Chaogate Parameter Optimization using Bayesian

Optimization and Genetic Algorithm

Rabin Yu Acharyal, Noeloikeau F. Charlot?, Md Mahbub Alam?, Fatemeh Ganji4,
Daniel Gauthier?, and Domenic Forte!
'Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
’Department of Physics, The Ohio State University, Columbus, OH, USA
3Technology Manufacturing Group, Intel Corporation, Chandler, AZ, USA
“Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
Email: rabin.acharya@ufl.edu, charlot.5@buckeyemail.osu.edu

Abstract—Chaotic circuits have found application in various
research areas, including cryptography. However, more effort
has to be made to achieve the properties required for such
circuits when it comes to their circuit design. We identify and
optimize for regions of chaos in a simple three-transistor system
known as a chaogate. We use simulations to study the dynamical
behavior of the system treated as a one-dimensional map, and
then maximize its chaotic and cryptographic behavior using
artificial intelligence. We propose several useful metrics for the
chaogate, such as the maximum Lyapunov exponent, and measure
these metrics over the transistor parameter space. Finally, we
apply Bayesian optimization and Genetic Algorithm to identify
various chaogate designs in different technology nodes, which we
visualize, compare, and use to propose future research.

Index Terms—Chaos, Chotic circuits, Chaogate, Cryptography,
Al, Optimization.

I. INTRODUCTION

The chaogate is a dynamical circuit that exhibits highly
nonlinear behavior known as chaos [1]. Chaos is often char-
acterized by an exponential but deterministic divergence of
nearby trajectories in a dynamical system over time. This prop-
erty has been leveraged in a variety of applications including
cryptography and computation. Research into microelectronic
chaotic primitives such as the chaogate is therefore essential
to make advances in these fields.

In 1998, it was proposed to use chaotic systems to realize
a new class of computing devices [2]. At the time, the focus
was on proof-of-principle demonstrations of the capability of
chaotic elements for universal computing by exploiting the
sensitivity and pattern formation features. For example, the
dynamical system proposed in Refs. [3] and [4] was among the
first to use a single chaotic element as a reconfigurable logic
gate. The chaos-based arithmetic logic unit (ALU) described in
Ref. [5] was later used to construct a multi-input, multi-output
logic block. Similarly, a gate using Chua’s circuit was used
to implement multiple logic gates [4]. In Ref. [6], a simple
nonlinear circuit, so-called “chaogate,” was claimed to imple-
ment an infinite number of functions. Other chaos sources
described in the literature are the modified two-transistor
resistor-capacitor phase-shift oscillator [7], modified Wien
bridge oscillator [8], driven inductor-varactor resonator [9],
and the autonomous circuit using operational amplifiers and
linear time-invariant passive components described in [10].

Chaotic systems have also found use in security-related
applications because of their inherent properties — sensitiv-
ity to initial conditions, unpredictability, deterministic nature
(under known initial conditions), and random-like behavior.
These properties are tailored to the requirements of various
modules in cryptosystems, including compression, encryption,
and modulation schemes [11]-[13]. In Refs. [12] and [11],
chaos-based public-key cryptography and a chaotic-driver-
based encryption scheme were proposed. Chaogates have also
been considered as a promising low-cost solution to protect
cryptosystems against non-invasive side-channel attacks [5],
[14]-[16] because they exhibit a difficult-to-predict state-space
of multiple implementations for various logical operations. In
addition, chaotic systems for IC authentication, locking key
exchange, etc. are considered to address the lack of (sub-)key
and clock generation in analog chips [17].

In these previous works, a dynamical system is constructed
in an ad hoc manner, and its inherent chaotic properties are not
examined precisely. In particular, the parameters affecting the
chaotic operation, and consequently, the security of the system
embodying the chaotic circuit, are not clearly defined. They
also fail to describe a clear methodology to design chaotic
circuits based on chaos-related metrics and properties.

