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ABSTRACT

Photoplethysmography (PPG) signals have unique identity
properties for human recognition, and are becoming easier
to capture by emerging IoT sensors. Existing research on
PPG-based biometric systems rely on fiducial methods that
extract landmarks from the PPG signal as features. This
paper investigates non-fiducial methods that operating in a
holistic manner that is less sensitive to noise in landmarks.
We compare PPG-based human verification of 42 subjects
with fiducial and non-fiducial methods (specifically, discrete
wavelet transform) and classification using a neural net-
work and support vector machine. The experimental results
demonstrate higher test recognition rates for wavelet trans-
form feature extraction. We further improve our results by
selecting a subset of features via the genetic algorithm.

Index Terms— Photoplethysmography, PPG, Biometric,
Genetic algorithm, Feature extraction

1. INTRODUCTION

Password management is becoming more unwieldy as the
number of digital services and systems we access every day
continues to grow. Biometrics are a promising alternative
to passwords because they are unique to each individual, do
not need to be remembered, cannot be shared or stolen, etc.
However, the more common biometrics, such as fingerprint,
iris, hand geometry, and face, are vulnerable to circumvention
and have high implementation cost. For example, fingerprints
are very easy to obtain since they are involved in a lot of
daily tasks such as touching keyboards, door knobs, and so
forth. As a result, such biometrics require expensive acqui-
sition and liveliness detection. Photoplethysmography (PPG)
and electrocardiogram (ECG) are non-invasive techniques
for cardiovascular diagnosis which have also recently been
investigated as biometrics. PPG is a simple and low-cost opti-
cal technique that detects blood volume changes in the blood
vessels through measurements at the skin surface. PPG sen-
sors are included in many different wearable devices today.
Unlike ECG, PPG measurements only need to be acquired
from one side of the body, allowing it to be used in a larger
number of human recognition scenarios.

To the best of our knowledge, Gu et al.[1] was the first

group to investigate PPG for user authentication. They con-
sidered four feature parameters and achieved 94% accuracy.
A fuzzy-logic based approach was also proposed to examine
the feasibility of PPG signals as a new method in the iden-
tification of humans [2]. In 2006 [3], derivatives of PPG
signals were used to extract features for biometric recogni-
tion. In [4], linear discriminant analysis (LDA) was applied
as a dimensionalty reduction method for PPG-based human
identification. More recently, Kavsaolu et al. [5] proposed a
feature ranking algorithm based on 40 time domain features,
acquired from first and second derivatives of the PPG signal.
They achieved 94.44% accuracy for biometric identification.
In another work by Jaafar et al. [6], acceleration plethysmo-
gram (APG) was acquired from 10 subjects and they achieved
a 97.5% identification rate. In 2016, [7] proposed 12 time do-
main features from PPG and its derivatives.

The goal of our research is to develop more robust ap-
proaches for processing PPGs and classifying individuals.
All the above approaches rely on fiducial characteristics (i.e.,
landmarks) obtained from PPG signals in the time domain.
Non-fiducial methods have had better success in biometric
systems for electrocardiogram (ECG) [8] and to our knowl-
edge have not been applied to PPGs. Non-fiducial approaches
take a holistic approach where features are extracted statisti-
cally based on the overall signal morphology. In this work,
we compare the performance of fiducial and non-fiducial
approaches for PPG-based user identification.

The remainder of the paper is organized as follows. The
next section will discuss the pre-processing and feature ex-
traction including fiducial and non-fiducial methods. In Sec-
tion 2, we discuss two classification methods as well as the ge-
netic algorithm for feature reduction. Experiments and results
are discussed in Section 3. Finally, the paper is concluded in
Section 4.

2. PPG PROCESSING AND SYSTEM OVERVIEW

Our PPG biometric recognition system (block diagram) is
summarized in Figure 1. First, PPG signals are acquired
by PPG sensor and pre-processed to reduce unwanted noise.
Next, a modified Pan Tompkins algorithm is employed to
detect peaks in the PPG in order to divide it into different
segments. After segmentation and normalization, feature ex-



Fig. 1: Block diagram PPG biometric recognition system.

traction is applied and the resulting features are stored in a
database. During identification, an enrolled user supplies a
PPG to the biometric system. During the matching phase, the
template is passed to a matcher that compares it with features
extracted from an acquired PPG.

In a real application scenario, the PPG can be acquired
by a wearable device (e.g., smartwatch). Once the user is
verified, the smart device can log the user into different elec-
tronics systems automatically. This is similar to the Nymi
wristband that operates with ECG. One can also image other
systems such as remote controls that can acquire the PPG and
authenticate the user for system personalization.

2.1. Pre-processing

There are various noise sources such as baseline wander
(BW), motion artifact (MA), and respiration , which can im-
pact the quality of PPG signal acquisition. In this paper, we
employ a third order Butterworth bandpass filter with cutoff
frequency 1Hz-5Hz to eliminate this noise in PPG signals.
After filtering, systolic peak detection is needed segment the
PPG into individual heart beats. In this paper, the peaks
are detected using a modified Pan Tompkins algorithm [9].
Since there is variation between segments, we normalize each
segment in terms of maximum amplitude and time.

