We utilize the tool to generate a wide class of highly
configurable, standardized SoC benchmarks. SOCCOM gener-
ated benchmarks include hierarchical shared-bus-based SoCs
and subsystems, and tiled many-core SoCs with NoCs and
shared-buses. The user can configure SOCCOM to generate
SoC benchmarks with various classes of IPs and interconnects.
For instance, the user can specify the IP types and interconnect
fabric to generate all possible SoC designs within the given
area and power constraints. Such benchmarking would allow
the user to quickly generate a diverse set of SoC benchmarks.
Moreover, the user can generate different sets of SoC bench-
marks with arbitrary network topologies while changing the
IPs, the types of tiles, i.e., processor tile, peripheral tile, and
system tiles and their connections to the routers. Thus, the user
can efficiently generate a large number of variations of system
topology and study design performance by evaluating different
positions of IPs and subsystems with respect to overall system
topology.

B. Domain-Specific SoC Designs

Though past decades have seen the dominance of
general-purpose computer architecture, it has become increas-
ingly challenging to achieve domain-specific design and
performance goals from generalized hardware. Given the
prevalence of SoC designs in numerous applications in diverse
sectors, it is crucial to ensure that they have specialized
architectures to meet the design requirements of target devices
while delivering optimum performance. The unique features of
SOCCOM enable the user to develop heterogeneous many-core
SoC benchmarks comprised of general and special purpose
processor cores, a variety of hardware accelerators, memory
modules and controllers, and I/O devices to gain significant
performance improvement within a specific domain. The sys-
tematic automation and streamlined design flow offered by
SOCCOM reduces the challenges, cost, and time of designing
special purpose systems. An illustrative example of such use
case would be designing an automotive SoC versus designing
an SoC for IoT applications. Typically, for an automotive SoC,
the design constraints stipulate higher execution performance
for aggressive enforcement of real-time requirements whereas
an IoT SoC would have requirements of optimum in-field
operation within a tight boundary of area and power. Based

on the application requirements of the domain, the designer
can optimally select the different variant processor core and
hardware accelerators dedicated for specific tasks. Similarly,
depending on the design constraints and boundary conditions
of area and power set by the designer, SOCCOM facilitates
optimum selection of IPs, interconnect fabrics, and local and
global system design parameters. Thus, SOCCOM can be a
promising platform for generating heterogeneous SoC designs
targeted toward domain-specific applications.

VIII. SOCCOM USE CASES IN SOC SECURITY

AND VALIDATION

SOCCOM has been employed by our us as well as other
research groups for a variety of SoC security and validation
research. Following are a few illustrative applications.

A. Systematic Implementation of Security Policies

Case Study on E-IIPS: At present, there is a significant
inadequacy of systematic methodologies and tool flow for
SoC security feature integration that can be widely adopted
by designers. SOCCOM enables systematic integration of
security features to generated SoCs and helps ensure system
trustworthiness through secure-by-construction security archi-
tectures. In particular, it facilitates the addition of a stan-
dardized security architecture, namely, extended infrastructure
IP for security (E-IIPS), for flexible implementation of IP
and system-level security policies in SoC designs [16], [17].
The security policies implemented by E-IIPS architecture
ensure provable system resilience against untrusted IP issues,
diverse run-time security violations, and all major inter-IP
communication attacks [18], [19].

SOCCOM aids the automatic integration of the primary
building blocks of E-IIPS architecture, i.e., a centralized
security policy engine (SPE) block and distributed security
wrapper integrated IPs. The SPE acts as a central security
brain of the SoC and provides a programmable interface for
configuring security specifications while the security wrappers
communicate IP-specific security critical events with SPE to
collaboratively determine the operating status of the SoC and
assert security controls accordingly. SOCCOM’s IP library
includes the SPE block and security wrapper augmented IPs.
The user can select these from the library to realize the E-IIPS
architecture and generate SoCs augmented with standardized
security architectures for policy implementation. The current
version of SOCCOM incorporates two different implementa-
tions of the SPE: 1) a firmware upgradeable micro-controlled
implementation and 2) a reconfigurable SPE designed on
embedded FPGA. The SPEs work in tandem with IPs with
security wrappers to enforce the security requirements. The
user can generate E-IIPS integrated SoC design and implement
custom security policies by updating microcontroller firmware
or patching the FPGA bit stream. The user can flexibly
choose specific security architectures based on domain-specific
applications or target systems. For instance, the user can select
FPGA-based SPE for improved performance and easy in-field
patch whereas micro-controller-based SPE can be selected for
area constrained designs such as IoTs and wearables.