To begin to develop a design strategy, we first highlight
that a chaotic system is a complex non-linear system that
depends on several internal parameters. For example, the
chaotic operation of the chaogate, composed of three MOSFET
transistors [6], depends on each transistor’s parameters and
gate voltages. The three transistor sizes alone comprise of a
large search space, which can be intimidating for a designer to
explore. In that regard, several methods were proposed in the
2000’s to design a circuit automatically such as in Refs. [18]
and [19], which optimize the parameters of an analog IC using
artificial intelligence (Al). However, the use of these Al-based
techniques stalled because it was not possible to develop a
smooth accurate model of the transistor as a function of tran-
sistor parameters without expending substantial computational
resources if at all. Recent advances in accurate MOSFET
models for modern process technologies, Al applications, and
availability of more powerful computational resources, how-
ever, are reducing such concerns. In light of these issues, our

Voo 12— — Voas=0.0V
Vbias=0.4 V
\% —— Vbias=0.8 V
bias 0.9 — — Ven=12V
Mml Ml’ll —_
w I LW 06
VOIH >
M, 0.3—
Nll W1
0

0 03 06 09 1.2
= Vi [V]
() (b)

Figure 1: (a) A three-transistor (3T) chaogate; (b) Vou: versus Vi,
for different V3,45 and a specific set of widths.

main contributions in this paper are summarized as follows.
o Identify MOSFET parameters, such as transistor width
and bias voltage, that affect chaotic behavior, especially,
for the chaogate as an example of a chaotic circuit. In
line with this, we develop a methodology to encode or
represent the corresponding netlists of chaogate circuits
in Python such that these parameters can be tuned easily.
o Formulate an objective function based on the chaos-
related metrics, which is then used by state-of-the art
Al optimization algorithms to obtain a chaotic circuit.
We stress that the optimization problem underlying the
design of chaotic circuits has not been well understood in
the literature. Our results provide key insight into which
type of optimization algorithms (i.e., data-efficient and
time-efficient) could be helpful in this regard.
o Simulate the generated netlists using multiple technology
nodes and analyze their performances.
In the next section, we introduce the chaogate structure,
operation, and theory. Section III discusses our proposed
design methodology, including optimization approaches and
parameters. In Section IV, we describe our simulation setup
and results. We conclude with a summary and future work.

II. PRELIMINARIES

Chaogate Design: In this paper, we use the chaogate design
as implemented by Kia et al. [6]. This design, as shown in
Fig. la, consists of three MOSFET transistors — 2 NMOS
transistors (M1 and Mpy2) and one PMOS transistor (Mp1)
— which are used to implement a nonlinear map to generate
chaotic signals. The transistors M and Mo share the same
input voltage V;,,. The bias voltage V;;,s (also called the
control voltage in the literature) is connected to the gate of
Mp1, which is used to change the response of the circuit. The
resulting transfer characteristics curve of V,,; versus V;,, for
different bias voltage is a V-shaped curve, which grows deeper
with the increasing bias voltage as shown in Fig. 1b.

The V-shaped output curve has two regions — the left region
with a negative slope and the right region with a positive
slope whose behavior can be understood as follows. Consider
an increasing input voltage V;,. When V;,, is less than the
threshold voltage of transistor M2 (Vra,1y,), the output of
the circuit is at a voltage level close to Vpp because both
Mpy1 and Mpyo are off. As V;, increases and is larger than
Vru vy, Mp1 and Mpyo operate as an inverter and create

the left region of the curve. My is still off because the gate-
source voltage Vs nry, 18 smaller than the Vg ar,,. When
this voltage is greater than Vg ay,, M1 turns on to create
the right region of the curve.

The core analog chaogate circuit shown in Fig. la is
embedded in clocked circuitry to enable its operation (not
shown) and described briefly here. The initial input to the
chaogate circuit is set by the user and is directed to V;,, using
a switch. The subsequent value of V,,;, after transient behavior
has died out and the circuit settles to a steady-state behavior,
is measured by a sample-and-hold circuit driven by a system
clock. The switch is toggled so that it now directs V,,: to V;,,
and this process continues for a time controlled by the user.

