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ABSTRACT
In emerging 5G wireless systems, Mobile Social Networks (MSN)
will play an important role for providing data services and offload-
ing data traffic from cellular networks. MSNs are vulnerable to
various security attacks because of the ways users move and collab-
orate. Since most protocols for MSNs are designed based on social
behaviors of users, it is important to understand the impact of user
behavior on network vulnerability. This can provide valuable in-
sights into crucial factors, such as how easily a network loses its
connectivity, or a network’s ability to form strong communities.

We present a novel vulnerability assessment and classification
scheme based on structural, social and influence distributionmetrics
in mobile social networks. We design a vulnerability index metric
(VI) to investigate the level of damage inflicted when networks
are subjected to both targeted and random attacks. Then, we use
influence distribution metrics and various machine learning based
classifiers to determine the vulnerability levels for various network
states. Finally, we define a Mean Information Diffusion index to
determine the information dissemination capability of a network,
given the vulnerability state. Our results revealed that campus
WLAN traces, represented by the Time Variant Community model,
exhibit highly vulnerable states that reduce the network’s ability
to disseminate information by up to 16%.
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•Mathematics of computing→Graph theory; •Networks→
Network simulations; Network performance analysis; Mo-
bile and wireless security; Network dynamics; Network mo-
bility; Mobile networks; Denial-of-service attacks; • Comput-
ing methodologies → Supervised learning by classification;
• Theory of computation→ Graph algorithms analysis.
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1 INTRODUCTION
Currently, billions of mobile devices exist in the world. This number
is expected to increase with the introduction of the 5G standard.
Most of these devices are equipped with communication and sen-
sor technologies such as Bluetooth, WiFi, and proximity sensors,
which allow the users to opportunistically create communication
links with other users and form short range ad hoc networks for
device-to-device communication, mobile social networks, vehicular
communications, and Internet of Things, to name a few applica-
tions. One of the features of these networks is the free mobility of
devices. Node mobility increases a network’s complexity due to
the changing dynamics and makes protocol design and a securing
network more difficult as the nodes change connections, points of
contact and paths for data flow [1].

When mobility is considered in MSNs, the network may reach a
state in which small number of nodes, called Highly Crucial Nodes,
determine most of the network connectivity and information flow.
Highly crucial nodes hold connection advantages over other nodes
and thus have more impact in worm propagation, information dis-
semination, routing protocols, power flow, security measures, co-
ordinated attacks and channel scheduling schemes. The relative
importance of these nodes also makes them vulnerable and easy
targets for any attacks to degrade network performance [2]. Char-
acterizing the mobility patterns of the network may be the key
to predicting a node’s future influence and thereby the network’s
future vulnerability. Other studies have examined centrality met-
rics and/or social metrics to determining crucial nodes to increase
network performance. To our knowledge, previous works have not
linked the crucial nodes and mobility patterns to predict network
vulnerability. In secure networks, there is a need to identify the
relevant structural and social metrics, determine the crucial nodes
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of a network and examine the corresponding mobility patterns to
better predict and possibly avoid vulnerable states.

In this paper, we present a vulnerability assessment scheme
based on structural and social aspects of mobile users in MSNs.
We develop a classification scheme to determine how overall net-
work vulnerability, based on influence distribution metrics in the
network. The results obtained are quite promising and show the
effective use of our scheme and its impact on the information diffu-
sion applications in Mobile Social Networks. Our paper makes the
following contributions:

• Presents a novel vulnerability assessment scheme for MSNs
based on structural and social aspects of users.

• Presents a graph theoretic based vulnerability index metric
to assess the degree to which the network’s performance is
vulnerable to various attacks.

• Develops a set of influence distribution metrics to classify
the network’s vulnerability states using supervised learn-
ing methods such as K-Nearest Neighbor, Random Forest,
AdaBoost and Multilayer Perceptron Neural Network classi-
fiers.

• Provides a novel study of the impact of mobility model on
network vulnerability. To our knowledge, this is the first
study that evaluates how the mobility pattern exhibited by
different MSNs impacts their network vulnerability.