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

B. SoC Security Validation Research

SOCCOM generated SoCs are adopted as optimal vehicles
for research endeavors aiming security validation. Researchers
of the Trustworthy and Intelligent Embedded System (TIES)
Group at the University of Texas at Dallas employed SOCCOM

generated SoCs for detecting security violations under asyn-
chronous resets [20]. In particular, they developed a CFG
extraction methodology that works in tandem with concolic
testing to systematically explore the security violations stem-
ming from multiple asynchronous reset domains in these SoC
models. Three different kinds of security bugs, resulting infor-
mation leakage, privilege mode violation, and data integrity
breach, are inserted in SOCCOM generated SoCs to evaluate
the performance of their framework. Similarly, the SoC models
generated by SOCCOM are currently being used by researchers
at the Embedded Systems Laboratory (ESL) at the University
of Florida to develop scalable formal methods for validating
SoC security vulnerabilities using security assertions [21].

C. Specification Mining for SoC Design Validation

The execution traces of SOCCOM generated SoCs are
analyzed for reconstructing system-level behavior via speci-
fication mining. The current methods of specification mining
are reliant on manual, human insight of the architects. The
researchers of the Secure, Efficient, and Evolvable Computing
Systems (SEES) Laboratory at the University of South Florida
are using SOCCOM generated SoCs to conduct in-depth
research and develop new approaches of system-level behavior
reconstruction amid the presence of synthetic traffic [22].
Since SOCCOM supports the generation of many-core large-
scale SoCs, the researchers are able to exercise complex,
system-level protocols of industrial SoCs and further explore
the possibilities of re-constructing such ON-chip interactions
via trace patterns.

IX. SOCCOM STAKEHOLDERS AND APPLICATION SPACES

SOCCOM is proven to be useful in several research endeav-
ors that encompass a wide range of applications. It has critical
impact on current practices of SoC architecture study and
research topics, especially in an academic environment. The
application space of SOCCOM is described here.

A. Pedagogical Application as Design Education Kit

The lack of RTL-based models and benchmarks makes it
difficult for engineering students to learn about SoC designs
in an academic environment. This limitation can be addressed
by employing SOCCOM as an SoC design education kit and
help students learn about different architectural aspects of
the development process. The students can use pre-generated
SoC benchmarks as illustrative models or generate their own
SoCs by configuring the design parameters to get a suitable
hardware composition. By using SOCCOM as a design kit,
the students can acquire good knowledge about RISC-V
processors, memory modules, crypto modules, DSP blocks,
and other peripherals for OFF-chip communication such as SPI,
UART, and Ethernet controllers. As an intellectual learning

outcome, the students will get trained on different techniques
of SoC design and learn to evaluate the implementation results
in terms of design constraints. As for the practical learning
outcome, the students will learn about industry standard SoC
protocols and functionalities and get exposure to commercial,
off-the-shelf SoC design and simulation tools.

As a part of SOCCOM’s distribution plan as an educational
design kit, it has been incorporated into the academic cur-
riculum of graduate students enrolled in the Advanced VLSI
design (EEE 6323, Spring 2020), a graduate-level course,
at the University of Florida. The students employed the
platform, i.e., the SOCCOM tool and associated IP library,
to study various aspects of SoC architecture and security,
gain hands-on experience with RTL design simulation and
emulation, and generate custom, optimized SoCs for a variety
of class projects. The list of projects included, but were not
limited to, the following: 1) extension of SoC designs with
test wrappers to demonstrate improved testing features and
coverage; 2) augmentation of functional IPs with standardized
bus and NoC interfaces for shared-bus and ON-chip network
compatibility; 3) integration of standardized security wrappers
to IPs, crossbars, and routers for critical event monitoring;
4) demonstration of a series of confidentiality, integrity, and
availability attacks on SoC designs; and 5) development of
subsequent attack mitigation strategies via security policies,
etc. The participating students provided very positive feedback
about SOCCOM.

B. Research Applications

1) Rapid Exploration of SoC Design Space: SOCCOM

facilitate register-transfer level (RTL) design space explo-
ration of SoC architectures. It enables exploration of SoC
micro-architecture at varying levels of granularity, i.e., IP-level
configurability and system-level assembly. The modular design
components of SOCCOM allow fast design exploration of
processor cores, memory controllers, hardware accelerators,
shared-bus, and NoC components, including bus parameters,
router micro-architecture, and system-level topologies. The
generated, synthesizable Verilog and SystemVerilog designs
can be analyzed via RTL simulation or FPGA emulation.
Moreover, the SOCCOM generated designs are vendor inde-
pendent and highly compatible with existing design flows.
Hence, SoC architects and researchers across academia and
industry can equally exploit the design exploration features of
SOCCOM.