Chaogate Theory: The dynamics of the chaogate can be
described by

Vit1 = f(Vn; OL),

where NNV is the total number of iterations, V), is the output
voltage at the n*" iteration and V/, is the corresponding input
voltage, f is the transformation given by the chaogate, and
« represents some specified list of chaogate parameters. This
is known as a one-dimensional discrete-time map, and, when
iterated at fixed o, produce sequences

{Vitla ={Vo, f(Vo;) = V1, f(Vi;0) = V2,..}, (D)

with an example illustrated in Fig. 4. Even slight changes in
o around some critical point may be enough for the chaogate
to transition into and out of chaos. This is why a careful study
of the parameter space for chaogate operation is required,
something which has yet to appear in the literature.

n=0,1,23,..,N (1)

III. PROPOSED DESIGN METHODOLOGY

The chaogate design procedure involves finding
F(Vin; Voias) (@ = W, Vhias) for a particular chaogate
netlist, where W = (W, Wy, W3) represent the widths of
transistors Mpy1, Mpi, and Mpe, respectively. This source
of chaos, as studied by Dudek er al. [20] and Kia et al. [6],
offers robustness against process variation, which can affect
the slope of the transfer characteristics shown in Fig. 1b.

Based on these considertations, our general procedure for
analyzing and designing a chaogate system is as follows.

1) For these parameters, V,,; is recorded for a discrete
sequence of V;,. This recording is done for different
values of Vs to obtain f(Vin; Viias) used in the map
given by Eq. 1.

2) This two-dimensional set of data is then used to calculate
smooth spline interpolations of the chaogate map, which
is used to iterate the map for values V;,, over the domain
used the generate the discrete set of points. Then, a
transient sequence is constructed, where the transient is
the first 7" elements such that the sequence diverges from
its initial value if its chaotic. The number of iterations
N and the transient length 7" is predetermined.

3) The Lyapunov exponent is then calculated using

n=N+T

Ma)=(1/N) > (f (Vi) ()

n=T

where f’ is the derivative of the corresponding spline.
The Lyapunov exponent is a logarithmic measure of
the rate at which the sequence diverges, and a positive
Lyapunov exponent (A > 0) guarantees chaos for one-
dimensional maps [21]. We use this to identify regions
of Vyqs for which the system is chaotic.

4) An objective function based on the Lyapunov exponent
O, defined as max,(A) or A, is devised. The opti-
mization algorithms discussed in Secs. III-B and III-C
are used to satisfy this objective function and return a
set of widths and bias voltages such that the system is
chaotic.

A. Parameters Affecting Chaogate Operation

As discussed in the previous section, the threshold voltage
of the transistors play a huge role in determining the behav-
ior of the circuit and thus the chaotic behavior. The other
parameter which we have not yet discussed but is equally
important is the ratio (W/L). For an ideal N-type MOSFET
or NMOS transistor (ignoring channel-length modulation), the
current through the transistor is given by [22]

0, Vas < Vrm,
pnCox (%) (Vas —Vru)Vps Vps < Vpsar, (4)
%anoz (%) (VGS - VTH)2

where (i, is the electron mobility, C,, is the gate oxide
capacitance, Vrpy is the threshold voltage of the transistor,
and Vpgar is the voltage level at which the current saturates.
Similar expressions are available for PMOS transistors. From
Eq. (4), we see that, for a specific voltage instance of Vg
(voltage across gate-source terminal of the transistor) and Vpg
(voltage across drain-source terminal of the transistor), Ipg is
directly proportional to (W/L). This then affects the transfer
characteristics of the circuit, which can dramatically affect the
chaotic behavior of the circuit as well. Thus, the transistor
sizes, specified by (W/L), must be chosen meticulously to
obtain the desired chaotic operation. We choose L to be the
minimum length allowed by the process technology node. The
widths W and Vj;,s are chosen using the optimization algo-
rithms - Bayesian optimization (BO) and Genetic Algorithm
(GA).