• Examines the information diffusion capability in terms of
the MSN’s network vulnerability state.

This paper is organized as follows. Section 2 describes related
work to our analysis. In Section 3, we discuss structural and social
metrics that are used to identify critical nodes in the network, graph
theoretic concepts that are used to define the vulnerability index
metric, and influence distribution metrics that are used to classify
the network states. In Section 4, we provide a discussion on certain
mobility models, we observe the results showing the differences
in network vulnerability, performance metrics for classification
models and difference in MID values for the considered mobility
scenarios. Finally, Section 5 concludes the paper.

2 RELATEDWORK
In this section, we discuss various research literature from the fields
of Mobile Social Networks, Opportunistic networks, Peer-to-Peer
networks and Device-to-Device communications, which are related
to our proposed vulnerability assessment and classification scheme.
We point out the major contributions of these papers and how they
form the basis for our study.

In [3], the authors propose a framework for content distribution
in content-based MSNs for 5G networks. It is shown that availabil-
ity of content replicas at Content Centric Nodes greatly affects the
caching performance. Also, a caching scheme called Social Con-
tent Caching is developed for determining what content to store
considering degree centrality of users who request content and
mobility of all users in the network. The authors in [4] propose a
context-aware information diffusion scheme in 5G Mobile Social
Networks. This information diffusion scheme considers networking
and socially-related metrics of users to model expected information
diffusion time. It develops a metric called social inter-contact time
which can predict the interaction frequency between users and a

generic social platform to help improve overall information diffu-
sion time in the MSN. The work in [4] shows that social metrics can
be used to improve information diffusion applications in 5G MSN.
Both [3] and [4] show that MSNs are a viable solution to improve
network performance in 5G, as well as use of social metrics and
mobility of users to influence network performance.

The authors in [5] propose the SimBetTS delay-tolerant MANET
routing algorithm, for routing based on social network analysis
techniques. The protocol assigns utility value to all the nodes as
a weighted combination of social similarity, betweenness central-
ity and tie strength to select the message forwarding nodes. The
selection of highly central nodes seems to improve the routing
performance. Hence, by controlling these nodes we can control
the performance of the network. A low energy socially cognizant
routing protocol is proposed for delay tolerant networks in [6]. Fre-
quency of collocation and change of degree, which are functions of
degree centrality, are used to define utility values for nodes, which
are then used as metrics to identify message forwarders in the net-
work. Nodes with higher utility values hold advantage over others
as these are often used as intermediate nodes in routing. In [5]
and [6], social metrics are used to improve routing are discussed,
but they do not consider the impact of mobility or the change in
vulnerability levels caused due to modification of influence in the
network on information diffusion. These factors will be addressed
in our study.

The work in [7] provides a discussion on how to infer implicit
social ties in the Mobile Social Networks based on user interaction
and activity. The authors explore different basis for developing so-
cial ties between users such as location population, co-occurrence
diversity and users’ mobility behavior. Results show that the devel-
oped social ties when tested using real world mobile social network
datasets predicted online social interaction between users effec-
tively. This paper shows that the user interactions and mobility
behavior could be effectively used to develop meaningful social
metrics between users in MSNs. In [8], the authors develop en-
counter metrics based on the interactions of users extracted from
WLAN traces for a duration of 3 months in a campus-based envi-
ronment. The authors also show that the past encounter values
between users are reliable metrics to identify the strength of social
relation between them and that they can also be used to improve
the performance of routing in the network.

The authors in [9] conduct structural vulnerability assessment of
community-based routing in opportunistic networks. The proposed
technique aims to find k most critical nodes whose removal results
in large separation of network communities. This work does not
consider the effect of user movement dynamics, nor enough of the
impact of the social aspects of users on the vulnerability assess-
ment scheme, which will be addressed in our analysis. Research
on network security due to node influence has focused mainly on
centrality metrics and/or social metrics. The authors in [10] analyze
the impact of various centrality metrics such as degree centrality,
closeness centrality, betweenness centrality and eigenvector cen-
trality as measures to find the important nodes in the network and
compare their performance against randomly selected nodes in
spreading malicious information in peer-to-peer networks. Results
show that nodes with higher eigenvector centrality values needs to
be protected in order to avoid misinformation spread in the network



or in other words nodes with higher eigenvector centrality values
are highly influential in the network for information dissemination
compared to other centrality metrics.