2) Applications of SOCCOM in Hardware Security: Here
we illustrate the prospective use cases of SOCCOM in different
sectors of hardware security.

a) SoC Trojan benchmarking: A plethora of studies are
available in the literature on IP-level hardware Trojans [23],
[24]. However, a major drawback of existing research is the
lack of SoC-level Trojan detection and mitigation techniques.
SOCCOM generated SoCs can be conveniently used for study-
ing the detection and mitigation strategies of system-level
Trojans. Since the payload of system-level Trojans propa-
gate via ON-chip communication, the security researchers can
employ generated SoCs to overcome the limitations of static
IP-level Trojan verification techniques, and detect and thwart

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEB NATH et al.: SOCCOM: AUTOMATED SYNTHESIS OF SYSTEM-ON-CHIP ARCHITECTURES 13

the payload of system-level Trojans. In addition, the amenable
design flow of SOCCOM can be modified to work in tandem
with existing Trojan insertion tools and develop a database of
Trojan inserted SoC benchmarks for further studies [25].

b) SoC design obfuscation benchmarking: Design obfus-
cation is a proven technique to limit the attacker’s access to
OEM’s designs [26]. While IP obfuscation techniques help the
researchers study design security at the unit level, it is crucial
to explore the impact and efficacy of obfuscation methods at
system level operation. For instance, a secure boot process
of an SoC typically incorporates unlocking the functionality
of obfuscated IPs at power-up. Consequently, host SoCs are
critical to fully exercise and validate the test cases pertaining to
obfuscated IP designs. SOCCOM generated SoC benchmarks
can be utilized as host SoCs to fully simulate the steps of a
secure boot flow, validate the locking and unlocking proce-
dure of locked designs, and analyze the security performance
tradeoffs of obfuscated IP blocks.

c) Information flow analysis: With the proliferation of
3PIPs in the SoC designs, information flow analysis has
become more critical than ever [27], [28]. However, infor-
mation flow analysis cannot be performed effectively via
stand-alone IP designs as it requires a thorough evaluation
of system-level communication. For instance, it is not feasible
to study the vulnerabilities stemming from SoC designs due
to insecure information flow via NoC components, such as
routers and network components, through static IP analysis.
This limitation is addressed by utilizing SoCCom-generated
benchmarks as evaluation platforms. In particular, availability
of these SoC benchmarks with on-chip network will facilitate
the researchers to explore novel information leakage scenarios
via ON-chip network components.

d) Access control analysis: The amalgamation of trusted
and untrusted IPs on the shared interconnect fabric can lead to
a series of access control vulnerabilities. SOCCOM generated
SoCs can be utilized for the vulnerability analysis of diverse
access control scenarios stemming from ON-chip interactions
between the trusted and untrusted components. While it is
not feasible to mimic the access control scenarios with static
IP analysis, the generated SoCs can be fully utilized for
vulnerability analysis of system-level access control policies.

X. CONCLUSION

In this article, we presented a novel CAD framework and
EDA tool for automated synthesis of optimized multicore and
many-core SoC architectures. Our platform enables designers
to generate synthesizable SoC RTL via rapid design space
exploration and optimize designs for domain-specific applica-
tions in terms of area and power constraints. The open-source,
extendable IP library allows users to build heterogeneous
SoCs with diverse IPs. An upshot of the framework is that
designers can quickly generate a wide variety of heterogeneous
SoC benchmarks with varying IPs cores and interconnect
fabric. The proposed SoC generation platform has a large
application space and proven to be a crucial in various aspects
of architecture and security research.

A key feature of SOCCOM is its conceptual simplicity.
The primary function of the tool flow described in this

article is to connect (open-source) IPs through communication
fabrics using a topology specification. However, such a view
perhaps belies the non-triviality of the system. Note that SoC
integration in practice requires months of human effort. The
fact that SOCCOM can automatically generate functioning
SoCs that can be used as is for a variety of application tasks
shows the value of the idea in addressing a critical bottleneck
in industrial SoC designs. In particular, SOCCOM shows how
to streamline the integration process in practice through the
disciplined specification of appropriate structural specification
of interfaces, and identifies the architectural collateral needed
to make the process automatic.