Brief comparison of the optimization algorithms: BO is
considered one of the most data-efficient frameworks for op-
timization tasks, but it can be computationally expensive with
complexity O(n®) where n is the number of evaluations of
candidate solutions. GA, on the other hand, is data inefficient
but computationally much less intensive than BO. The search
heuristics used by evolutionary algorithms in GA take constant
time for generating candidate solutions [23]. As such, one has
clear advantage over the other depending on the task at hand.
However, for tasks that fall in the middle of the two (i.e.,
with a moderate evaluation cost), choosing one over the other
becomes difficult. As the optimization problem that we deal
with has not been thoroughly studied before, choosing between
BO and GA seems non-trivial. Therefore, we have applied both
algorithms separately and presented the results.

Ips =
Vpbs > Vpsar,

L 2 -

’ 1[(100, 55,2000) nm | 2{(200, 85, 1500) nm |

Fitness
Calculation

(b)

.. (3[(80,65, 1000 nm | 4 (100, 87, 1800) nm |

Iz|<200, 85,1500)nm | 4 [c100. 87, 1800) nm |] ©

'[zl(zoo, 85.1500)nm | 24[(200, 87, lSOO)nmq .
vl
|

~~..|4 (100,87, 1800) nm | 42[(100, 85, 1800) nm

[Mutation]

[42[(100, 85, 1800) nm | = 42[(101, 86, 1801) nm |] ©

4[(100,87,1800)nm |~ 42[(101, 86, 1801) nm

[2|(200, 85.1500) nm | 24[(200, 87, 1500) nm W
(@) TP T |

Figure 2: (a) GA Flowchart with example showing (b) population
initialization; (c) selection of fit members from the population; (d)
crossover between fit members to create new members; (¢) mutation
of genes in certain members; and (f) the new population.

B. Bayesian Optimization

Bayesian optimization [24] is a statistical approach for
finding the maximum of an objective function f that is costly
to evaluate over the full range of its argument(s) z € X.
The technique is based upon Bayesian statistics, in which
conditional probability distributions are continuously updated
as new data is acquired. In practice, Bayesian optimization
techniques amount to algorithms that sample the space X to
maximize the conditional probability that a particular point
z* = argmax,x|[f(z)] is the location of the function
maximum, given all previous observations.

To this end, various sampling algorithms have been devised,
though the most common are Gaussian processes, which
draw samples assuming independence among the arguments.
Similarly, one may provide a prior probability distribution
encoding the likelihood that the function maximum lies at each
point in the space. The most common prior is a uniform prior,
expressing an initial assumption that the function maximum is
equally likely to occur anywhere.

Here, we consider a uniform prior and a Gaussian process
as the sampling algorithm of our Bayesian optimizer (BO).
Details on the parameter space, objective function, and imple-
mentation are given in Sec. IV.

C. Optimization using Genetic Algorithm

Genetic Algorithm (GA) is an evolutionary-based optimiza-
tion technique inspired by Darwin’s theory of natural selection.
The basic idea in GA is to find the fittest individual or the best
solution over a specific search space using three evolutionary
operators - selection, crossover, and mutation - that are applied
to a population of chromosomes as shown in Fig. 2a. Chro-
mosomes are individuals that represent potential solutions to
a problem (e.g., 1 through 4 represents different chromosomes
in Fig. 2b). A chromosome is typically represented as a string
of binary bits or real numbers called genes. During the start
of the algorithm, a large population of these chromosomes
is created at random. Each chromosome is assigned a metric
value based on the fitness function, which determines how
good the chromosome is at solving the problem. If it solves

w,V,: -
BO or s ¥ bias Chaogate .Ngsplc‘e
netlist simulation
SA (sweep V,,)
I/OIII
Set of Report A -
) Ay >0

Figure 3: Simulation setup showing the procedure used to obtain a
chaotic set of widths.

the problem, then the algorithm halts. Otherwise, depending
on the fitness values, only a few chromosomes are selected
as denoted by the step selection (see Fig. 2c). The next steps
involve creating new chromosomes, which is accomplished by
swapping genes of two fit chromosomes in a process called
crossover, as shown in Fig. 2d, and by mutating certain genes
of the chromosomes in a process called mutation, as shown
in Fig. 2e. This concludes one run or generation of the GA
algorithm and this evolution process continues until the fittest
chromosome is created or a stopping criterion is met [25].
In a particular GA, only a fraction of the chromosomes are
replaced, and the selection process is biased towards the fitter
individuals.