The authors in [11] have studied the vulnerability of networks
using centrality metrics by combining the degree of a node and the
average degree of its neighbors to measure node importance. This
study shows that centrality metrics could be effectively used to
understand the network vulnerability. The authors in [12] propose
a heuristic algorithm to compute network centrality in real, low-
power networking hardware in a 1000-node network, and show that
centrality can be effectively used as a building block for security
functions in networks.

Authors in [13] show that machine learning techniques such as
Support Vector Machines can be effectively applied to very large
scale social networks in dealing with prediction and recommen-
dation problems. The authors make use of features such as online
factor, content factor, location factor, mobility factor, and social
factor to forecast a metric knows as nowcasting that can predict if
two users of Device-to-Device communication system might share
information in near future.

From the papers that we discussed in this section, we can state
that MSN is a viable add-on to traditional 5G networks, mobility and
social metrics can impact performance of MSN, connectivity and
community forming ability are viable factors to assess network vul-
nerability, user activity and encounter metrics can help us identify
critical nodes in the network for security, routing and information
diffusion applications, and machine learning algorithms can be ef-
fectively used for prediction problems in MSN. These facts form
a basis for our vulnerability assessment and classification scheme
using structural, social and influence distribution metrics. To our
knowledge, this is the first study that tries to identify the relation
between influence distribution metrics and vulnerability in MSNs.

3 CHARACTERIZING NETWORK
VULNERABILITY

3.1 Vulnerability Index (VI)
To understand the impact of network attacks in various mobility
scenarios, we develop the Vulnerability Index (VI). We formulate
VI as shown in Eq. 1,

V I =WAC ∗ (AC1 −AC2) +WCI ∗ (CI ) (1)

where the weightsWAC andWCI are applied to balance the scale
of the two metrics. AC1 is the average clustering coefficient before
disrupting the network and AC2 is the average clustering coeffi-
cient after after disrupting the network. The average clustering
coefficient (AC) shows the ability of nodes to form strong and large
communities with neighboring nodes in the network [14]. AC is
defined as the ratio of closed triplets in the network to number of
all triplets (open and closed).

CI is based on the concept of articulation points and is defined
as the fraction of number of articulation points to total number of
nodes in the network. A given node is considered as an articulation
point if its removal splits the network into 2 or more disconnected
components. CI is defined as the ratio of number of articulation
points to total number of nodes in the network. Higher the value of

VI, more the network loses its ability to form strong communities
and connections which is unfavorable in MSN.

3.2 Consolidated Influence Metric (CIM)
We now formulate CIM as a measure to indicate the relative impor-
tance/influence of a given node in the network. CIM is calculated
based on 2 components namely, Structural influence and Social
influence. We propose CIM as a consolidated influence metric to
represent a node i ′s collective influence in the network. We define
CIM as shown in Eq.2.

CIMi =WSTR ∗ STRi +WSOC ∗ SOCi (2)

3.2.1 Structural influence (STR). STR provides a measure of node’s
influence based on its position in the current network configuration,
and it is formulated based on the concepts of network centrality.
Degree Centrality (DC) [11] is defined as the number of links in-
cident upon a node. The degree can be interpreted in terms of the
immediate risk of a node for catching whatever is flowing through
the network, for both useful information or malware. The idea of
Betweenness Centrality (BC) [5] for a given node i is that howmany
pairs of nodes in the network are connected through the shortest
path to each other passing through the node i. Closeness Centrality
CC [10] is based on the idea that nodes with short distance to other
nodes can spread information very productively through the net-
work. Eigenvector Centrality (EC) [10] is based on the concept that
a node’s influence increases when it gets connected to other highly
critical nodes. [10–12] shows that the aforementioned centrality
metrics can be effectively used for security related applications. STR
is calculated as shown in Eq. 3.