2.2. Feature Extraction

As discussed previously, feature extraction methods of ECG
can be categorized into two major classes: fiducial point
methods and non-fiducial methods. For PPG, only fiducial
methods have been used in prior work. Both approaches are
discussed below.

2.2.1. Fiducial Features

In fiducial point methods, the most often used features are
based on local landmarks of heart beats such as temporal or
amplitude difference between consecutive fiducial landmarks.
For PPG, the fiducial features are often determined from the
original PPG signal and its second derivative. In Figure 2,
the relationship between PPG signal and its second derivative
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Fig. 2: Plots illustrating (a) PPG signal (b) Second derivative
PPG.

is shown. In Figure 2,the main landmarks are shown- sys-
tolic peak, dicrotic notch, and diastolic peak. From the PPGs
second derivative, the a and b points are the first peak and
valley respectively. The ¢, d, e points occur after the location
of the systolic peak and have much smaller amplitude. Even
with pre-processing, peak detection can be undependable es-
pecially in the case of ¢, d, and e. If the peaks cannot be
extracted at all, the PPG biometric system will require more
segments in order to identify the individual which impacts its
usability and convenience. On the other hand, noise in the
peaks can also impact the accuracy of identification, resulting
in false positives and false negatives.

2.2.2. Non-fiducial Features

Non-fiducial methods of feature extraction can overcome the
above limitations of landmark extraction. In this paper, our
approach only requires extraction of the systolic peak in or-
der to segment the PPG. The systolic peak is easier to suc-
cessfully identify than any of the other landmarks in prac-
tice. Once this peak is extracted, we take a window around
it in each segmented PPG. The Discrete Wavelet Transforms
(DWT) is the non-fiducial method of choice for ECG and is
used to extract more reliable features for PPG in this paper.
The wavelet transform is a linear operation that transforms a
signal by decomposing it into various scales. The signal is
passed through a series of high and low pass filter in order to
analyze both high as well as low frequency components. The
discrete wavelet transform (DWT) is defined by
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where the x[k] and ¢ represent the analyzed signal and
mother wavelet. PPG signal decomposition is basically
done in an iterative fashion using the different scales s =
2,4,8,...,2", in fact the signal is broken down into many
lower resolution components. In this work, Daubechies
wavelet of order 4 (db4) with four levels of decomposition is
used for feature extraction.

3. PPG-BASED CLASSIFICATION

Biometric identification can be viewed as a binary classifica-
tion problem where enrolled features of each individual can
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Fig. 3: (a) Graphical representation of an MLP, (b) An exam-
ple of two class SVM .

be viewed as one class and samples from the rest of the pop-
ulation are viewed as other classes. In this paper, we consider
every subject’s PPG features and employ a different binary
classifier so that each enrolled subject can be recognized by
the system. Two different classification techniques are stud-
ied.

3.1. Neural Network (NN)

Multilayer perceptron (MLP) network is a static feed forward
neural network with one or more layers between input and
output layers (Fig. 3 (a)). The input layer consists of the
biometric features, hidden layers, and an output layer which
determines the subject’s identity. Each node consists of at
least one neuron with a nonlinear activation function (e.g.,
sigmoid). Classification begins by assigning input nodes with
extracted PPG features from the neural network which then
propagates in a forward direction through the perceptron until
the output nodes.

Based on training data, the back propagation (BP) algo-
rithm determines a set of optimal weights according to a min-
imum mean square error (MSE) criteria at the output neuron:
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where d; is the desired output and f(Z; * W) is the observed
output of neural network (y;) at time instant j of the training
process. The training repeats until the outputs of the neural
network, y;, are stable and close to the target, d;.

In our later experiments, we use a two layer MLP neu-
ral network with 20 neurons in the hidden layer and sigmoid
transfer functions for the first and hidden layer. The num-
ber of neurons in the output layer is equal to the number of
subjects (classes). At last, we applied the projection matrix
generated from the training set to reduce the dimension of the
features set. Since each output is a sigmoidal function, it can
differentiate whether the test vector belongs to a class or not
with values ranging between 0 and 1 and achieve a series of
identification results.

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a very robust non-parametric
classification technique that is based on statistical learning
theory. The binary SVM algorithms are based on learning a
decision boundary with a maximum margin between speci-
fied classes either in data space or in feature space for linear
and nonlinear SVMs (Fig. 3 (b)). In this paper we also use
SVM for PPG pattern classification. The binary SVM clas-
sifier optimization problem is solved in order to define k
hyperplanes by the vectors w; as
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where b and ¢ represents the offset of the hyperplane and
kernel function respectively. £ are “slack” variables that rep-
resent the amount of misclassified objects (training errors)
and C' > 0 is a control parameter denoting the importance
of the training error in the optimization problem. For the de-
scribing optimization problem, we refer the reader to [10].
In order to derive non-linear decision functions, the kernel
method is used to project the data into higher dimensions
where the target data is more easily contained by a hyper-
plane. In this paper, radial basis function is used as the kernel
function (¢). Finally, the decision function is

flw) = arg max (wi¢(x)+bi) 3)

Once the 42 class SVMs have been trained, they can be used
for testing, which is on new PPG sequences.