GA optimization for chaogate design: In the context of
chaogate design, our fitness function is the Lyapunov exponent
(Eq. (3)) and the fittest chromosome is the one with the highest
Lyapunov exponent. For this analysis, a stopping criteria can
be provided such as A = k, where k is a positive real number,
or the algorithm is allowed to run for fixed number of iterations
or generations after which the values of W with the maximum
A are selected for the chaogate.

IV. SIMULATION RESULTS AND ANALYSIS
A. Simulation Setup

We simulate the netlist shown in Fig. la in multiple com-
mercial technology nodes with 65 nm assumed when not
specified. A DC sweep of V,,; versus V;, with Vs €
[0,1.2] V and Vpp=1.2 V is performed to obtain the transfer
characteristics like those in Fig. 1b. As discussed earlier,
we optimize W. The creation of netlist, the optimization
of transistor parameters, and the corresponding simulations
(with new width values) are entirely done within the Python
environment as shown in Fig. 3. We use PySPICE [26] v.
1.4.3, which is an open-source module that allows the user
to simulate and manipulate SPICE netlists within Python by
interfacing to the Ngspice v. 33 simulator.

B. Simulation Procedure

In the simulations, we use the procedures discussed in
Sec. III for generating f(V'). At intermediate steps, a conve-
nient method for visualizing the dynamics is through a cobweb
diagram [21], which overlays the trajectories on the transfer
function with an example shown in Fig. 4. We iterate the map
to produce a cobweb diagram that describes the behavior of
the system - a closed polygon indicates a repetitive sequence

S \
~0.6
~
Vo)
01~
0 0.6 1.2
Vi [V]

Figure 4: Cobweb diagram showing the first two iterations {V,} =
{Vo, V1, Va} of the chaogate map V,,+1 = f(V,,) starting at Vo = 0.2
V for Vpias = 0.1 V.

of fixed values (Fig. 5a) while a filled region of non-repetitive
values suggests chaos (Fig. 5b). This behavior of the system
can also be examined using a bifurcation diagram (Fig. 5c)
which shows the values visited by the system as the bifurcation
parameter (V3,45 in our case) changes. From Fig. 5c, we
observe regions of chaos and windows of periodic behaviour
of the chaogate circuit. Lastly, we use BO and GA to suggest
desirable W for chaogate design.

For each sequence {V,}|o (Eq. (2), Fig. 4), we find that
N = 2,500 with T' = 500 is enough to obtain representative
sequences starting with an arbitrarily chosen V[, = 0.45 V.
We fix these quantities for the remainder of this simulation.
Next, we calculate the Lyapunov exponent using Eq. (3).
We use A > 0 to identify regions of Vs for different W
such that the system is chaotic (Fig. 5, 6). Similarly, we
calculate the Shannon entropy (H) of the long-term behavior
of the probability density function of each chaogate iteration
sequence using

n=N+T
H(a) =~ Y pala)logy(pn(a)), (5)
n=T
where p,(c) is the frequency of observation of element V;,
from the iterated map sequence {V,}|a.

C. Optimization Results and Analysis

As discussed in Sec. 111, the optimization cost corresponding
to the design of the chaogate has not been determined previ-
ously. Here, we consider both data- and time-efficient types,
namely, BO and GA to optimize the function Oy = max,(\),
which explores the width space to return a specific set W.
To allow a fair comparison, the same number of iterations
is considered for the BO and GA. Moreover, the range of
parameters searched to perform the optimization is also fixed.
Specifically, for the BO, we use the Python package skopt
and the function gp_mimimize with default parameters. For
GA, we devise a simple evolutionary algorithm as described
in Sec. III-C.