STRi =WBC ∗(BC)i+WCC ∗(CC)i+WDC ∗(DC)i+WEC ∗(EC)i (3)

3.2.2 Social influence (SOC). SOC provides a node’s influence
as a measure of its social aspects and its relation with other mo-
bile nodes. We develop 3 social influence metrics namely Social
Encounter metric, Social Willingness metric, and Social Popularity
metric.

Social Encounter metric (SE): In [8], we noticed that encounter
metrics could be used as stable social metrics to improve routing in
the mobile networks. In our analysis, every time 2 nodes come in
range of each other, we decide that those nodes encountered with
a probability of ’p’. To calculate SE, we sum the total number of
encounters a node had with each of its current neighbors in the
past iterations and is shown in Eq. 4.

SEi =
∑

v ∈CNi

en(i,v) (4)

where CNi represents the current neighbors of node i and en(i,v)
shows the number of encounters between node i and node v in the
past iterations.

Social Willingness (SW): Social network data can reveal willing-
ness of a node to share information, form strong connections or
be a part of community with its neighbors. By the principles of
homophily, it is safe to assume that people who are friends in a
social network have better chances of forming strong connections
or being in same community even in mobile networks. To test this



approach we used open source friendship network data from Face-
book. We pulled designated social network users as nodes in our
experiments. Data from any social network that network nodes are
a part of can be used to define this metric. (SW) is calculated as
shown in Eq. 5:

SWi = |SNFi ∩CNi | (5)
where SNFi andCNi represents set of all social networking friends
and current neighbors of node i respectively.

Social Popularity metric (SP): SP is the count of how many times
a given node was selected as critical node in the previous iterations
based on CIM values. SP is crucial in applications such as informa-
tion caching. For example, if a node was selected a large number of
times for cache storage, then it is more likely to be selected again,
or it could have useful information in the network for other nodes.
SP is calculated as shown in Eq. 6,

SPi =
k∑

v=1
pi (v) (6)

where k is the current iteration number, pi (v) = 1 if node i was
selected as critical node in iteration v, otherwise pi (v) = 0. Higher
values of SW, SE and SP, indicate greater social influence of a given
node. The Social influence, SOC, is calculated as shown in Eq. 7.

SOCi =WSW ∗ (SW )i +WSE ∗ (SE)i +WSP ∗ (SP)i (7)

All the individual structural and social metrics are normalized
before calculating STR and SOC to bring all of them to similar
scale. The weights in Eq. (2), Eq. (3) and Eq. (7) can be adaptively
varied according to the network environment and application. In
our analysis, we have given slightly higher weights to STR, as
it provides influence information of nodes more relevant to the
current network configuration and slightly higher weight to EC as
it was shown to be more successful compared to other structural
influence metrics for network vulnerability applications [10].

3.3 Influence Distribution metric
We develop Peak-to-Average metric (P2A) as the general influence
distribution metric and then calculate P2A for each of the individual
structural and social influence metrics to understand their impact
on VI values for different mobility models. P2A is defined as shown
in Eq. 8,

P2AM =
1
x
∑
i ∈X Mi

1
n
∑
j ∈N Mj

(8)

whereX is the set of all most critical nodes with a total of x elements,
Mi is the influence value of ith critical node, N is the set of all nodes
in the network with total of n elements and Mj is the influence
value of jth node.

A lower value of P2A indicates that influence has been fairly dis-
tributed in the network. For instance, if the value of P2A is 1 (lowest
possible value), then the influence is distributed uniformly among
all nodes. Conversely, a higher value of P2A indicates that the net-
work is in a state where the selected critical nodes hold most of the
influence in the network.

We define P2A values for each of the structural and social in-
fluence metrics namely P2ABC , P2ACC , P2ADC , P2AEC , P2ASW ,
P2ASE and P2ASP for BC ,CC , DC , EC , SW , SE and SP respectively
according to the Eq. 8.