Our work paves the pathway to several promising research
directions in SoC design automation, architectural explo-
ration, security analysis, and design validation. The disciplined
approach of automated SoC integration via standardized archi-
tectures enables benchmark generation with minimal effort
while leading to the possibility of streamlined integration of
diverse security features to SoC designs from the early stages
of the design flow. In future work, we aim to explore the
following: 1) extend SOCCOM framework for fully automated
integration of security wrappers and distributed satellite units
as local security brain to target IPs; 2) enable high-level
specification of security policies in a formal language rep-
resentation and develop a SOCCOM compatible framework
for automated translation and integration of formally defined
policies to actionable RTL design constraints and correspond-
ing firmware; and 3) develop SOCCOM as a comprehensive
framework for automated generation of optimized and secure
SoC platforms with integrated security policies and enable
user flexibility in analyzing design power, area, and security
tradeoffs.

REFERENCES

[1] I. Parulkar, A. Wood, J. C. Hoe, B. Falsafi, S. V. Adve, J. Torrellas,
and S. Mitra, “OpenSPARC: An open platform for hardware reliability
experimentation,” in Proc. 4th Workshop Silicon Errors Log.-Syst. Effects
(SELSE), 2008, pp. 1–6.

[2] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf,
“OpenSoC fabric: On-chip network generator,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), 2016, pp. 194–203.

[3] S. Wallentowitz, A. Lankes, A. Zaib, T. Wild, and A. Herkersdorf,
“A framework for open tiled manycore system-on-chip,” in Proc. 22nd
Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 535–538.

[4] S. Bandara, A. Ehret, D. Kava, and M. A. Kinsy, “BRISC-V:
An open-source architecture design space exploration toolbox,” 2019,
arXiv:1908.09992.

[5] M. A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: A tool for fast
RTL-based design space exploration of multicore processors,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2013, pp. 125–134.

[6] K. Asanovic et al., “The rocket chip generator,” EECS Dept., Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-17, 2016.

[7] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[8] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 33–42.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2009, pp. 469–480.

[10] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy opti-
mizations in GPGPUs,” ACM SIGARCH Comput. Archit. News, vol. 41,
no. 3, pp. 487–498, 2013.

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[11] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural
simulators considered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12,
Nov./Dec. 2015.

[12] Y. Xiao, Y. Xue, S. Nazarian, and P. Bogdan, “A load balancing inspired
optimization framework for exascale multicore systems: A complex
networks approach,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2017, pp. 217–224.

[13] Y. Xiao, S. Nazarian, and P. Bogdan, “Plasticity-on-chip design: Exploit-
ing self-similarity for data communications,” IEEE Trans. Comput.,
vol. 70, no. 6, pp. 950–962, Jun. 2021.

[14] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 163–174.

[15] (2021). System-On-Chip Benchmarks. [Online]. Available:
https://cadforassurance.org/soc-platform/soc-benign-benchmark/system-
on-chip-benchmarks/

[16] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic
implementation of SoC security policies,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 536–543.

[17] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible SoC security architecture,” in Proc. 53rd Annu. Design Autom.
Conf., Jun. 2016, pp. 1–6.

[18] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for
system-on-chip designs with untrusted IPs,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 7, pp. 1515–1528, Jul. 2017.

[19] A. P. D. Nath, S. Boddupalli, S. Bhunia, and S. Ray, “Resilient system-
on-chip designs with NoC fabrics,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 2808–2823, 2020.

[20] X. Meng, K. Raj, A. P. D. Nath, K. Basu, and S. Ray, “SoCCAR: Detect-
ing system-on-chip security violations under asynchronous resets,” in
Proc. 58th ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021, p. 309.

[21] H. Witharana and P. Mishra. (Aug. 2021). Scalable Validation of System-
On-Chip Vulnerabilities Using Security Assertions. [Online]. Available:
https://esl.cise.ufl.edu/Assert.html

[22] Y. Cao, H. Zheng, H. Palombo, S. Ray, and J. Yang, “A post-silicon
trace analysis approach for system-on-chip protocol debug,” in Proc.
IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 177–184.

[23] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proc. IEEE,
vol. 102, no. 8, pp. 1229–1247, Aug. 2014.

[24] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware Trojans: Lessons learned after one decade of research,” ACM
Trans. Des. Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, Dec. 2016.