Results with objective of)\,,: We run the BO and the GA
algorithms for 100 generations and the corresponding results
are shown in Figs. 6b and 6¢c. We also compare these results

0.0 0.2 04 06 08 1.0 1.2
Vbias [V] (c)

Figure 5: Cobweb plots of two regions showing (a) non-chaotic and
(b) chaotic system behavior as Vjpiqs is changed for fixed W =
(120,120, 2000) nm. (c) Bifurcation diagram, which shows the set
of unique chaogate iteration points {V,,} on the vertical for each bias
voltage on the horizontal.

=009

- \\

> p y

- % Y

4

£%07 AW

c - N

9 \

= kY
0.3 \\

N

O010 0:3 016 0:9 O:O 013 0:6 0?9 OjO O.I3 0?6 0.|9
(a) (b) (©
Viias [V]

Figure 6: Dynamics of the chaogate (a) for W =
(480, 480,4800) nm and L = 60 nm over the full range of
Vipias [15]. (Blue) Bifurcation diagram showing set of map iterations
{V..}. (Red) Lyapunov exponent; shaded red regions are where
A > 0 and the system is chaotic. (Green) Entropy of the map
iterations in bits, calculated by binning {V,,} in 0.01 V increments.
(b) with A\, = 0.40 at W = (65,247, 958) nm obtained using BO.
(c) with \,,, = 0.37 at W = (66,177,2052) nm obtained using
GA.

with the state-of-the-art chaogate circuit specified in Ref. [15]
and shown in Fig. 6a. Both optimization algorithms are run
to obtain a set of widths that achieve the largest Lyapunov
exponent \,,. The results obtained from these optimization
algorithms look similar in that the change in H (the green
steps) and the sign of A\ (blue spikes) at each bifurcation are
approaching the maximal density chaotic region around 0.8 V.
Nevertheless, for the same number of iterations and range of

Iterants {V,} [V]

0.0 0.5 1.0 O:O 0.5 1.0
b
Y (b)

Figure 7: Dynamics of chaogate with the maximum entropy (a)
H,, = 6.18 bits at W = (331,65,950) nm obtained using BO.
Note the two bands of chaotic behavior, one of which indicates
chaos even at V445 = 0. Both regions are punctuated by periodicity
characterized by drops in H and A. (b) H,, = 5.89 bits at
W = (1320, 87,2060) nm obtained using GA.

parameters searched by the BO and GA, the GA converges
to a result, where the \’s are positive over a wider range. In
comparison to the chaotic system described in Ref. [15], the
optimization algorithms clearly find circuits that show larger
range of chaos over Vj;,s. As shown in Fig. 6a, this system
has a very narrow chaotic region (the shaded red region) at
around Vj;,s = 0.6 V. The wider chaotic region can also prove
to be effective against process variation and noise, which will
be the subject of our future work.

Results with objective of H,,: Now, if we change our objec-
tive from A, to the maximum value of the entropy H,,, the
structure and position of the chaotic regions shift, giving us the
result as shown in Fig. 7. The chaogate designer can certainly
choose to have both A\ and H maximized by providing a multi-
objective function (A, H,,) to the optimization algorithms.
The maximum-entropy region shown in both Figs. 7a and 7b
demonstrates a broad band of chaos at low bias voltages
specifically Fig. 7a which is chaotic even at 0 V. This may be
desirable for extremely low power cryptographic primitives.
However, there exist small bands of periodicity in this region,
which may interrupt cryptography.

In contrast, optimizing for A, as shown in Figs. 6b and 6c,
demonstrates the highest density chaotic region of the three
(the red shaded region is larger compared to Fig. 6a). The
set of states here may have applications in primitives prior-
itizing cryptography at the expense of power consumption.
Additionally, the chaogates in these regions may have near
maximal entropy. The 0.01 V bin space provides a total of
log,(120) = 6.91 bits for our estimate. We see in each plot
that H,, ~ 6 bits, naively suggesting an entropy density
around 6/6.91 ~ 90%. More advanced entropy measures, such
as the Kolmogorov-Sinai entropy, may yield more accurate
results by taking into account information revealed by the
ordering of {V;,}. This is the subject of future work.