Finally, we define state of the network for each iteration ’a’
based on the value of VI for each mobility model. Three states are
defined namely Vulnerable, Semi-Vulnerable and Safe based on the
following conditions:

state(a) =


Vulnerable if V Ia >= (Qv )

Semi −Vulnerable if (Qsv ) < V Ia < (Qv )

Saf e if V Ia <= (Qsv )

whereQsv andQv represent percentile thresholds of VI for a given
mobility model for all the iterations. The definition of these states
are such that when VI value of network is high, it falls in Vulnerable
state and when VI value of network is low, it falls in Safe state. Semi-
Vulnerable state acts as a buffer between Safe to Vulnerable states
and avoids sharp transition.

Figure 1: Example of network states. (a) Safe (b) Vulnerable

Fig. 1 (a), (b) shows examples of Safe and Vulnerable network
states. In Fig. 1, three nodes are attacked (darkened) in both (a)
and (b) cases, but (b) results in more vulnerable network compared
to (a) as attacking the darkened nodes results in higher loss of
connectivity and community forming capacity among nodes in the
network in case (b).

4 RESULTS AND DISCUSSION
The proposed vulnerability assessment and classification scheme
based on structural and social metrics was tested by developing
MSN simulation test bed using Python in the Anaconda platform.
We employ Stanford Network Analysis Platform (SNAP) [15], a
large scale network data analysis tool and other popular Python
library packages such as NumPy, SciPy, Pandas, Scikit-learn and
PyMobility [16] to carry out the analysis. We initialize the MSN
with 1000 (N ) nodes, with the nodes placed randomly in an area of
500x500 (Xdim ,Ydim ) dimensions, which is a reasonable network
size for the simulation area for campus/office based environments.
All the nodes have same communication range R of 10 units and
devices within range of each other are allowed to communicate.
The nodes are then allowed to move as per the selected mobility
model which changes the node positions accordingly and there by
modifying the connections in the network for 10000 (T ) iterations.



Nodes are listed in descending order based on the values of CIM,
50 (Xtop ) most critical nodes (5% of total users) are selected from
this list. The communication links associated with these critical
nodes and Xtop randomly selected nodes are disrupted to imitate
the targeted and random attacks in the network respectively. In
the adversary model that we consider, the attacker targets Xtop
critical nodes with attacks such as Denial of Service (DoS), Jamming
or flooding the communication links of these nodes making them
unavailable for any network operations.

Plots of VI are presented considering both targeted and ran-
dom network attacks. A comparison study between the impact of
considered mobility models on network vulnerability is presented.
Performance metrics obtained for various classification models will
be tabulated and the % change in the value of Mean Information
Diffusion index will be presented to show the effect of different
network states on information diffusion application in MSN.

Algorithm 1 shows the various steps involved in proposed vul-
nerability assessment scheme. By following the steps of Algorithm
1 for RWP, RPGM and TVC models, we will have VI values for
targeted and random attacks for each of the considered mobility
models.

Algorithm 1 : Vulnerability assessment scheme
Initialization:

(1) Set Xdim , Ydim , R, N , and Xtop .
(2) Select mobility model and initialize node positions

For it = 1 to T
• Get node positions
• Create a graph G with nodes at these positions
• Create edges between nodes which are in range R of each
other in G

• Assign weights W to edges inversely proportional to ′d ′,
where d is the distance between the nodes

• Calculate CIM for each node
• Sort nodes based on CIM values in descending order
• Select Xtop most critical nodes
• Calculate CI and AC1
• Remove edges incident on selected Xtop critical nodes from
G forming Gtarдeted

• Calculate AC2 in Gtarдeted and then V Itarдeted
• Remove edges incident on Xtop random nodes from G form-
ing Grandom

• calculate AC3 in Grandom and V Irandom
• Save Vtarдeted and Vrandom for the current iteration it .

4.1 Background on mobility models
The network architecture for this study is a collection of similarly
able mobile nodes that are members of the same network. We incor-
porate selected mobility models that provide various perspectives
to understand the movement patterns of the network nodes, and to
capture the collective mobility behavior of nodes in the network.
The resulting network dynamics because of mobility is then evalu-
ated. The models considered for this study are: Random Way Point
(RWP)[17], Reference Point Group mobility (RPGM) [18], and Time

Variant Community (TVC) [19]. Further, we briefly describe these
models, as well as the motivation for including them in our analysis.