3.3. Classification Optimization

In this paper, genetic algorithm (GA) is used to select and
create reference features for the classification problem. In
PPG classification process using SVM and NN techniques,
GA requires less computation time in feature selection and
reduction compare to other approaches such as principal com-
ponent analysis (PCA). Also, GA can reduce the number of
input features required to find the desired classifier. By elim-
inating the undesired features, it can result in training weight
leading to a good accuracy. To do so, an initially random
generated population of chromosomes is created and then a
fitness is assigned to each chromosome of the initial popula-
tion based on a user-defined evaluation function (e.g., clas-
sification accuracy). Next, multiple feature sets are selected
from the current population (those with the largest fitness) and
modified to form a new population using the genetic operators
(crossover, mutation, etc.). Finally, the new population is then
used in the next iteration of the algorithm and so forth. The
algorithm terminates when some stopping criteria is reached.



Table 1: Performance of Identification

Fiducial | Wavelet | Morphology
SVM 97.57 99.88 99.19
GA+SVM 98.58 100 100
ANN 95.31 99.23 99.18
GA+ANN 97.15 100 100

4. EXPERIMENTAL RESULTS

4.1. Setup

A publicly available databases TBME [11], was used to study
the performance of the proposed methods. TBME contains
42 healthy subject with 300 Hz sample rate.

For our experimental analysis, we computed accuracy
rates for MLP neural networks and SVM both with and with-
out the GA.

TP+ TN
Accuracy—TP+FN+TN+FP “)
where TP, TN, FN, and F'P represent number of true pos-
itives, true negatives, false negatives, and false positives re-
spectively. The classification was considered correct if the
output from the model based on training data was similar to
the one that had been stored in database.

4.2. Results & Discussion

The classification accuracies for the above approaches are
summarized in Table 1. From Table 1, we can see that the
classification rate for SVM is better than NN in both fiducial
and non-fiducial feature extraction technique. Based on the
observation, NN not only provide weaker performance, but
also requires more computational time than SVM technique.
The identification rates for SVM also show a significant im-
provement compared to NN. Moreover, the result of the SVM
algorithm is more stable since it is not easily influenced by
primal weighting value like neural network. Based on our
experimentation results, we found out that the classification
accuracies of non-fiducial feature extraction when applied to
GA+SVM and GA+NN outperformed the outcomes of fidu-
cial feature extraction technique achieving identification rates
of 100% as compared to 98.58% and 97.15% respectively.
It can be observed that wavelet based technique results in
99.23% of accuracy based on ANN classifier while fiducial
features only succeed in identification rate of 95.31%. As
discussed before, fiducial feature are more sensitive to noise
which impacts the result while non-fiducial features are far
less dependent on peak detection correctness.

The classification performances evaluation shown in Ta-
ble 1 provide a general idea of the classifier result for a spe-
cific threshold definition. However, in order to analyze the
classifier response for each known class and different frac-
tions of positive data are rejected (FP), the result of Table 1
has to be combined with the analysis of receiver operating
characteristic (ROC) curves for each class. Figure 4 presents

non-fiducial
Fiducial Fiduciat

True positive rate
True positive rale

04 [13 08 1
False Positive rate

(a) (b)

z _ o4 05 08 1 0 0z
False Positive rate

Fig. 4: Plots illustrating ROC curves for (a) based on SVM
(b) based on MLP.
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Fig. 5: Identification accuracy Fiducial and non-fiducial fea-
ture extraction with various segments.

the average ROC curve for different FP and true positive (TP)
levels for each class.1. In fact, figure 4, the false accep-
tance rate (FAR) and the false rejection rate (FRR) curves are
plotted in terms of the system threshold. Figure 4 represent
comparison of ROC curves among fiducial and wavelet based
techniques, which manifest the dominance of wavelet features
over fiducial based features.

Another experiment was performed to illustrate how the
number of acquired PPG segments influences accuracy. Note
that the number of segments is related to the acquisition and
recognition time, which should ideally be short for biometric
system usability. Four different PPG segment lengths (5, 10,
15, and 20) were used. Figure 5 represent the identification
rates of SVM classifier for fiducial and non-fiducial features.
As mentioned before in Table ref, accuracy of fiducial feature
was less than non-fiducial. Although in Figure 5, fiducial ac-
curacy increases by increasing the number of segments, still
it is less than that of non-fiducial. The performance is quite
high even with only 5 segments. Considering a 1-2 second
heartbeat, 5-10 seconds would be needed to authenticate the
user in our system.

5. CONCLUSION AND FUTURE WORK

In this study, we have demonstrated an accurate PPG-based
identification system based on non-fiducial features. Clas-
sification was performed via NN and SVM, and features
were reduced by Genetic Algorithm to optimize classifica-
tion. The work is done under a small database of 42 persons
and achieved 100% accuracy as compared to 95-98.5% for
fiducial features.
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