TABLE I: Comparison of width values W = (Wi, W2, Wa)
obtained for different technology nodes, namely a commercial 65 nm
and PTM 45 nm, 90 nm, and 130 nm. The widths are optimized to
obtain maximum Lyapunov exponent using Bayesian Optimization
(BO) and Genetic Algorithm (GA). The resulting H, is also reported.

| | BO | GA |
| S e T e
45	(86,47,992)	048	539	(132,67,1983)	05	553
65	(65.247,958)	04	537	(66, 177,2052)	037	541
90	(162,149,2032)	035	596	(114,99,2035)	035	593
130	(201,236, 1882)	0.38	6.03	(207, 138,2045)	0.34	6.05

D. Demonstration on Different Technology Nodes

Our optimization approach is flexible and can be applied
to other technology nodes, chaotic circuits, and other analog
circuits. Here, we use it to port chaotic behavior of the
chaogate to different technology nodes, thus relieving the
designer’s burden. As seen in Table I, the optimizer returns
a set of widths for different transistor technologies and it can
be optimized to obtain either \,, or H,,.

The key message that the results in Table I convey is
that both the BO and GA could converge to (almost) similar
widths regardless of the transistors technology. Nevertheless,
to decide which algorithm should be chosen to perform the
optimization task, time complexity can play a crucial role. To
address this, we measure the time that the algorithms take
to optimize the circuit 100 times for the commercial 65 nm
model. The BO takes 157.3 s, while the GO finishes the
task in 143.7 s. Similar trends have been observed for other
transistor models. Note that although the difference between
the time complexity of the BO and GA is not substantial in
our scenario, this difference can affect the efficiency of the
design process for larger or more complex analog circuits.

V. CONCLUSION AND FUTURE WORK

Al is a promising approach for co-optimization of circuit
security and performance. Here, we present a clear framework
for designing chaotic circuits and explore the optimization
problem underlying such a task in terms of its computational
cost. As this cost has not been discussed in the literature, we
have applied two well-known optimization methods, namely
BO and GA borrowed from AIl, which are less time-efficient
and less data-efficient, respectively. In the current literature,
it has been suggested to combine the two [23], which will
be a subject of our future work. Moreover, future work in-
cludes tuning the hyperparameters of the optimization routine,
testing other objective functions and constraints (including
traditional circuit metrics such as area and power), performing
a noise sensitivity analysis, and completely exploring the
transistor-width parameter space to identify different trends.
Additionally, the results obtained here will be used to fabricate
chaogates in silicon for further experimental research.

REFERENCES

[11 W. L. Ditto, A. Miliotis, K. Murali, S. Sinha, and M. L. Spano,
“Chaogates: Morphing logic gates that exploit dynamical patterns,”

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Chaos: An Interdisciplinary J. of Nonlinear Science, vol. 20, no. 3,
p- 037107, 2010.

S. Sinha and W. L. Ditto, “Dynamics based computation,” Phys. Rev.
Lett., vol. 81, no. 10, p. 2156, 1998.

T. Munakata, S. Sinha, and W. L. Ditto, “Chaos computing: imple-
mentation of fundamental logical gates by chaotic elements,” Trans. on
Circuits and Systems I: Fundamental Theory and Applications, vol. 49,
no. 11, pp. 1629-1633, 2002.

S. Sinha and W. L. Ditto, “Computing with distributed chaos,” Phys.
Rev. E, vol. 60, no. 1, p. 363, 1999.

G. S. Rose, “A chaos-based arithmetic logic unit and implications for
obfuscation,” in Computer Society Annual Symp. on VLSI, pp. 54-58,
IEEE, 2014.

B. Kia, J. F. Lindner, and W. L. Ditto, “A simple nonlinear circuit
contains an infinite number of functions,” Trans. on Circuits and Systems
1I: Express Briefs, vol. 63, no. 10, pp. 944-948, 2016.

L. Keuninckx, G. Van der Sande, and J. Danckaert, “Simple two-
transistor single-supply resistor—capacitor chaotic oscillator,” Trans. on
Circuits and Systems II: Express Briefs, vol. 62, no. 9, pp. 891-895,
2015.