4.1.1 Random Way Point. RWP is a model that includes random
changes in location, velocity and acceleration of networks nodes
over time. It is the most popular mobility model to evaluate mobile
network protocols, because of its simplicity and wide availabil-
ity. The destination, speed and direction are all chosen randomly
and independently of other nodes in the successive iterations. The
parameters associated with this model are as follows:

– Speed = [Vmin , Vmax ]
– Destination = [Random X, Random Y]
– Pause Time ≥ 0

Each node begins by pausing for a fixed number of seconds.
The node then selects a random destination in the simulation area
and a random speed between minimum Speed (Vmin ) and maxi-
mum Speed (Vmax . The node moves to this destination and again
pauses for a fixed period before selecting another random location
and speed. This behavior is repeated for the entire length of the
simulation.

RWP has been shown to not match many realistic scenarios well.
However, we used it since it is the most commonly used mobility
model, and also it is useful as a reference to compare the other
models. RWP has little to no spatial and temporal dependence,
which means the node positions for successive iterations doesn’t
depend too much on the previous location or time of the simulation.

4.1.2 Reference Point Group Mobility. RPGM is an example for
highly spatial dependent mobility model. In this model, nodes tend
to form groups and each group has a logical center. The logical
centers’ mobility follows RWP mobility model. The nodes of each
group follow their logical centers’ mobility closely, with some de-
viation. The following steps shows a one simple way how RPG
mobility works:

– τ − > τ+1
– ®RP(τ ) + ®GM − > ®RP(τ + 1)
– New destinations for nodes: ®RM + ®RP(τ + 1).

where τ is the time step, RP is the reference point vector, GM is
the group motion vector, and RM is the random motion vector
whose magnitude is chosen randomly from an uniform distribu-
tionUm [0,R] (R - Range of logical center) and direction is chosen
randomly from an uniform distributionUm [0, 360o ].

The reason for selecting RPGM is to understand the dependence
of network vulnerability on a highly spatial dependent mobility
model. This model is also applicable in many scenarios such as
campuses, museums, theme parks etc.

4.1.3 Time Variant Community. TVC is a synthetic mobility model
developed using the trends observed in campus WLAN traces and
hence using TVC is similar toworkingwith campus based real world
traces. TVC has both strong spatial and temporal dependence. This
mobility model mainly captures two important factors in mobility
namely, Skewed location visiting preferences of nodes and Periodic
re-appearance of nodes at same location. In this model, communities
are defined that are periodically revisited by nodes which also
have skewed location visiting preferences for nodes. It results in



formation of groups over time at same locations with repetitive
behavior.

Two types of time periods are defined for nodes namely, Nor-
mal Movement Period (NMP) and Concentration Movement period
(CMP). In CMP, the certain locations are given high priority to be
chosen as destination for nodes which results in the skewed location
preferences. In each time period, communities are assigned to nodes
and community locations are chosen at random. In each time period,
a node has two different movement modes namely, Local epoch
mode (nodes movement is confined to its community) and Roaming
epoch modes (nodes are free to explore the entire simulation area).
At beginning of each epoch, nodes randomly choose velocity from
Uv [Vmin,Vmax] and randomly choose direction from Ud [0, 360o ],
Movement length is chosen from an exponential distribution with
the parameter L (L-average epoch length). If a node hits the bound-
ary in local epoch, then it is re-inserted from the other end of the
community. If a node hits the boundary in roaming epoch, then
it is re-inserted from the other end of the simulation area. At the
end of epoch, pause time is randomly chosen from Up [0,Tmax]
and movement mode for the next epoch is picked according to a
two-state Markov model with predefined probabilities. The selec-
tion of epoch along with combination of effect of CMP results in
periodical re-appearance of nodes.

TVC model is selected to understand the impact of highly spa-
tially and temporally dependent mobility model on network vul-
nerability.

4.2 Vulnerability Index for Targeted Versus
Random attacks

Fig. 2, 3, and 4 shows the VI plots for RWP, RPGM and TVC models
respectively when critical nodes (’Targeted’) and randomly selected
nodes (’Random’) are attacked.