[25] J. Cruz and S. Bhunia. (2021). Mimi: Automatic Hardware Trojan
Insertion in a Design. [Online]. Available: https://cadforassurance.org/
tools/ic-trust-verification/mimi/

[26] R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-
based SoC design methodology for hardware protection,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10,
pp. 1493–1502, Oct. 2009.

[27] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Security validation of
VP-based SoCs using dynamic information flow tracking,” Inf. Technol.,
vol. 61, no. 1, pp. 45–58, Feb. 2019.

[28] M. Goli and R. Drechsler, “VIP-VP: Early validation of SoCs infor-
mation flow policies using SystemC-based virtual prototypes,” in Proc.
Forum Specification Des. Lang. (FDL), Sep. 2021, pp. 1–8.

[29] C. D. Systems, “Jaspergold formal verification platform,”
Tech. Rep., Aug. 2021.

Atul Prasad Deb Nath (Member, IEEE) received
the B.Sc. degree from the Khulna University
of Engineering and Technology (KUET), Khulna,
Bangladesh, in 2011, the M.Sc. degree from the
University of Toledo, Toledo, OH, USA, in 2016,
and the Ph.D. degree from the University of
Florida, Gainesville, FL, USA, in 2021, with a
focus on investigating major aspects of SoC security
and developing novel architectural features to pro-
tect assets, firmware, and ON-chip communication
against various adversarial models.

He has published four book chapters, over 15 peer-reviewed journals and
premiere conference papers, and filed three patents. His research interest
includes system-on-chip (SoC) platform security and CAD for security and
trust.

Kshitij Raj (Member, IEEE) is currently work-
ing toward the Ph.D. degree at the Department of
Electrical and Computer Engineering, University of
Florida, Gainesville, FL, USA, as part of the Rising
Laboratory, with a focus on the domain of automated
integration and synthesis of secure silicon.

His research has been published in Design
Automation Conference (DAC), Design, Automa-
tion and Test in Europe Conference (DATE), Asian
HOST Conference, and so on. His research interests
lie in the field of silicon architecture and design.

Swarup Bhunia (Senior Member, IEEE) received
the B.E. degree (Hons.) from Jadavpur University,
Kolkata, India, in 1995, the M.Tech. degree from IIT
Kharagpur, Kharagpur, India, in 1997, and the Ph.D.
degree from Purdue University, West Lafayette, IN,
USA, in 2005.

He was appointed as the T. and A. Schroeder
Associate Professor of Electrical Engineering and
Computer Science at Case Western Reserve Uni-
versity, Cleveland, OH, USA. He is currently the
Director of the Warren B. Nelms Institute for the

Connected World and a Semmoto Endowed Chair Professor of IoT with
the University of Florida, Gainesville, FL, USA. He has over 250 publications
in peer-reviewed journals and premier conferences. His current research
interests include hardware security and trust, adaptive nanocomputing, and
novel test methodologies.

Dr. Bhunia received the IBM Faculty Award, the NSF CAREER Award,
the SRC Inventor Recognition Award, the SRC Technical Excellence Award,
and several best paper awards/nominations. He has been serving as an Asso-
ciate Editor for the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS ON
MULTI-SCALE COMPUTING SYSTEMS, the ACM Journal of Emerging Tech-
nologies, and the Journal of Low Power Electronics.

Sandip Ray (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA.

He is a Professor at the Department of Electrical
and Computer Engineering, University of Florida,
Gainesville, FL, USA, where he holds an Endowed
IoT Term Professorship. Before joining the Univer-
sity of Florida, he was a Senior Principal Engineer at
NXP Semiconductors, and prior to that, a Research
Scientist with the Intel Strategic CAD Laboratories.
During his industry tenure, he led industrial research

and research and development in pre-silicon and post-silicon validation of
security and functional correctness of SoC designs, design-for-security and
design-for-debug architectures, and security validation for automotive and the
Internet-of-Things applications. He is the author of three books and over 100
publications in international journals and conferences. His current research
targets correct, dependable, secure, and trustworthy computing through coop-
eration of specification, synthesis, architecture, and validation technologies.

Dr. Ray served as the Technical Program Committee Member of over 50
international conferences, as the Program Chair of ACL2 2009, FMCAD
2013, and IFIP IoT 2019, a Guest Editor for IEEE Design & Test, IEEE
TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, and ACM Trans-
actions on Design Automation of Electronic Systems, and an Associate Editor
for the Journal of Hardware and Systems Security (Springer) and IEEE
TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS.

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2022 at 13:40:29 UTC from IEEE Xplore. Restrictions apply.