A. Namajunas and A. Tamasevicius, “Modified Wien-bridge oscillator
for chaos,” Electronics Lett., vol. 31, no. 5, pp. 335-336, 1995.

P. S. Linsay, “Period doubling and chaotic behavior in a driven anhar-
monic oscillator,” Phys. Rev. Lett., vol. 47, no. 19, p. 1349, 1981.

J. R. Piper and J. C. Sprott, “Simple autonomous chaotic circuits,” Trans.
on Circuits and Systems II: Express Briefs, vol. 57, no. 9, pp. 730-734,
2010.

L. Keuninckx, M. C. Soriano, I. Fischer, C. R. Mirasso, R. M. Nguimdo,
and G. Van der Sande, “Encryption key distribution via chaos synchro-
nization,” Scientific Reports, vol. 7, p. 43428, 2017.

I. Mishkovski and L. Kocarev, ”Chaos-Based Public-Key Cryptogra-
phy”, pp. 27-65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number
generators. Part II: practical realization,” Trans. on Circuits and Systems
I: Fundamental Theory and Applications, vol. 48, no. 3, pp. 382-385,
2001.

J. Bohl, L.-K. Yan, and G. S. Rose, “A two-dimensional chaotic logic
gate for improved computer security,” in 58th Intrl. Midwest Symp. on
Circuits and Systems, pp. 1-4, IEEE, 2015.

M. B. Majumder, M. S. Hasan, M. Uddin, and G. S. Rose, “Chaos
computing for mitigating side channel attack,” in Intrl. Symp. on
Hardware Oriented Security and Trust, pp. 143-146, IEEE, 2018.

M. B. Majumder, M. S. Hasan, A. Shanta, M. Uddin, and G. Rose,
“Design for Eliminating Operation Specific Power Signatures from
Digital Logic,” in Proc. of the Great Lakes Symp. on VLSI, p. 111-116,
ACM, 2019.

M. M. Alam, S. Chowdhury, B. Park, D. Munzer, N. Maghari, M. Tehra-
nipoor, and D. Forte, “Challenges and opportunities in analog and mixed
signal (ams) integrated circuit (ic) security,” J. of Hardware and Systems
Security, vol. 2, no. 1, pp. 15-32, 2018.

M. Fakhfakh, Y. Cooren, A. Sallem, M. Loulou, and P. Siarry, “Analog
circuit design optimization through the particle swarm optimization
technique,” Analog Integrated Circuits and Signal Processing, vol. 63,
no. 1, pp. 71-82, 2010.

M. Taherzadeh-Sani, R. Lotfi, H. Zare-Hoseini, and O. Shoaei, “Design
optimization of analog integrated circuits using simulation-based genetic
algorithm,” in Intl. Symp. on Signals, Circuits and Systems, vol. 1,
pp- 73-76, 1IEEE, 2003.

P. Dudek and V. Juncu, “Compact discrete-time chaos generator circuit,”
Electronics Lett., vol. 39, no. 20, pp. 1431-1432, 2003.

H. G. Schuster and W. Just, Deterministic chaos: an introduction. John
Wiley & Sons, 2006.

T. Sakurai and A. R. Newton, “A simple MOSFET model for circuit
analysis,” IEEE transactions on Electron Devices, vol. 38, no. 4,
pp- 887-894, 1991.

G. Lan, J. M. Tomczak, D. M. Roijers, and A. Eiben, “Time Efficiency in
Optimization with a Bayesian-Evolutionary Algorithm,” arXiv preprint
arXiv:2005.04166, 2020.

P. 1. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

R. Y. Acharya, S. Chowdhury, F. Ganji, and D. Forte, “Attack of the
Genes: Finding Keys and Parameters of Locked Analog ICs Using
Genetic Algorithm,” in Intrl. Symp. on Hardware Oriented Security and
Trust, pp. 284-294, 1EEE, 2020.

F. Salvaire, “PySpice.” https://pyspice.fabrice-salvaire.fr, 2020.