Figure 2: VI for RandomWay Point mobility model

In each plot, we can observe that the VI is usually higher when
critical nodes (’Targeted’) are selected than the case with randomly
selected nodes (’Random’). As the time progresses and RPGM starts
affecting the node configuration to form groups, the difference
between the (’Targeted’) and (’Random’) increases, which can be
observed in Fig. 3. This increase in difference indicates that over the
time RPGM results in amore vulnerable network. Similar behavior is

also observed in Fig. 4 for the TVCmodel because of skewed location
preferences of nodes which results in formation of communities and
hence the difference between (’Targeted’) and (’Random’) increases
over time.

Figure 3: VI for Reference Point Group mobility model

For TVC, we can also observe that VI increases and decreases
repetitively and this behavior can be explained by the periodical
re-appearance property of users in the campus based environments.

Figure 4: VI for Time Variant Community mobility model

4.3 Vulnerability Index for different mobility
scenarios

Here, we present the plot which helps to identify the differences
in network vulnerability caused by considered mobility models for
targeted network attacks. We smoothened the VI values over time
using running mean function with a window size of 100. Although
minor local information loss occurs when running mean is used,
the global trend remains unaffected. Fig. 5 shows the global trend of
VI for all the mobility models considered in our analysis for 10000
iterations.

From Fig. 5, we can observe that initially the vulnerability index
for all the considered mobility models are at similar level, but as the
time progresses they divert from each other showing each mobility
model has different level of impact on network vulnerability.



Figure 5: Comparison of VI for different mobility scenarios
for targeted attacks

4.4 Vulnerability Classification scheme
Weuse P2ABC , P2ACC , P2ADC , P2AEC ,P2ASW , P2ASE and P2ASP
as the feature set and the network state in each iteration as the tar-
get for developing classification models for each mobility scenario.
We collected 10000 samples of which we used 67% to train and 33%
to test the classification models. We randomized the samples before
splitting them into training and testing to remove the bias from the
dataset.

Algorithm 2 : Vulnerability classification scheme

(1) Select 1 mobility model among RWP, RPGM and TVC
(2) Calculate P2ABC , P2ACC , P2ADC , P2AEC ,P2ASW ,P2ASE

and P2ASP for T iterations
(3) Define network vulnerability states based on the value ofV I

in each of the T iterations
(4) Prepare dataset for classification using influence distribu-

tion metrics as feature set and vulnerability states as target
variable

(5) Randomize the dataset to avoid bias and conduct correlation
analysis

(6) Use 2
3
rd of the dataset to form training data and the remain-

ing 1
3
rd to form test data

(7) Set hyper-parameters for KNN, RF, ADA and MLPNN classi-
fication models

(8) Train KNN, RF, ADA and MLPNN classification models with
training data using scikit-learn library

(9) Record the performance metrics for test data
(10) Repeat steps [2-9] for remaining 2 mobility models

Four popular classification techniques namely K-nearest neigh-
bors (KNN) (with ’K’ = 10) , Random Forest (RF) (with 100 estima-
tors), AdaBoost classifier (ADA) (with 200 Decision Tree classifier
estimators) and Multilayer Perceptron Neural Networks (MLPNN)
(with 2 hidden layers, ReLU activation function, adaptive learning
rate, and ADAM optimizer) are used for developing classification

Table 1: F1-scores of classification models

Classifier RWP RPGM TVC

KNN 0.52 0.88 0.81
RF 0.51 0.92 0.84
ADA 0.51 0.91 0.85

MLPNN 0.51 0.84 0.75

models for network states. We use F1-score as the performance
metric to compare classification capability of different models. F1-
score is the harmonic mean of Precision and Recall. F1-score is more
useful than accuracy, precision or recall since we have uneven
class distribution for different states in our analysis. High F1-score
indicates better performance accuracy of the model.

The F1-score values for test dataset are shown in the Table. 1. As
the behavior of nodes vary randomly in RWP without any spatial
and temporal dependency, VI values have a lot of random variation
and influence distribution metrics fail to capture the network vul-
nerability correctly, hence the classification models result in such a
low F1-scores. In Table. 1, we can observe that for both RPGM and
TVC mobility scenarios, classification models result in excellent
F1-scores, proving that influence distribution metrics could be used
as reliable features to classify the network states in MSN.

As the behavior of nodes vary randomly in RWP without any
spatial and temporal dependency, VI values have a lot of variation
and influence distribution metrics fail to capture the network vul-
nerability correctly, hence the classification models result in such
low values for performance metric as shown in Table. 1. In Table. 1,
we can observe that for RPGM and TVC mobility, classification
models result in excellent values for performance metrics, proving
that influence distribution metrics could be used as reliable features
to classify the vulnerability states in MSN. It is important to notice
that even though influence distribution metrics were not directly used
to calculate VI, these metrics proved to be reliable features to predict
the network vulnerability states.

4.5 Mean Information Diffusion index (MID)
It is crucial to understand the importance of classifying the network
states and being able to predict the future network states based
on influence distribution metrics. We use Mean First Passage Time
(MFPT) [22] to define Global Information Diffusion (GID) index
which is used to differentiate the information dissemination ability
of network in different vulnerability states. MFPT from node i to
node j is the expected number of steps it takes for a randommessage
starting at node i to arrive for the first time at node j. GID for a
network is the average of all the inverses of pairwise MFPT values
between nodes and calculated as shown in Eq. 9.

GID =
∑

(i, j)∈Nodes

1
MFPT (i, j)

(9)

whereMFPT (i, j) represents the Mean First Passage time between
nodes i and j in the current network configuration.

Higher the value of GID, better is the information diffusion ca-
pabilities in the network as the information takes relatively lesser



Table 2: MID % change for different mobility scenario

Mobility model MID % change

RWP 4.48 ↓
RPGM 12.41 ↓
TVC 15.94 ↓

number of steps to reach the targets. We define MID for each net-
work state as the mean of global information diffusion index of all
the iterations that were classified as belonging to that particular
state.

MID%chanдe =
MIDS − (MIDSV +MIDV )

MIDS
(10)

We define MIDs , MIDsv and MIDv for Safe, Semi-Vulnerable
and Vulnerable network states. MID % change is percentage change
in the value of MID when the network leaves Safe state and stays
in Semi-vulnerable and Vulnerable states and is defined as shown
in Eq. 10. Table. 2 shows the values of MID % change for three
considered mobility models and the ↓ symbolizes the decrease in
MID value. In Fig. 5, we can notice that RPGM and TVC models
result in more vulnerable network compared to RWP because of
their spatial and/or temporal dependency properties. From Table. 2,
we can see similar performance deterioration among RPGM and
TVC models for information diffusion applications in MSN.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a novel vulnerability assessment and
classification scheme based on structural, social and influence dis-
tribution metrics for Mobile Social Networks (MSN). We formulated
Consolidated Influence Metric (CIM), a measure which can provide
the relative importance for any given node in the network based on
its structural and social significance. The network was subjected to
targeted and random attacks. Mobility models in which node move-
ment has high spatial and temporal dependence (which is usually
the case in MSN) results in more vulnerable networks compared to
network in which nodes move randomly.

Influence distribution metrics were developed and were success-
fully used to classify network states using K-Nearest Neighbor,
Random Forest, AdaBoost and Multilayer Perceptron Neural Net-
work classification models. Influence distribution metrics provide
us a way to detect the vulnerability state of the network and how
much damage a possible attack might cause. Mean Information
Diffusion (MID) index values decreases approximately by 5%, 12%
and 16% when network leaves Safe state and stays in Vulnerable
or Semi-Vulnerable states in Random Way-Point, Reference Point
Group Mobility and Time Variant Community models respectively.
Lower value of MID indicates lower quality of information diffu-
sion. The CIM metric developed in our analysis can also be used to
identify message forwarders for routing and cache storage nodes
in information caching applications as it is helpful to identify in-
fluential nodes in the network. In future work, we would like to
investigate how to improve the quality of information diffusion
during various network attacks even for the mobility scenarios
with high spatial, temporal and social dependencies.
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